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A coupled state of an electromagnetic field with an electric or magnetic dipole-carrying excitation is well known
as a polariton. Such a state is the result of the mixing of a photon with the excitation of a material. The most
discussed types of polaritons are phonon polaritons, exciton polaritons, and surface-plasmon polaritons. Recently,
it was shown that, in microwaves, strong magnon-photon coupling can be achieved due to magnetic-dipolar-mode
(MDM) vortices in small thin-film ferrite disks. These coupled states can be specified as MDM-vortex polaritons.
In this paper, we study the properties of MDM-vortex polaritons. We numerically analyze a variety of topological
structures of MDM-vortex polaritons. Based on analytical studies of the MDM spectra, we give theoretical
insight into a possible origin for the observed topological properties of the fields. We show that the MDM-vortex
polaritons are characterized by helical-mode resonances. We demonstrate the PT -invariance properties of MDM
oscillations in a quasi-two-dimensional ferrite disk and show that such properties play an essential role in the
physics of the observed topologically distinctive states with the localization or cloaking of electromagnetic fields.
We may suppose that one of the useful implementations of the MDM-vortex polaritons could be microwave
metamaterial structures and microwave near-field sensors.
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I. INTRODUCTION

The coupling between photons and magnons in a ferro-
magnet has been studied in many works over a long period of
time. In an assumption that there exists an oscillating photon
field associated with the spin fluctuations in a ferromagnet,
one can observe the photonlike and magnonlike parts in the
dispersion relations. The dispersion characteristics for the
coupled magnon-photon modes were analyzed for various
directions of the incident electromagnetic wave vector, and
it was found, in particular, that there are reflectivity bands
for electromagnetic radiation incident on the ferromagnet-air
interface [1–4]. As one of the most attractive effects in studies
of the reflection of electromagnetic waves from magnetic
materials, there is the observation of a nonreciprocal phase
behavior [5].

In the general case of oblique incidence on a single
ferrite-dielectric interface, apparently different situations arise
by changing the directions of incident waves and bias and
the incident side of the interface. The solutions obtained
for different electromagnetic problems of ferrite-dielectric
structures show the time-reversal symmetry-breaking (TRSB)
effect [6–10]. Microwave resonators with the TRSB effect
give an example of a nonintegrable electromagnetic system.
In general, the concept of nonintegrable, i.e., path-dependent
phase factors is considered as one of the fundamental aspects of
electromagnetism. The path-dependent phase factors are the
reason for the appearance of complex electromagnetic-field
eigenfunctions in resonant structures with enclosed ferrite
samples, even in the absence of dissipative losses. In such
structures, the fields of eigenoscillations are not the fields of
standing waves despite the fact that the eigenfrequencies of
a cavity with a ferrite sample are real [11]. Because of the
TRSB effect and the complex-wave behaviors, one can observe
induced electromagnetic vortices in microwave resonators
with ferrite inclusions [12–14].

Very interesting effects appear when an oscillating photon
field is coupled with the resonant collective-mode behavior of
spin fluctuations in a confined ferromagnetic structure. This
concerns, in particular, a microwave effect of strong cou-
pling between electromagnetic fields and long-range magnetic
dipolar oscillations. Such oscillations, known as magnetic-
dipolar-mode (MDM) or magnetostatic (MS) oscillations, take
place due to the long-range phase coherence of precessing
magnetic dipoles in ferrite samples. The wavelength of MDM
oscillations is 2–4 orders of magnitude less than the free-
space electromagnetic wavelength at the same microwave
frequency [11]. The fields associated with MDM oscillations in
confined magnetic structures decay exponentially in strength
with increasing distance from the ferrite-vacuum interface.
In general, these modes are nonradiative. The nonradia-
tive character of MDMs has two important consequences:
(i) MDMs cannot couple directly to photonlike modes (in
comparison to photonlike modes, the MDM wave vectors
are too great), and (ii) the fields associated with MDMs may
be considerably enhanced in strength in comparison to those
used to generate them. The electromagnetic radiation only
emerges after it has multiply bounced round in the confined
magnetic structure, during which some energy is lost by
absorption to the ferrite material. In a region of a ferromagnetic
resonance, the spectra of MDMs strongly depend on the
geometry of a ferrite body. The most pronounced resonance
characteristics one can observe are in a quasi-two-dimensional
(2D) ferrite disk. The coupling between an electromagnetic
field in a microwave cavity and MDM oscillations in a
quasi-2D ferrite disk shows a regular multiresonance spectrum
of a high-quality factor [15,16]. Recently, it was shown
that small ferrite disks with MDM spectra behave as strong
attractors for electromagnetic waves at resonance frequencies
of MDM oscillations [17]. It was found that the regions of
strong subwavelength localization of electromagnetic fields
(subwavelength energy hot spots) appear because of the
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topological properties of MDM oscillations—the power-
flow eigenvortices [17–19]. Because of the MDM vortices,
one has strong magnon-photon coupling in microwaves.
Such coupled states can be specified as the MDM-vortex
polaritons.

Topological properties of MDMs are originated from
nonreciprocal phase behaviors on a lateral surface of a ferrite
disk. A numerical analysis of classical complex-wave fields in
a ferrite disk gives evidence for the Poynting-vector vortices
and the field rotation inside a ferrite disk at frequencies
corresponding to the MDM resonances [17–19]. The rotation
angle of the polarization plane of electromagnetic fields,
evident from numerical studies, is represented by a geometrical
phase. Manifestation of a geometrical phase in wave dynamics
of confined classical structures is well known. For example, the
Berry phase for light appears in a twisted optical fiber in which
the trajectory of the wave vector makes a closed loop. In this
case, the polarization plane rotates during propagation, and the
rotation angle is represented by a Berry phase [20]. Due to a
Berry phase, one can observe a spin-orbit interaction in optics.
In particular, it was shown that a spin-orbit interaction of
photons results in the fine splitting of levels in a ring dielectric
resonator, similar to that of electron levels in an atom [21].
In our case, the geometrical phase of electromagnetic fields
appears due to space- and time-variant subwavelength (with
respect to free-space electromagnetic fields) magnetization
profiles of MDMs in a ferrite disk [22].

The purpose of this paper is to study the scattering of mi-
crowave electromagnetic fields from MDM-vortex polaritons.
The geometrical phase plays a fundamental role in forming the
coupled states of electromagnetic fields with MDM vortices.
Because of the intrinsic symmetry breakings of the vortex
characteristics, a small ferrite particle with a MDM spectrum
behaves as a point singular region for electromagnetic waves.
Based on a numerical analysis of classical complex-wave
fields, we show that, due to the spin-orbit interaction, MDM
resonances have frequency splits. For the split states, one
has the localization or cloaking of electromagnetic fields. A
definite-phase relationship between the incident electromag-
netic wave and the microwave magnetization in the MDM
particle results in asymmetry in the forward and backward
scatterings of electromagnetic waves. The broken reflection
symmetry is intimately related to intrinsic symmetry properties
of MDMs in a quasi-2D ferrite disk. The hidden helical
structure of MS-potential wave functions inside a ferrite
disk gives evidence for a geometrical phase associated with
the MS-wave dynamics [22,23]. From a spectral analysis
of MS-potential wave functions in a quasi-2D ferrite disk,
it follows that, due to special boundary conditions on a
lateral surface of a ferrite disk, one has the Berry connection
double-valued-function surface magnetic currents and fluxes
of gauge electric fields. The MDM ferrite disk is characterized
by eigenelectric moments (anapole moments) [22,23].

