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Role of quantum fluctuations in the optomechanical properties of a Bose-Einstein
condensate in a ring cavity
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We analyze a detailed model of a Bose-Einstein condensate (BEC) trapped in a ring optical resonator
and contrast its classical and quantum properties to those of a Fabry-Pérot geometry. The inclusion of two
counterpropagating light fields and three matter field modes leads to important differences between the two
situations. Specifically, we identify an experimentally realizable region where the system’s behavior differs
strongly from that of a BEC in a Fabry-Pérot cavity, and also where quantum corrections become significant.
The classical dynamics are rich, and near bifurcation points in the mean-field classical system, the quantum
fluctuations have a major impact on the system’s dynamics.
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I. INTRODUCTION

In recent years there has been an explosion of interest
in optomechanical systems in which at least one degree of
freedom is cooled nearly to its quantum ground state [1–4].
In the top-down approach, the mechanical element (often one
end mirror of a Fabry-Pérot cavity that is allowed to oscillate)
is initially in thermal equilibrium with its surroundings and
then is cooled via radiation pressure. On the other hand,
in the bottom-up approach, the mechanical portion of the
system typically consists of ultracold atoms trapped inside
a high-Q optical resonator. The ultracold atomic system can
be a thermal sample [5], a quantum-degenerate Bose-Einstein
condensate (BEC) [6,7], or even a quantum-degenerate gas
of fermions [8]. In the bottom-up situation the mechanical
oscillator(s) are comprised of collective momentum modes
of the trapped gas, excited via photon recoil [9–13]. The
dynamics of the collective interaction between photons and
ultracold atoms have been studied in detail both theoretically
and experimentally in the context of superradiance in BECs
[14–22] as well as collective atomic recoil lasing (CARL)
[23–30]. In both these situations the interplay between light
fields and atomic motion leads to feedback effects. The
bottom-up approach to optomechanics exploits this interplay
as well, with the added feature that the motion of the atoms is
analogous to that of a mechanical element driven by radiation
pressure.

In the case of a high-Q Fabry-Pérot cavity the intracavity
standing-wave field couples the macroscopically occupied
zero-momentum component of the BEC to a symmetric
superposition of the states with center-of-mass momentum
±2h̄k via virtual electric dipole transitions [6,7]. As discussed
in a previous paper [31], there are situations where a ring cavity
can lead to atomic dynamics different from the standing-wave
situation. This is because in contrast to a standing wave,
running waves permit one in principle to extract “which way”
information about the matter-wave diffraction process. As a
first step toward discussing that question, the earlier work
considered the difference between classical standing wave
and counterpropagating light fields, that is, the difference in
optomechanical properties of condensates trapped in, say, a
Fabry-Pérot and a ring cavity. One main consequence of the
presence of two counterpropagating running waves was that

in addition to a symmetric “cosine” momentum side mode,
it becomes possible to excite an out-of-phase “sine” mode as
well. In the optomechanics analogy, this indicates that two
coupled “condensate mirrors” of equal oscillation frequencies
but in general different masses are driven by the intracavity
field. We showed that this can result in complex multistable
behaviors, including the appearance of isolated branches of
solutions for appropriate choice of parameters.

The present paper builds on these results and includes
two new features. At a classical (operators replaced by c

numbers) level, the evolution of the zero-momentum mode
of the condensate is now also included. Furthermore, this
work also discusses the role of small quantum fluctuations
in the system, particularly on the occupancy of the sine and
cosine side modes. As previously discussed, together with the
original condensate they form an effective V system, with
the upper levels–the sine and cosine modes—driven by a
two-photon process involving both counterpropagating light
fields. At the classical level one or the other of these modes can
become a dark state, but quantum fluctuations will normally
prevent these modes from becoming perfectly dark [32]. It
follows that measuring correlation functions of the optical
field provides a direct means to probe the quantum properties
of the matter-wave side modes. These and other aspects of the
role of quantum fluctuations are examined in the following
sections, which consider the situation where these fluctuations
are feeble and their effect can be treated in the framework of a
linearized theory.