The paper is organized as follows. In Sec. II, we present
topological textures of MDM-vortex polaritons obtained from
the numerical simulation of a structure of a rectangular
waveguide with an enclosed small ferrite disk. We analyze the
scattering-matrix characteristics and give a detailed analysis
of the fields for these MDM-vortex polaritons. Sec. III is
devoted to an analytical consideration of the possible origin

of MDM-vortex polaritons. We study the helicity and the
orthogonality conditions of the MDMs in a ferrite disk and
analyze properties of the observed split-state resonances. The
paper is concluded with a summary in Sec. IV.

II. DISTINCT TOPOLOGICAL TEXTURES
OF MDM-VORTEX POLARITONS

In one of the models, we can consider the fields associated
with MDMs in a quasi-2D ferrite disk as the structures
originated from rotating magnetic dipoles and rotating electric
quadrupoles. Due to such field structures, one can observe
the power-flow vortices inside a ferrite disk and in a near-
field vacuum region [17–19]. Distinct topological textures
of MDM-vortex polaritons become evident from numerical
studies based on the HFSS electromagnetic simulation program
(the software based on the finite-element method produced by
ANSOFT Company). In a numerical analysis in the present
paper, we use the same disk parameters as in Refs. [17–19]:
The yttrium-iron-garnet (YIG) disk has a diameter of D =
3 mm, and the disk thickness is t = 0.05 mm; the disk is
normally magnetized by a bias magnetic field H0 = 4900 Oe;
the saturation magnetization of a ferrite is 4πMs = 1880 G.
Similar to Refs. [17–19], a ferrite disk is placed inside
a TE10-mode rectangular X-band waveguide in a position
symmetrical to the waveguide walls and so that a disk axis is
perpendicular to the wide wall of a waveguide. The waveguide
walls are made of a perfect electric conductor (PEC). For better
understanding of the field structures, we use a ferrite disk with
a very small linewidth of �H = 0.1 Oe. Figure 1 shows the
module and phase-frequency characteristics of the reflection
(the S11 scattering-matrix parameter) coefficient, whereas,
Fig. 2 shows the module and phase-frequency characteristics
of the transmission (the S21 scattering-matrix parameter)
coefficient. The resonance modes are designated in succession
by numbers n = 1,2,3,.... The inset in Fig. 1(a) shows the
geometry of a structure: a ferrite disk enclosed in a rectangular
waveguide.

The field structures of the MDM oscillations are very
different from the field structures of the eigenmodes of an
empty rectangular waveguide [17–19]. MDM-vortex polari-
tons appear as a result of the interaction of MDM oscillations
with propagating electromagnetic waves. In the represented
characteristics, one can clearly see that, starting from the
second mode, the coupled states of the electromagnetic fields
with MDM vortices are split-resonance states. In Fig. 1, these
split resonances are denoted by single and double primes.
The split resonances are characterized by two coalescent
behaviors, namely, strong transmission and strong reflection
of electromagnetic waves in a waveguide. In the case of the
observed strong transmission (resonances denoted by a single
prime), microwave excitation energy is transformed into MDM
energy and is reemitted in the forward direction, whereas, in
the case of strong reflection (resonances denoted by double
primes), microwave excitation energy is transformed into
MDM energy and is reemitted in the backward direction. As
the most pronounced illustration of the MDM-vortex-polariton
characteristics, we focus our paper on the second-mode (n = 2)
coalescent resonances designated as 2′ and 2′′ resonances. The
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FIG. 1. (Color online) Frequency characteristics of (a) a module and (b) a phase of the reflection coefficient for a rectangular waveguide
with an enclosed thin-film ferrite disk. The resonance modes are designated in succession by numbers n = 1, 2, 3. . . . The coalescent resonances
are denoted by single and double primes. The inset in (a) shows the geometry of a structure.

2′ resonance is the low-frequency resonance, while the 2′′
resonance is the high-frequency resonance. Figures 3 and 4
show the power-flow density distributions in a near-field
vacuum region (a vacuum plane 75 μm above or below a
ferrite disk) for the 2′ and 2′′ resonances, respectively. One
can see that, for the 2′ resonance, there are two power-flow
vortices of the near fields with opposite topological charges
(positive for the counterclockwise vortex and negative for the
clockwise vortex). Because of such a topological structure near
a ferrite disk, a power flow in a waveguide effectively bends
around a ferrite disk resulting in a negligibly small reflected
wave. Evidently, at the 2′-resonance frequency, one has
electromagnetic-field transparency and cloaking for a ferrite
particle. Contrary to the above behavior, at the 2′′-resonance
frequency, there is a strong reflection of electromagnetic waves
in a waveguide. The power-flow distribution above and below
a ferrite disk is characterized by a single-vortex behavior
with strong localization of an electromagnetic field. Such a
resonance behavior (the 2′′ resonance) is known from our
previous studies in Refs. [17–19]. Figures 5 and 6 show

the electric-field distributions at two time phases (ωt = 0◦
and ωt = 90◦) in a vacuum region (75 μm above a ferrite
disk) for the 2′ and 2′′ resonances, respectively. Evidently,
there is a rotational degree of freedom for the electric-field
vectors resulting in a precession behavior of the electric field
in vacuum.

For understanding the properties of the MDM-vortex
polaritons, we should correlate the field structures in the near-
field vacuum region and inside a ferrite disk. The power-flow
density inside a ferrite disk for the 2′ and 2′′ resonances are
shown in Figs. 7(a) and 7(b), respectively. Figures 8 and 9 show
the electric-field distributions at two time phases (ωt = 0◦ and
ωt = 90◦) inside a ferrite disk for the 2′ and 2′′ resonances,
respectively. One can see that, despite some small differences
in the pictures of the fields and power flows, the shown
distributions inside a ferrite disk for the split-state 2′ and 2′′
resonances are almost the same. They are the pictures typical
for the second MDM in a ferrite disk [18,19]. At the same time,
in vacuum, one has a strong difference between the near-field
pictures for the 2′ and 2′′ resonances (see Figs. 3–6).
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FIG. 2. Frequency characteristics of (a) a module and (b) a phase of the transmission coefficient for a rectangular waveguide with an
enclosed thin-film ferrite disk. The resonance modes are designated in succession by numbers n = 1, 2, 3. . . .

A distinctive feature of the electric-field structures, both
inside and outside a ferrite disk, is the presence of the local
circular polarization of electromagnetic waves together with
a cyclic evaluation of the electric field around a disk axis.
An explicit illustration of such evolutions of an electric field
inside a disk is given in Fig. 10 in an assumption that the
rotating-field vector has constant amplitude. One can see that
the electric-field vectors are mutually parallel. When (for a
given radius and at a certain time phase ωt) an azimuth angle
θ varies from 0 to 2π , the electric-field vector accomplishes
the geometric-phase rotation. This is the nonintegrable phase
factor arising from a circular closed-path parallel transport
of a system (an electric-field vector). We have wave plates
continuously rotating locally and rotating along the power
flow circulating around a disk axis. As we will show in the next
section of the paper, the observed geometric-phase rotation
of the electric-field vector is intimately related to hidden
helical properties of MDMs. A disk axis can be considered
as a line defect corresponding to adding or to subtracting an
angle around a line. Such a line defect, in which rotational
symmetry is violated, is an example of disclination. One can
conclude that microwave fields of the MDM-vortex polaritons

are characterized by spin and orbital angular momentums. The
spin and orbital angular momentums, both oriented normally
to a disk plane, are in the proper direction for the interaction.
This results in resonance splittings in the MDM spectra. Our
analysis indicates that the propagation of the waveguide-mode
field is influenced by the spin-orbit interaction in a ferrite
particle. Such a spin-orbit interaction plays the role of
the vector potential for the waveguide-mode field. The
waveguide mode travels through the substance of the
whirling power flow and is deflected by the MDM-vortex
vector potential. The waveguide field experiences the MDM
power-flow vortex in the same way as a charged-particle wave
experiences a vector potential Aharonov-Bohm effect. This
is similar to the optical Aharonov-Bohm effect when light
travels through the whirling liquid [24].

It is necessary to note, however, that there are some doubts
as to whether spin and orbital angular momenta, in general, are
separately physically observable. Maxwell’s equations in vac-
uum are not invariant under spin and orbital angular momenta
because of the transversality condition on the electromagnetic
fields. They are invariant under the total (spin plus orbital)
angular momentum operator. As a consequence, no photon
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FIG. 3. (Color online) The power-flow density distributions in a near-field vacuum region (75 μm above a ferrite disk) for the 2′ resonance
(f = 8.641 GHz). (a) A general picture in a waveguide, (b) a detailed picture near the region of a ferrite disk. There is evidence for
electromagnetic-field transparency and cloaking.

state exists with definite values of spin and orbital angular
momenta. Here, it is relevant to make some comparison of our
results to the properties of spin and orbital angular momenta
of the fields in optical helical beams and optical near-field
structures. In optics, it was shown that, besides the angular
momentum related to photon spin, light beams in free space
may also carry orbital angular momentum. Such beams are
able to exert torques on matter [25]. For particles trapped

on the beam axis, both spin and orbital angular momenta
are transferred with the same efficiency so that the applied
torque is proportional to the total angular momentum [26]. In
literature, it is pointed out that the situation for understanding
the physics of the spin and orbital angular momenta of light
becomes more complicated in the optical near-field regime,
where the optical fields, under the influence of the material
environment, exhibit quite a different nature from those in free

023836-5



E. O. KAMENETSKII, R. JOFFE, AND R. SHAVIT PHYSICAL REVIEW A 84, 023836 (2011)

FIG. 4. (Color online) The power-flow density distributions in a near-field vacuum region (75 μm above a ferrite disk) for the 2′′ resonance
(f = 8.652 GHz). (a) A general picture in a waveguide, (b) a detailed picture near the region of a ferrite disk. One has strong localization and
strong reflection of electromagnetic fields in a waveguide.

space. Reflecting the nature of coupled modes of optical fields
and material excitations, the physical quantities associated
with optical near-field interactions have distinctive properties
in comparison to optical radiation in the far field [27]. These
effects in optics can be useful for understanding the physics of
the MDM-vortex polaritons in microwaves.

For a more detailed analysis of the field polarization in
MDM-vortex polaritons, we insert a piece of metal wire inside
a waveguide-vacuum region. A metal rod is made of a perfect
electric conductor and has a very small size compared to
the free-space electromagnetic wavelength: the diameter of
200 μm and the length of 1 mm. When such a small rod
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FIG. 5. (Color online) The electric-field distributions in a vacuum region (75 μm above a ferrite disk) for the 2′ resonance at different time
phases. (a) and (b) Top views, (c) and (d) side views.

is placed rather far from a ferrite disk and is oriented along
an electric field of an empty rectangular waveguide, the field
structure of an entire waveguide is not noticeably disturbed.
At the same time, due to such a small rod, one can extract the
fine structure of the fields at MDM resonances. Figures 11 and
12 show the electric fields on a small PEC rod for the 2′ and
2′′ resonances, respectively. The rod position in a waveguide
is shown in the inset in Fig. 11. The rod is placed along a disk
axis. A gap between the lower end of the rod and the disk
plane is 300 μm. From Fig. 11, it is evident that, for the 2′

resonance (when one has electromagnetic-field transparency
and cloaking), there is a trivial picture of the electric field
induced on a small electric dipole inside a waveguide. At the
same time, from Fig. 12, one sees that, in the case of the 2′′

resonance (when there is a strong reflection of electromagnetic
waves in a waveguide), a PEC rod behaves as a small line
defect on which rotational symmetry is violated. The observed
evolution of the radial part of polarization gives evidence for
the presence of a geometrical phase in the vacuum-region field
of the MDM-vortex polariton.

In a general consideration, the model of MDM-vortex
polaritons appears as an integrodifferential problem. Because
of symmetry breakings, a MDM ferrite disk, being a very
small particle compared to the free-space electromagnetic
wavelength, is a singular point for electromagnetic fields in
a waveguide. A topological character of such a singularity can
be especially well illustrated by the structure of a magnetic
field on a waveguide metallic wall for resonances characterized

by strong reflection and localization of electromagnetic fields
in a waveguide. In the spectral characteristics shown in
Fig. 1, such resonances are designated by numbers 1, 2′′, 3′′,
4′′,.... For better representation, we will consider a resonance
with the most pronounced field topology—the 1 resonance.
Figure 13 shows a magnetic field on an upper wide wall of
a waveguide for the 1 resonance at different time phases.
One has to correlate this picture with a magnetic field, which
is nearly a ferrite disk. Figure 14 shows a magnetic field
in a vacuum region (75 μm above a ferrite disk) for the 1
resonance at different time phases. Since on the waveguide
metal wall a magnetic field is purely planar (2D), the observed
singularities are topological singularities of a magnetic field.
Figure 13 clearly shows that a rotating planar magnetic field is
characterized by the presence of surface topological magnetic
charges (STMCs). The STMCs are points of divergence and
convergence of a 2D magnetic field (or a surface magnetic
flux density �BS) on a waveguide wall. As is evident from
Fig. 13, one has nonzero outward (inward) flows of a vector
field �BS through a closed line C nearly surrounding points
of divergence or convergence:

∮
C

�BS · �nSdC �= 0. Here �nS is
a normal vector to contour C, lying on a surface of a metal
wall. At the same time, it is clear, however, that �∇S · �BS = 0,
since there is zero magnetic field at points of divergence or
convergence. Topological singularities on the metal waveguide
wall show unusual properties. One can see that, for the region
bounded by the circle C, no planar variant of the divergence
theorem takes place.
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FIG. 6. (Color online) The electric-field distributions in a vacuum region (75 μm above a ferrite disk) for the 2′′ resonance at different time
phases. (a) and (b) Top views, (c) and (d) side views.