This paper is organized as follows: Sec. II introduces our
model of a quantum-degenerate atomic system interacting with
two quantized counterpropagating field modes in a high-Q
ring resonator, and casts it in a form that emphasizes the
optomechanical nature of the problem. Section III derives
the resulting Heisenberg-Langevin equations of motion for
the system. It solves them first in steady state for the case
of classical fields, recovering in a slightly different form some
key results of Ref. [31]. Section IV turns to the study of the role
of quantum fluctuations on the system dynamics. It starts by
deriving the linearized equations of motion that govern these
fluctuations, and then briefly outlines a general treatment of
quantum correlations applicable in cases where many separate
noise sources are present. The remainder of the section exploits
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these results to analyze the different behaviors produced by the
interplay between classical mean-field dynamics and quantum
fluctuations for selected system parameters. Finally, Sec. V is
a summary and conclusion.

II. MODEL

We consider a Bose-Einstein condensate of N two-state
atoms with transition frequency ωa and mass m, assumed
to be at zero temperature, confined along the path of two
counterpropagating optical beams in a ring cavity of natural
frequency ωc and wave number kc = ωc/c. These fields are
driven by external lasers of intensity ηi and frequency ωp. We
assume that the atomic transition is far off resonance from
the field frequency, so that the upper electronic level can be
eliminated adiabatically. Neglecting two-body collisions and
in a frame rotating at the pump frequency ωc the Hamiltonian
for this system is then

Ĥ = Ĥopt + Ĥpump + ĤBEC + Ĥint, (1)

where

Ĥopt = −h̄

2∑
i=1

�â
†
i âi , Ĥpump = ih̄

2∑
i=1

ηiâ
†
i − η∗

i âi ,

ĤBEC =
∫

dxψ̂†(x)

(
− h̄2

2m

d2

dx2

)
ψ̂(x),

Ĥint = h̄�0

∫
dxψ̂†(x)(â†

1â1 + â
†
2â2 + â

†
2â1e

2ikx

+ â
†
1â2e

−2ikx)ψ̂(x). (2)

Here � = ωp − ωc is the pump-cavity detuning,

�0 = g2
0

/
(ωp − ωa) (3)

is the off-resonant vacuum Rabi frequency, and g0 is the usual
(resonant) vacuum Rabi frequency.

The photon recoil associated with the virtual transitions
between the lower and upper atomic electronic states results
in the population of atomic center-of-mass states of momenta
2ph̄k, where p is an integer. For feeble intracavity fields and
large detunings it is sufficient to consider the first two momen-
tum side modes p = ±1. It is then convenient to decompose
the atomic Schrödinger field in terms of its momentum ground
state and two nearest momentum side modes in terms of the
parity (rather than momentum) eigenstates

ψ̂(x) =
√

2

L

[
ĉ0√

2
+ ĉc cos(2kx) + ĉs sin(2kx)

]
, (4)

where ĉ0, ĉc, and ĉs are bosonic annihilation operators for the
zero-momentum component and for the sine and cosine side
modes of the quantum-degenerate atomic system, respectively.

To couch the problem in a more transparently optomechan-
ical form, we further make the substitutions 1

ĉ0 =
√

N + X̂0 + iP̂0√
2

, (5)

â1,2 = X̂1,2 + iP̂1,2√
2

,

(6)

ĉc,s = X̂c,s + iP̂c,s√
2

.

The first of these equations is indicative of the fact that we
assume that the zero-momentum component of the atomic
sample comprises a macroscopically populated component
that we treat in mean-field theory via a classical amplitude

√
N ,

to which are superimposed quantum fluctuations resulting
from the coupling to the sine and cosine side modes.

The approximate expansion (4) and the definitions (5) and
(6) result in the alternate form of the Hamiltonian

Ĥ ′ = Ĥ ′
opt + Ĥpump + Ĥ ′

BEC + Ĥ ′
int, (7)

where

Ĥ ′
opt = −h̄

∑
i

�̃

2

(
X̂2

i + P̂ 2
i

)
,

Ĥpump = h̄
√

2
∑

i

Re(η)P̂i − Im(η)X̂i,

(8)
Ĥ ′

BEC = h̄
ωr

2

(
X̂2

c + X̂2
s + P̂ 2

c + P̂ 2
s

)
,

Ĥ ′
int = h̄

�0√
2

(L̂eM̂c + L̂oM̂s),

and

L̂e = X̂1X̂2 + P̂1P̂2,

L̂o = X̂1P̂2 − X̂2P̂1, (9)

M̂I =
√

2NX̂I + X̂0X̂I + P̂0P̂I ,

where I = {c,s}. In Eq. (7) a constant term has been ignored
and the energy shift of the atom-light interaction has been
absorbed into the optical part of the Hamiltonian (hence the
primed terms).