III. THEORETICAL INSIGHT INTO THE ORIGIN OF THE
MDM-VORTEX-POLARITON STRUCTURES

A nonintegrable electromagnetic problem of a ferrite
disk in a rectangular waveguide, following from closed-loop
nonreciprocal phase behavior on a lateral surface of a ferrite
disk, can be solved numerically based on the HFSS program.
From the above numerical analysis, we are able to conclude
that, in a thin ferrite disk, microwave fields of MDM-vortex
polaritons exhibit properties that can be characterized as
originated from spin and orbital angular momenta. It can
be supposed that, despite the fact that the spin and orbital
angular momenta of the microwave fields are not separately
observable, the shown split-resonance states of MDM-vortex
polaritons are due to spin-orbit interactions. In general,
however, numerical studies do not give us the ability for
necessarily understanding the physics of the MDM-vortex
polaritons. At the same time, a recently developed
[22,23,28,29] analytical approach for MDM resonances based
on a formulation of a spectral problem for a macroscopic scalar
wave function—the MS-potential wave function ψ—may
clarify physical properties of MDM-vortex polaritons. In this
approach, the MDM dynamics is described magnetostatically:
For time-varying fields, one neglects the electric displacement
current in a Maxwell equation ( �∇ × �H = 0). Spectral
solutions for MS-potential wave functions ψ (which are
introduced as �H = −�∇ψ) are obtained based on the Walker

equation [11],

�∇ · (
↔
μ · �∇ψ) = 0, (1)

where ↔
μ is a tensor of rf permeability. The analytical descrip-

tion of MDM oscillations in a quasi-2D ferrite particle rests on
two cornerstones: (i) All precessing electrons in a magnetically
ordered ferrite sample are described by a MS-potential wave
function ψ , and (ii) the phase of this wave function is well de-
fined over the whole ferrite-disk system, i.e., MDMs are quan-
tumlike macroscopic states maintaining the global phase co-
herence. As shown in Refs. [17–19], the analytical ψ-function
spectral characteristics are in good correspondence with the
numerical HFSS spectra. In this section, we give a theoretical
insight into the origin of the MDM-vortex-polariton structures
based on studies of main symmetry and topological properties
of MS-potential wave functions ψ in quasi-2D ferrite disks.

A. Helical resonances of MDMs in quasi-2D ferrite disks

The pictures of rotating (precessing) electric fields, shown
in a previous section of the paper, give evidence for the
left-right asymmetry of electromagnetic fields. The observed
near-field photon helicity should be intimately related to
hidden helical properties of MDMs. While the creation
of a full-wave electromagnetic-field analysis of helicity in
MDM-vortex polaritons entails great difficulties (because
of nonintegrability, i.e., path dependence of the problem),
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FIG. 7. (Color online) The power-flow density inside a ferrite
disk. Numerically obtained vortices for (a) the 2′ resonance and (b) the
2′′ resonance; (c) gives an analytical result for the second mode
obtained from Eq. (11) for ν = 1; big arrows clarify more precisely
the directions of power flows.

analytical solutions of the ψ-function spectral problem
can explain hidden helical properties of MDM resonances.
Because of nonreciprocal phase behavior on a lateral surface

of a ferrite disk, the phase variations for resonant ψ functions
are both in azimuth θ and in axial z directions. This shows
that proper spectral problem solutions for MDMs should
be obtained in a helical-coordinate system. The helices are
topologically nontrivial structures, and the phase relationships
for waves propagating in such structures could be very special.
Unlike the Cartesian- or cylindrical-coordinate systems, the
helical-coordinate system is not orthogonal, and separating
the right-handed and left-handed solutions is admitted. Since
the helical coordinates are nonorthogonal and curvilinear,
different types of helical-coordinate systems can be suggested.
In our analysis of the MS-wave propagation, we use the
Waldron helical-coordinate system [30].

In the Waldron coordinate system, the pitch of the helix is
fixed, but the pitch angle is allowed to vary as a function of
the radius. In cylindrical coordinates (r,θ,z), the reference
surfaces, which are orthogonal, are given, respectively, by
r = const, θ = const, and z = const. In the Waldron helical
system (r,φ,ζ ), we retain the family of cylinders r = const
with meaning unchanged, but instead of the parallel planes
z = const, we use a family of helical surfaces given by
z = const + pθ/2π where p is the pitch. Figure 15 shows
the helical reference surfaces z = pθ/2π for the (a) right-
handed and (b) left-handed helical coordinates. Coordinate ζ

is measured parallel to coordinate z from the reference surface
z = pθ/2π . The third coordinate surface is the set of planes
θ = const. We, however, use the azimuth coordinate φ instead
of θ . Coordinate φ is numerically equal to coordinate θ , but
whereas, θ is measured in a plane z = const, φ is measured
in a helical surface ζ = const. Let us consider a wave process
in a helical structure with a constant pitch p. Geometrically,
a certain phase of the wave can reach a point (r,θ,z + p)
from the point (r,θ,z) in two independent ways. In the first
way, due to translation in the ζ direction at r = const and
θ = φ = const, and, in the second way, due to translation
in φ at r = const and ζ = const. In other words, for any
point A with coordinates (r,φ,ζ ), point B, being distant with a
period of the helix, is characterized by coordinates (r,φ,ζ + p)
or by coordinates (r,φ + 2π,ζ ). The regions between the
surfaces ζ = np and ζ = (n + 1)p, for all integer numbers n,
are continuous in a multiply connected space.

Let a dc magnetic field be directed along the z axis. In the
Waldron helical system (r,φ,ζ ), the Walker equation (1) takes
the form [22,31]

∂2ψ

∂r2
+ 1

r

∂ψ

∂r
+ 1

r2

∂2ψ

∂φ2
+

(
1

μ
+ tan2 α0

)
∂2ψ

∂ζ 2

−2
1

r
(tan α0)(R,L) ∂2ψ

∂φ∂ζ
= 0, (2)

where superscripts R and L mean, respectively, right-handed
and left-handed helical-coordinate systems and μ is a diagonal
component of the permeability tensor. For pitch p, the pitch
angles are defined from the relations,

(tan α0)(R) ≡ tan α0 ≡ p̄/r and

(tan α0)(L) = − tan α0 = −p̄/r, (3)

where p̄ = p/2π . The quantities tan α0 and p̄ are assumed to
be positive. As shown in Refs. [22,31], for a given direction
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FIG. 8. (Color online) The electric-field distributions at different time phases inside a ferrite disk for the 2′ resonance.

of a bias magnetic field, there are four types of helical modes.
Inside a ferrite disk of radius 	 (r � 	), the solutions are in
the form

ψ (1) = a1J(w−p̄β)[(−μ)1/2βr]e−iwφe−iβζ ,

ψ (2) = a2J(w−p̄β)[(−μ)1/2βr]e+iwφe−iβζ ,

ψ (3) = a3J(w−p̄β)[(−μ)1/2βr]e+iwφe+iβζ ,

ψ (4) = a4J(w−p̄β)[(−μ)1/2βr]e−iwφe+iβζ .

(4)

For an outside region (r � 	), one has

ψ (1) = b1K(w−p̄β)(βr)e−iwφe−iβζ ,

ψ (2) = b2K(w−p̄β)(βr)e+iwφe−iβζ ,

ψ (3) = b3K(w−p̄β)(βr)e+iwφe+iβζ ,

ψ (4) = b4K(w−p̄β)(βr)e−iwφe+iβζ .

(5)

Here, w and β are wave numbers for the φ and ζ helical
coordinates, respectively; J and K are Bessel functions
of real and imaginary arguments, respectively. Coefficients
a1,2,3,4 and b1,2,3,4 are amplitude coefficients. As an example,
in Fig. 15, one can see the propagation directions of helical
waves ψ (1) and ψ (2).

One of the most important properties of MDMs in a ferrite
disk is the presence of helical-mode MS resonances [22,31].
For a given direction of a bias magnetic field (oriented
along a disk axis), there exist two types of double-helix
resonances in a quasi-2D ferrite disk. One resonance state
is specified by the ψ (1) ↔ ψ (4) phase correlation, when a
closed-loop phase way is due to equalities for the wave
numbers: w(1) = w(4) and β(1) = β(4). Another resonance state
is specified by the ψ (2) ↔ ψ (3) phase correlation with a
closed-loop phase way due to equalities for the wave numbers:
w(2) = w(3) and β(2) = β(3). The resonance ψ (1) ↔ ψ (4), being

FIG. 9. (Color online) The electric-field distributions at different time phases inside a ferrite disk for the 2′′ resonance.
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FIG. 10. (Color online) Explicit illustration of a cyclic evolution
of an electric field inside a disk with the assumption that the rotating-
field vector has constant amplitude. When (for a given radius and a
certain time phase ωt) an azimuth angle θ varies from 0 to 2π , the
electric-field vector accomplishes the geometric-phase rotation.

characterized by the right-hand rotation (with respect to a
bias magnetic field directed along an axis of a disk, the z
axis) of a composition of helices, is conventionally called the
(+) resonance. The resonance ψ (2) ↔ ψ (3), with the left-hand
rotation of a helix composition, is conventionally called the
(−) resonance. In a case of the (+) double-helix resonance, the
azimuth phase overrunning the MS-potential wave functions
is in correspondence with the right-hand resonance rotation of
magnetization in a ferrite magnetized by a dc magnetic field
directed along the z axis [11]. In Ref. [22], we discussed the
question on experimental evidence for symmetry breaking of
MDM oscillations caused by helical-mode resonances.

The helical-mode resonances of lossless magnetodipole
oscillations in a ferrite disk are not characterized by the
orthogonality relations. It can be shown that, for two helices
giving a double-helix resonance in a ferrite disk, there are
deferent power-flow densities [31]. Moreover, for such modes,
there are no properties of parity (P) and time-reversal (T )
invariance—the PT invariance. Solutions in Eqs. (4) and (5),
being multiplied by a time factor eiωt , describe propagating
helical waves. Inversion of a direction of a bias magnetic field
gives the inversion of time and so, the inversion of a sign of
the off-diagonal component of the permeability tensor [11].
From an analysis in Ref. [22], one can see that, for the
contrarily directed bias magnetic field, the (+) double-helix
resonance appears due to the ψ (2) ↔ ψ (3) phase-correlated
helices, while the (−) double-helix resonance is due to
the ψ (1) ↔ ψ (4) interference. Such time inversion, however,
cannot be accompanied by the space reflection with respect
to a disk plane. Because of the lack of reflection symmetry

for helical modes, there is no mutual reflection for helical
modes ψ (1) and ψ (3) as well as no mutual reflection for helical
modes ψ (4) and ψ (2). The PT -symmetry breaking does not
guarantee real-eigenvalue spectra, but, in the case of a lossless
structure, can give spectra with pairs of complex-conjugate
eigenvalues. It was shown, however, that by virtue of the
quasi-2D of the problem, one can reduce solutions from
helical to cylindrical coordinates with the proper separation
of variables [22]. This gives integrable solutions for MDMs
in a cylindrical-coordinate system. As we discuss below,
such solutions can be considered as PT invariant. The PT
-invariance properties of MDMs in a quasi-2D ferrite disk play
an essential role in the physics of the observed topologically
distinctive states.

B. PT -invariance properties of MDMs

As shown [19,22,23,28,29], for the (+) double-helix reso-
nance, one can introduce the notion of an effective membrane
function ϕ̃ and can describe the spectral problem in cylindrical
coordinates by a differential-matrix equation,

(L̂⊥ − iβR̂)Ṽ = 0, (6)

where Ṽ ≡ ( �̃B
ϕ̃

), ϕ̃ is a dimensionless membrane MS-potential

wave function and �̃B is a dimensionless membrane function of
a magnetic flux density. In Eq. (6), L̂⊥ is a differential-matrix
operator,

L̂⊥ ≡
(

(
↔
μ⊥)−1 �∇⊥

−�∇⊥· 0

)
, (7)

where subscript ⊥ means correspondence with the in-plane r,θ

coordinates, β is the MS-wave propagation constant along the

z axis (ψ = ϕ̃e−iβz, �B = �̃Be−iβz), ↔
μ is the permeability tensor,

R̂ is a matrix,

R̂ ≡
(

0 �ez

−�ez 0

)
,

and �ez is a unit vector along the z axis. The boundary condition
of the continuity of a radial component of the magnetic-flux
density on a lateral surface of a ferrite disk of radius 	 is
expressed as [22,23,28]

μ

(
∂ϕ̃

∂r

)
r=	−

−
(

∂ϕ̃

∂r

)
r=	+

= −i
μa

	
(

∂ϕ̃

∂θ

)
r=	−

, (8)

where μ and μa , respectively, are diagonal and off-diagonal
components of the permeability tensor ↔

μ. The modes described
by a differential-matrix equation (6), are conventionally called
L modes. With the use of separation of variables and boundary
conditions of continuity of a MS-potential wave function and
a magnetic-flux density on disk surfaces, one obtains solutions
for the L modes. For a ferrite disk of radius 	 and thickness d,
there are the solutions [18,22]:

ψ(r,θ,z,t) = Cξ (z)Jν

(
βr√−μ

)
e−iνθ eiωt , (9)

inside a ferrite disk (r � 	, − d/2 � z � d/2) and

ψ(r,θ,z,t) = Cξ (z)Kν(βr)e−iνθ eiωt , (10)

023836-11



E. O. KAMENETSKII, R. JOFFE, AND R. SHAVIT PHYSICAL REVIEW A 84, 023836 (2011)

FIG. 11. (Color online) Electric field on a small PEC rod for the 2′ resonance at different time phases. There is a trivial picture of the fields
of a small electric dipole inside a waveguide. The inset shows the position of a PEC rod in a waveguide.

outside a ferrite disk (for r � 	, − d/2 � z � d/2). In these
equations, ν is an azimuth number, Jν and Kν are the Bessel
functions of order ν for real and imaginary arguments, C is a
dimensional coefficient, and ξ (z) is an amplitude factor. For the
solutions represented by Eqs. (9) and (10), the characteristic
equation (8) takes the form

(−μ)1/2

(
J ′

ν

Jν

)
r=	

+
(

K ′
ν

Kν

)
r=	

− νμa

β	 = 0, (11)

where the prime denotes differentiation with respect to the ar-
gument. It is necessary to note that, in accordance with the (+)
double-helix-resonance conditions [22], the azimuth number
ν takes only integer and positive quantities. The membrane
MS-potential functions ϕ̃ for the L modes do not have the
standing-wave configuration in a disk plane but are azimuthally

FIG. 12. (Color online) Electric field on a small PEC rod for the
2′′ resonance at different time phases. A PEC rod behaves as a small
line defect on which rotational symmetry is violated. The observed
evolution of the radial part of polarization gives evidence for the
presence of a geometrical phase in the vacuum-region field of the
MDM-vortex polariton.

propagating waves. For rotationally nonsymmetric waves, one
has the azimuth power-flow density [18],

[pq(r,z)]θ = ϕ̃∗
q (r)

8π
ωC2

q [ξq(z)]2

[
−ϕ̃q(r)

μ

r
ν − μa

∂ϕ̃q(r)

∂r

]
.