The operators L̂ and M̂ are quadratic light and matter
operators, respectively, while the e and o subscripts in the
light operators indicate their parity under interchange of the
left- and right-moving light fields. Finally,

�̃ = � − �0N (10)

is an effective detuning that accounts for the mean-field Stark
shift of the condensate and

ωr = 2h̄k2/m (11)

is the recoil frequency associated with the virtual transition.

1Recasting the light field operators in terms of “position” and
“momentum” operators has been done primarily for later analytical
ease rather than as a straightforward analogy to other optomechanical
problems.
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As already discussed in Ref. [31] the presence of two
counterpropagating fields in a ring resonator results in a
situation that is significantly more complex than is the case for
a high-Q Fabry-Pérot cavity. In particular, the optomechanical
properties of the condensate are now formally analogous to
those of a system of two coupled moving mirrors. This can be
seen by exploiting the fact that due to the large value of N , we
can for now neglect the nonlinear terms in M̂c and M̂s , so that

M̂i �
√

2NX̂i (12)

and hence

Ĥ ′
int � �0

√
N (L̂eX̂c + L̂oX̂s). (13)

Thus, rather than having a light-matter interaction proportional
to the light field intensity times the position of an effective
mirror we now have an interaction with two “mirrors” [33]
of equal mass and effective oscillation frequency, but each of
which is driven differently due to interference effects between
the two counterpropagating light fields.

III. MEAN-FIELD STEADY STATE AND STABILITY

The Heisenberg-Langevin equations of motion of the
system are easily derived from the Hamiltonian (7), comple-
mented by appropriate quantum noise and damping terms. One
finds readily

˙̂Xi = −κX̂i − �̃P̂i + Re(η)
√

2

+ �0√
2

[M̂cP̂j + (−1)iM̂sX̂j ] + ξ̂xi ,

˙̂P i = −κP̂i + �̃X̂i + Im(η)
√

2

− �0√
2

[M̂cX̂j + (−1)iM̂sP̂j ] + ξ̂pi ,

˙̂X0 = −γ X̂0 + �0√
2

(L̂eP̂c + L̂oP̂s) + ξ̂x0,

˙̂P 0 = −γ P̂0 − �0√
2

(L̂eX̂c + L̂oX̂s) + ξ̂p0, (14)

˙̂Xc = −γ X̂c + ωrP̂c + �0√
2
L̂eP̂0 + ξ̂xc,

˙̂P c = −γ P̂c − ωrX̂c − �0√
2
L̂e(

√
2N + X̂0) + ξ̂pc,

˙̂Xs = −γ X̂s + ωrP̂s + �0√
2
L̂oP̂0 + ξ̂xs ,

˙̂P s = −γ P̂s − ωrX̂s − �0√
2
L̂o(

√
2N + X̂0) + ξ̂ps,

where i = {1,2} and j = 3 − i.
The noise sources are assumed uncorrelated for the different

modes of both the matter and light fields. Because the damping
originates in the â and ĉ operators, it appears in both the X̂ and
P̂ equations of motion. In the case of the light fields, the noise
and damping originate from cavity loss, vacuum noise, and
laser fluctuations, while for the matter fields the primary source
of noise and damping is three-body collisions with additional
nearby noncondensed atoms. In addition, the customary factors
of

√
2κ and

√
2γ multiplying the ξ̂ (see, e.g., [34]) have been

FIG. 1. Mean intracavity photon number of both modes as a
function of the effective detuning �̃. Here κ = 2π × 1.3 MHz,
γ = 2π × 1.3 kHz, �0 = 2π × 3.1 kHz, ωr = 2π × 15.2 kHz,
N = 9000, and η1 = η2 = 0.54κ . Stable solutions are solid and
unstable are dashed.

absorbed into their definitions. This simplifies later results
somewhat.

A. Comparison to previous results

Before undertaking an analysis of the role of quantum
fluctuations, we investigate the effects of including the zero-
momentum mode itself as a dynamical component in the
classical steady state of the system. Surprisingly, perhaps,
we find that its inclusion can result in the appearance of new
dynamical features, such as, for example, a Hopf bifurcation.
To proceed we neglect all noise operators, treat the remaining
fields classically in a standard mean-field approach, and simply
look at the existence and stability of the fixed points of the
classical version of Eqs. (14) as the various parameters are
varied. The results of one such calculation are shown in Fig. 1,
revealing the dependence of the intracavity photon number
|αi |2 = 1

2 (X2
i + P 2

i ) on the detuning �̃. (We use the word
“photon” rather loosely in the classical description of this
section; more accurately it is a dimensionless measure of the
mean light field intensity.)