(12)

Here, q is a number of radial variations (for a given azimuth
number ν). Since an amplitude of a MS-potential function
is equal to zero at r = 0, the power-flow density is zero
at the disk center. Equation (12) describes the power-flow-
density vortex inside a ferrite disk. For the second MDM,
the circulating power-flow density was analytically calculated
based on Eq. (12) and with the use of the disk parameters
mentioned above for the HFSS simulation. Figure 7(c) shows
the results of such a calculation for ν = +1 and q = 2. One
can see that this analytical representation is in good correlation
with the numerical results of the power-flow densities inside
a ferrite disk for the 2′ and 2′′ resonances [see Figs. 7(a)
and 7(b)].

The spectral-problem solutions for the L modes give real
eigenvalues of propagation constants β and orthogonality

conditions for eigenfunctions ( �̃B
ϕ̃

). For a certain mode n, the

norm is defined as [18,19,23,28]

Nn =
∫

S

(ϕ̃n
�̃B∗

n − ϕ̃∗
n

�̃Bn) · �ezdS, (13)

where S is the square of an open MS-wave cylindrical
waveguide. The norm Nn, being multiplied by a proper
dimensional coefficient, corresponds to the power-flow density
of the MS-waveguide mode n through a MS-waveguide cross
section. In an assumption of separation of variables in a
cylindrical-coordinate system, this power-flow along the z axis
should be considered independently of the azimuth power-flow
density defined by Eq. (12). It follows, however, that because
of special symmetry properties of the L modes (azimuthal
nonsymmetry of membrane functions ϕ̃), representation of the
norm by Eq. (13) is not so definite, and operator L̂⊥ cannot be
considered as a self-adjoint operator. At the same time, as we
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FIG. 13. (Color online) Magnetic field on a wide waveguide
wall for the 1 resonance at different time phases. Points A and B,
respectively, are positive and negative surface topological magnetic
charges.

will show, operator L̂⊥ is PT invariant,

L̂⊥ = (L̂⊥)PT . (14)

This may presume the absence of complex eigenvalues for the
L modes [32].

It is worth beginning our studies of the symmetry proper-
ties with some illustrative analyses of cylindrical-coordinate
modes in a disk resonator. Let us consider, initially, a
simple case of a nonmagnetic disk resonator. For resonance
processes in a nonferrite dielectric resonator characterized
by an oscillation period T, time shifts t = 0 → t = T and
t = T → t = 0 are formally equivalent since there is no
chosen direction of time for the electron motion processes
inside a dielectric material. When a resonator has cylindrical
geometry, a counterclockwise rotating wave (RW) acquires
the phase � = 2πk (k = 1,2,3,...) at the time shift t = 0 →
t = T and at the time shift t = T → t = 0, a clockwise RW
acquires the same phase � = 2πk. Since, in a cylindrically
symmetric nonferrite resonator, dynamical behaviors are not
distinguished by time inversion, a counterclockwise RW

cannot be excited separately from a clockwise RW. Let us
consider now a ferrite-disk resonator. Suppose that, for a
given direction of a normal bias magnetic field H0, there
is a counterclockwise RW in a ferrite disk, and this wave
acquires phase �1 at the time shift t = 0 → t = T , where T
is an oscillation period. Performing time inversion (inversion
of a direction of a bias magnetic field H0), we obtain a
clockwise RW. For this wave, we then consider the time shift
t = −T → t = 0. We suppose that, in this case, a clockwise
RW acquires phase �2. A system comes back to its initial
state when both partial rotating processes (counterclockwise
and clockwise RWs), with phases �1 and �2, are involved.
Since, geometrically, a system is azimuthally symmetric, it
is evident that |�1| = |�2| ≡ �. A total minimal phase due
to two RW processes should be equal to 2π . Generally, one
has |�1| + |�2| = 2� = 2πk or � = kπ , where k = 1,2,3,....
The phases for RWs in a MS-mode cylindrical resonator are
shown in Fig. 16. To bring a system to its initial state, one
should involve the time-reversal operations. When only one
direction of a normal bias magnetic field is given and quantities
k are odd integers, the MS wave rotating in a certain azimuth
direction (either counterclockwise or clockwise) should make
two rotations around a disk axis to come back to its initial
state. It means that, for a given direction of a bias magnetic
field and for odd integer k, a membrane function ϕ̃ behaves as
a double-valued function.

It is worth noting that, in general, the phase of the final state
differs from that of the initial state by

� = �d + �g, (15)

where �d and �g are the dynamical and geometric phases,
respectively. If only the topology of the path is altered, then
only �gvaries [33]. In our case, this fact is illustrated very
clearly by Figs. 8 and 9. Let us compare the positions of
electric field vectors in Figs. 8 and 9 for a certain dynamical
phase ωt = 0◦, for example. One can see that these vectors are
shifted in space at an angle of 90◦. At the same time, since the
frequency shift between the 2′ and 2′′ resonances is negligibly
small (�f /f ≈ 13/8645 = 0.0015), the dynamical phase
(ωt = 0◦) is the same. The observed strong variation of a
geometric phase against the background on a nonvarying
dynamical phase is a good confirmation of a topological
character of the split-resonance states.

Now, let us analyze properties of operator L̂⊥. Following a
standard way of solving boundary problems in mathematical
physics [34,35], one can consider two joint boundary prob-
lems: the main boundary problem and the conjugate boundary
problem. Both problems are described by differential equa-
tions that are similar to Eq. (6). The main boundary problem is
expressed by the differential equation (L̂⊥ − iβR̂)Ṽ = 0, and
the conjugate boundary problem is expressed by the equation,
(L̂◦

⊥ − iβ◦R̂ )Ṽ ◦ = 0. From a formal point of view, initially,
it is supposed that these are different equations: There are
different differential operators, different eigenfunctions, and
different eigenvalues. A form of differential operator L̂◦

⊥ can
be found from integration by parts,∫

S

(L̂⊥Ṽ )(Ṽ ◦)∗dS =
∫

S

Ṽ (L̂◦
⊥Ṽ ◦)∗dS +

∮
L

P (Ṽ ,Ṽ ◦)d�,

(16)
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FIG. 14. (Color online) Magnetic field in
a vacuum region (75 μm above a ferrite disk)
for the 1 resonance at different time phases.

where L = 2π	 is a contour surrounding a cylindrical
ferrite core and P (Ṽ ,Ṽ ◦) is a bilinear form. Operator L̂⊥
can be considered a self-adjoint (Hermitian) operator when
permeability tensor ↔

μ is a Hermitian tensor, functions Ṽ and
Ṽ ◦ are two mutually complex-conjugate functions, and the
contour integral in the right-hand side of Eq. (16) is equal to
zero [34,35]. The last condition means that, for an open ferrite
structure [a core ferrite region (F) is surrounded by a dielectric
region (D)], there are homogeneous boundary conditions for
functions Ṽ and Ṽ ◦,∮

L
P (Ṽ ,Ṽ ◦)d� ≡

∮
L

[P (F )(Ṽ ,Ṽ ◦) + P (D)(Ṽ ,Ṽ ◦)]d� = 0.

(17)

As we will show, in a general case, Ṽ and (Ṽ ◦)∗ are not two
mutually complex-conjugate functions, and so, we do not have
self-adjointness of operator L̂⊥. At the same time, there exist
necessary conditions for the PT -invariant homogeneous
boundary conditions (17) resulting in the PT invariance of
operator L̂⊥.