When compared to Fig. 2 of Ref. [31], which uses identical
parameters, we note that a quite similar bistable behavior is
observed, with two degenerate stable branches the photon
number can reach, as before. Which branch is reached is depen-
dent on initial conditions and quantum fluctuations, and, when
one field’s intensity is given by the lower branch, the other’s
is given by the upper. There is one particularly interesting
discrepancy when the evolution of the zero-momentum mode’s
occupancy is included, however. For a small range of negative
detunings—around �̃/κ ≈ −0.5 for the present example—the
bistable branches become unstable, due to a previously unseen
Hopf bifurcation [35]. We attribute this bifurcation to the
inclusion of the dynamics of the zero-momentum mode, an
aspect that was neglected in the analysis of Ref. [31]. Bistable
periodic cycles are present, and as before, which is reached
depends primarily on the initial state of the system. The
amplitudes of oscillations observed in these stable cycles are
quite small for the zero-momentum mode when compared to
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FIG. 2. Mean sine mode “position” and “momentum” as a
function of �̃. Other parameters as above. The outer magnitude
branches are the position solutions and the inner the momentum.
The maximum sine mode occupancy Ns reached is roughly 20.

its mean value (which is of the order
√

N ), but for the lightly
occupied side modes, the amplitudes can be comparable to the
mean values. This is a case where simply making the ansatz
ĉ0 → √

N suppresses certain dynamical features.
In order to do a meaningful linearized quantum treatment,

we attempt in this paper to avoid parameter regions where
complicated multistable behavior is evident. The results of
the next section will assist us in this effort. Furthermore, a
broader search of the parameter space has hinted that there are
also experimentally realizable regimes in which the classical
dynamics goes beyond multistability and becomes chaotic. We
hope to return to this topic in later work.

B. Classical dark state

We now turn to a concrete example in which quantum
and classical predictions will be shown to differ qualitatively.
Specifically, we consider the case of symmetric pumping
η1 = η2 = η of the counterpropagating cavity modes. We have
shown previously in Ref. [31] and confirm in the following that
within a classical (for the light field) and mean-field (for the
atoms) theory the sine mode is a dark state, for all but relatively
narrow parameter regions in which bistability and spontaneous
symmetry breaking occurs (Fig. 2). This can be seen easily by
replacing all optical and matter-wave operators by classical
expectation values, for instance

X̂0 → X̄0, (15)

where the overbar indicates the mean. Similar definitions are
used for the rest of the linear operators. When a quadratic
operator is written with an overbar, we refer to the products
of the classical means of its constituents [L̄e = X̄1X̄2 + P̄1P̄2,
N̄c = (X̄2

c + P̄ 2
c )/2, etc.].

The steady-state solution in this limit is easily obtained
by setting all time derivatives equal to zero. Because the
equations of motion are coupled cubic polynomials, there
may be multiple real-valued solutions. Also, because there
are 10 variables, we cannot necessarily expect to find analytic
solutions. Nevertheless, we find that the dark sine mode
solution always exists and has a closed form. For much, though
not all, of parameter space, it turns out to be the unique,

stable mean-field solution. A primary point of interest for
the remainder of this work is to identify conditions such that
quantum corrections lead to a finite occupancy of this mode, in
particular in or near parameter regions where other solutions
appear. Thus, we begin with the ansatz

X̄s = P̄s = 0. (16)

This allows the equations of motion for the matter field
operators to be simplified, yielding constraints for the light
field mean values:

X̄1X̄2 + P̄1P̄2 = 2|αD|2.
(17)

X̄1P̄2 − X̄2P̄1 = 0,

where |αD|2 is the mean number of intracavity photons in
either of the light modes, assuming the dark sine mode ansatz
holds. In other words, it is the projected number of photons in
the cavity modes assuming that the sine mode is empty. For
completeness and to make more direct contact with Ref. [31],
we also solve for the other classical steady-state values.