For the contour integral on the right-hand side of Eq. (16),
we have [23]∮

L
P (Ṽ ,Ṽ ◦)d� = −

∮
L

M(Ṽ ,Ṽ ◦)d� −
∮
L

N (Ṽ ,Ṽ ◦)d�,

(18)

where∮
L

M(Ṽ ,Ṽ ◦)d�

≡
∮
L

{[
μ

(
∂ϕ̃

∂r

)
r=	−

−
(

∂ϕ̃

∂r

)
r=	+

]
(ϕ̃◦)∗r=	

− (ϕ̃)r=	

[
μ

(
∂ϕ̃◦

∂r

)
r=	−

−
(

∂ϕ̃◦

∂r

)
r=	+

]∗}
d�, (19)

and ∮
L

N (Ṽ ,Ṽ ◦)d� ≡ 1

	
∮
L

{(
iμa

∂ϕ̃

∂θ

)
(ϕ̃◦)∗

− (ϕ̃)

[(
iμa

∂ϕ̃

∂θ

)◦]∗}
r=	

d�. (20)

In these equations, we used expressions for radial components
of the magnetic-flux density: (a) for the main boundary
problem, B̃r = −(μ∂ϕ̃

∂r
+ iμa

1
	

∂ϕ̃

∂θ
) in a ferrite region and

B̃r = − ∂ϕ̃

∂r
in a dielectric and (b) for the conjugate boundary

problem, B̃◦
r = −[μ∂ϕ̃◦

∂r
+ (iμa

1
	

∂ϕ̃

∂θ
)◦] in a ferrite region and

B̃◦
r = − ∂ϕ̃◦

∂r
in a dielectric.

Following Eq. (15), we represent ϕ̃ and ϕ̃◦ as

ϕ̃ ≡ δη̃, (21)

ϕ̃◦ ≡ δ◦η̃◦. (22)
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FIG. 15. (a) The right-handed and (b) the left-handed Waldron helical-coordinate systems. Coordinate ζ is measured parallel to coordinate
z from the reference surface z = pθ/2π . As an example, the arrows illustrate the propagation directions of helical waves: (a) wave ψ (1) and
(b) wave ψ (2).

Functions η̃ ∼ ẽ−iϑd and η̃◦ ∼ ẽ−iϑ◦
d are characterized by

dynamical phases ϑd and ϑ◦
d , respectively, while functions δ̃ ∼

ẽ−iϑg and δ̃◦ ∼ ẽ−iϑ◦
g are characterized by geometrical phases

ϑg and ϑ◦
g , respectively. Evidently, the double valuedness of

functions ϕ̃ and ϕ̃◦ is due to the presence of geometrical phases.
It means that functions η̃ and η̃◦ are single-valued functions
while functions δ̃ and δ̃◦ are double-valued functions. With
such a representation, we can also say that functions η̃ and
η̃◦ are described by orbital coordinates, whereas, functions δ̃

and δ̃◦ are described by spinning coordinates. Since η̃ and η̃◦
are space-reversally invariant, functions η̃ and (η̃◦)∗ can be
considered just as complex-conjugate functions. At the same
time, δ̃ and (δ̃◦)∗ are not complex-conjugate functions.

To satisfy homogeneous boundary relation (17), we con-
sider conditions when both

∮
L M(Ṽ ,Ṽ ◦)d� and

∮
L N (Ṽ ,Ṽ ◦)d�

are equal to zero. For integral
∮
L N (Ṽ ,Ṽ ◦)d�, expressed by

Eq. (20), there is the possibility to analyze the orthogonality
conditions separately for the orbital coordinates and spinning
coordinates [23,36]. The orbital-coordinate integral takes the
form

1

	
∮
L

{(
iμa

∂η̃

∂θ

)
(η̃◦)∗ − (η̃)

[(
iμa

∂η̃

∂θ

)◦]∗}
r=	

d�,

(23)

and the spinning-coordinate integral is expressed as

1

	
∮
L

{(
iμa

∂δ̃

∂θ

)
(δ̃◦)∗ − (δ̃)

[(
iμa

∂δ̃

∂θ

)◦]∗}
r=	

d�.

(24)

For integral (23), one has

∮
L

{(
iμa

∂η̃

∂θ

)
(η̃◦)∗ − (η̃)

[(
iμa

∂η̃

∂θ

)◦]∗}
r=	

d�

=
∮
L

[(
iμa

∂η̃

∂θ

)
η̃∗ − (η̃)

(
iμa

∂η̃

∂θ

)∗]
r=	

d� ≡ 0. (25)

At the same time, one cannot just have integral (24) equal to
zero only with time inversion. Function δ̃◦ is considered as the
P-transformed function with respect to function δ̃, and to have
integral (24) equal to zero, one has to consider the combined
PT transformation. It is evident that, in a quasi-2D ferrite-disk
structure, geometrical-phase circular running waves δ̃ will
have an opposite direction of rotation for the z-axis reflection,
so P is classified as a space reflection with respect to the z
axis. When one considers waves (δ̃◦)∗ as the waves, which
are PT transformed relative to waves δ̃, one has integral
(24) equal to zero. In general, (ϕ̃◦)∗ is considered as a
PT -transformed function relative to ϕ̃. Because of the PT
invariance of function ϕ̃, one concludes that integral (19)
is identically equal to zero. As a result, one has zero
integral (18).

An introduction of membrane functions in a quasi-2D
ferrite-disk structure allows reducing the problem of parity
transformation to a one-dimensional reflection in space. The
geometrical-phase circular running of membrane function ϕ̃

will have an opposite direction of rotation for the z-axis
reflection. From the above analysis of the contour integral∮
L P (Ṽ ,Ṽ ◦)d�, it follows that the study of the PT invariance

of operator L̂⊥with eigenfunctions ( �̃B
ϕ̃

) can be reduced to an

FIG. 16. The phases for Counterclockwise
and Clockwise RWs in a MS-mode cylindrical
resonator.
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FIG. 17. (Color online) The spectrum peak positions for the HFSS simulation and the analytical L and G modes. Frequency differences
for the peak positions of the analytically derived L and G modes are at the same order of magnitude as the frequency differences for the
split-resonance states observed in the HFSS spectrum.

analysis of PT properties of membrane functions ϕ̃ on a
lateral surface of a ferrite disk. Certainly, only the equation for
boundary conditions reflects a nonreciprocal phase behavior
and so, the path dependence of the boundary-value problem. It
is clear that the simultaneous change of a sign of μa (the time
reversal) and a sign of derivative ( ∂ϕ̃

∂θ
)r=	− (the space reflection)

on the right-hand side of Eq. (8) leaves this equation invariable.
This is evidence for the PT invariance. For a value of a
MS-potential wave function on a lateral surface of a ferrite
disk ϕ̃|r=	, we can write

PT ϕ̃|r=	(z) = ϕ̃∗|r=	(−z) = ϕ̃|r=	(z). (26)

There is also the possibility to introduce the orthogonality
relation for two modes,

(ϕ̃p|r=	,ϕ̃q |r=	) =
∮
L

[ϕ̃p|r=	(z)]ϕ̃∗
q |r=	(−z)d�

=
∮
L

[ϕ̃q |r=	(z)][PT ϕ̃p|r=	]d�. (27)

Here, we assume that the spectrum under consideration is
real, and contourL is a real line. This orthogonality relation has
different meanings for even and odd quantities k in equation for
a phase of the rotating wave: � = kπ . For even quantities k,
the edge waves show reciprocal phase behavior for propagation
in both azimuthal directions. Contrarily, for odd quantities k,
the edge waves propagate only in one direction of the azimuth
coordinate. In the case of even k, the orthogonality relation
(27) can be written as (ϕ̃p|r=	,ϕ̃q |r=	) = δpq , where δmn is
the Kronecker delta. With respect to this relation, for odd k,
one has (ϕ̃p|r=	,ϕ̃q |r=	) = −δpq . In a general form, the inner
product (27) can be written as

(ϕ̃p|r=	,ϕ̃q |r=	) = (−1)kδpq . (28)

C. Hermiticity conditions for MDMs

We are faced with the fact that, in the bound states for
functions ϕ̃|r=	, there are equal numbers of positive-norm and
negative-norm states. To some extent, our results resemble the
results of the PT -symmetry studies in quantum mechanics

structures with a complex Hamiltonian [32,37,38]. Similar to
the paper in Ref. [32], we can introduce a certain operator
Ĉ, which is the observable that represents the measurement
of the signature of the PT norm of a state. While, in the
problem under consideration, one has quasiorthogonality of
L modes and pseudohermiticity of operator L̂⊥, there should
exist a certain operator Ĉ that the action of Ĉ together with
the PT transformation will give the hermiticity condition and
real-quantity energy eigenstates. A form of operator Ĉ is found
from an assumption that operator Ĉ acts only on the boundary
conditions of the L-mode spectral problem. Such a technique
was used in Refs. [23,36].

Operator Ĉ is a special differential operator in the form
of i

μa

	 ( �∇θ )r=	. Here, ( �∇θ )r=	 is the spinning-coordinate
gradient. It means that, for a given direction of a bias
field, operator Ĉ acts only for a one-directional azimuth
variation. The eigenfunctions of operator Ĉ are double-valued
border functions [23,36]. This operator allows performing the
transformation from the natural boundary conditions of the
L modes, expressed by Eqs. (8) and (11), to the essential
boundary conditions of the so-called G modes, which take
the forms, respectively [19,23,28],

μ

(
∂ϕ̃

∂r

)
r=	−

−
(

∂ϕ̃

∂r

)
r=	+

= 0, (29)

and

(−μ)1/2

(
J ′

ν

Jν

)
r=	

+
(

K ′
ν

Kν

)
r=	

= 0. (30)

The membrane functions of the G modes are related to the
orbital-coordinate system. It is evident that the quantumlike
G-mode spectra cannot be shown by the HFSS numerical
simulation. Using operator Ĉ, we construct the new inner
product structure for boundary functions,

(ϕ̃n|r=	,ϕ̃m|r=	) =
∮
L

[ĈPT ϕ̃m|r=	(z)][ϕ̃n|r=	(z)]d�.

(31)

As a result, one has the energy eigenstate spectrum of MS-
mode oscillations with topological phases accumulated by the
double-valued border functions [23]. The topological effects

023836-16



COUPLED STATES OF ELECTROMAGNETIC FIELDS WITH . . . PHYSICAL REVIEW A 84, 023836 (2011)

become apparent through the integral fluxes of the pseudoelec-
tric fields. There are positive and negative fluxes corresponding
to the counterclockwise and clockwise edge-function chiral
rotations. For an observer in a laboratory frame, we have two
oppositely directed anapole moments �ae. This anapole moment
is determined by the term i

μa

	 ( ∂ϕ̃

∂θ
)r=	− on the right-hand side of

Eq. (8). For a given direction of a bias magnetic field, we have
two cases �ae · �H0 > 0 and �ae · �H0 < 0. As supposed [23], the
magnetoelectric energy splitting should be observed, which is,
in fact, the splitting due to spin-orbit interaction.

The numerically observed topologically distinctive split-
resonance states of the MDM-vortex-polariton structures are
due to the PT -invariance properties of operator L̂⊥. Such
properties are evident, in particular, from a strong variation
of a geometric phase against the background on a nonvarying
dynamical phase. Contrary to the quasiorthogonality of the L
modes, for the G modes, one has the hermiticity condition
and the real-quantity energy eigenstates. Based on the above
analysis, one can conclude that frequency differences for peak
positions of the analytically derived L and G modes should be
on the same order of magnitude as the frequency differences
for the split-resonance states observed in the HFSS spectrum.
Figure 17, showing spectrum peak positions for the HFSS

simulation and the analytical L and G modes, gives evidence
for this statement.

IV. CONCLUSION

Small ferrite-disk particles with MS oscillations are char-
acterized by topologically distinctive long-living resonances
with symmetry breakings. While for an incident electro-
magnetic wave, there is no difference between the left and
the right, in the fields scattered by a MDM ferrite particle,
one should distinguish left from right. It was shown that,
due to MDM vortices in small thin-film ferrite disks, there
is strong magnon-photon coupling. The coupled states of
electromagnetic fields with MDM vortices are characterized
by different topological properties. Numerically, we showed
that scattering of electromagnetic fields from such small ferrite
particles gave the topological-state splitting. For topologically
distinctive structures of MDM-vortex polaritons, one has
localization or cloaking of electromagnetic fields. An essential
feature of the MDM-vortex polaritons is the presence of the
local circular polarization of the fields together with the cyclic
propagation of electromagnetic waves around a disk axis.
This geometric-phase effect is intimately related to the hidden
helical properties of MDMs.

A small ferrite disk with MDM spectra, placed in a
standard microwave structure, represents a nonintegrable
electromagnetic problem. While this problem can be well
solved numerically, there is also the possibility for using an
analytical approach. In this approach, a spectral problem for
MDM resonances is formulated based on special macroscopic
scalar wave functions—the MS-potential wave functions ψ .
The study of symmetry and topological properties of MS-
potential wave functions ψ in quasi-2D ferrite disks gives
necessary theoretical insight into the origin of the MDM-
vortex-polariton structures. This analytical study explains the
numerically observed topological textures of the fields of
MDM-vortex polaritons. Based on the ψ-function analysis,
we demonstrated such very important spectral properties
of MDMs in quasi-2D ferrite disks as helical resonances
and the PT invariance. We showed that there exists a
special differential operator, acting on the boundary condi-
tions of the spectral problem, which allows obtaining the
hermiticity condition and the real-quantity energy eigenstates
for MDMs.

In recent years, we were witnesses to a resurgence of interest
in spin-wave excitations motivated by their possible use as
information carriers (see Ref. [39] and references therein).
Technological opportunities lend further momentum to the
study of the fundamental properties of spin-wave oscillations
and the interaction of these oscillations with electromag-
netic fields. Among different types of microwave magnetic
materials, YIG is considered as one of the most attractive
materials due to its uniquely low magnetic damping. This
ferrimagnet has the narrowest known line of ferromagnetic
resonance, which results in a magnon lifetime of a few
hundred nanoseconds. The interaction of microwave fields
with MDM vortices opens a perspective for creating different
electromagnetic structures with special symmetry properties.
The shown properties of MDMs in a quasi-2D ferrite disk offer
a particularly fertile ground in which PT -related concepts
can be realized and can be investigated experimentally. The
important reasons for this are as follows: (a) the formal
equivalence between the quantum mechanical Schrödinger
equation and the G-mode MS-wave equation [23] and (b) the
possibility to manipulate the ferrite-disk geometrical and
material parameters and the bias magnetic field. One of the
examples of different MDM-polariton structures could be PT
metamaterials. There is also another interesting aspect. Since
MDM vortices are topologically stable objects, they can be
used as long-living microwave memory elements.
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[2] C. Shu and A. Caillé, Solid State Commun. 34, 827
(1980).
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