X̄0 = −�2(γ 2 + �2)Z,

P̄0 = γ 2�2Z,
(18)

X̄c = −γ 2ωr�Z,

P̄c = −γ�(γ 2 + �2)Z,

where

� = �0|αD|2
√

2 (19)

is the off-resonant Rabi frequency for the intracavity photon
number |αD|2 and

Z =
√

2N

(γ 2 + �2)2 + γ 2ω2
r

. (20)

We note that if we calculate M̄c and M̄s , the quantities
governing light-cosine mode and light-sine mode interaction
strengths, we retrieve X̄c

√
2N and 0, which are exactly

the results obtained when occupancy changes in the zero-
momentum mode are neglected. This shows that allowing
for the evolution of the zero-momentum mode as in Eq. (5)
versus fixing ĉ0 → √

N will only yield different behaviors for
the light and side-mode fields in the spontaneously broken
symmetry region of parameter space.

The remaining four equations are easily solved to give

X̄1,2 = κRe(η)
√

2 − (�̃ − �0X̄c

√
N )Im(η)

√
2

κ2 + (�̃ − �0X̄c

√
N )2

,

(21)

P̄1,2 = κIm(η)
√

2 + (�̃ − �0X̄c

√
N )Re(η)

√
2

κ2 + (�̃ − �0X̄c

√
N )2

.

We may therefore eliminate P1,2 without loss of generality
(thereby requiring αD = ā1,2 to be real) by appropriate
selection of the real and imaginary parts (equivalently, the
phase and strength) of the pumping η, namely

Re(η) = καD,
(22)

Im(η) = −(�̃ − �0X̄c

√
N )αD.

Recall from Eqs. (18)–(20) that X̄c has a nontrivial implicit
dependence on αD (proportional to α2

D for small αD and
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FIG. 3. Imaginary part of the pump intensity η required to
produce mean intracavity field αD . All parameters are as in Fig. 1,
except η itself and �̃ = −1.0 × κ . Note that because Re(η) is linear in
αD [Re(η) = καD], η itself is determined uniquely as a function of αD .

proportional to α−6
D for large αD). Once we begin the discussion

of the quantum fluctuations, we will treat αD as the free
parameter rather than η, because it allows the quantum
equations of motion to be put forth in closed form. That such a
substitution is possible without requiring an inordinately large
pump intensity η is shown in Fig. 3, a plot of the relationship
between the desired intracavity field αD and the imaginary part
of the required η. This replacement can therefore allow αD to
be interpreted as the predicted intracavity field strength for a
given pumping strength under the assumption that there are no
atoms excited to the sine side mode.

Under the restrictions (22), a bifurcation diagram of the
steady-state solutions of the mean intracavity field strengths
|αi | as a function of αD are shown in Fig. 4. In general,
the system has up to six steady-state solutions, with up to
two being stable. For small αD , we have α1 = α2 = αD ,
but as αD is increased the system undergoes a bifurcation,
with α1 �= α2. This occurs at αD ≈ 0.4 for our parameters.
This is followed by a small window with no stable solution
(between about αD = 0.45 and 0.6), at which point, there
is again a stable symmetric solution where the αi are larger
than might be expected. Presumably, the symmetry breaking
creates something of a positive feedback loop: a few atoms
are excited into the sine mode, which shifts the phase of the
counterpropagating light fields, causing them to interfere with
each other less effectively, thereby increasing the net number
of photons in the cavity, causing more atoms to be excited.
Lastly, for much larger light fields, the pumping dominates
the atoms’ symmetry breaking ability and the dark sine mode
becomes stable again.

In addition, the character of the bifurcation diagrams as
functions of �̃ will change because of (22), that is, because
we use a complex (rather than purely real as in Fig. 1) η

whose imaginary part is itself a linear function of �̃. These
diagrams are shown in Figs. 5–7. The multistable behaviors in
particular are richer than before. The dark sine mode remains
stable over the entire range of �̃ (straight solid line |αi |2 =
0.0625 = 0.252 at the bottom of Fig. 5), yet it is augmented
by an isola consisting of additional steady-state solutions
with macroscopic side mode occupancies. In particular, N̄s

can reach approximately 250, almost 3% of the total number

FIG. 4. Mean intracavity field |αi | as a function of αD . All
parameters are as in Fig. 3. Stable solutions are solid and unstable
are dashed. The dark sine mode ansatz indeed produces a solution
over the entire range. However, it is only unique and stable for very
feeble light fields. As the intensity is increased, the solution bifurcates
and becomes unstable, returning to stability for sufficiently high
intracavity field strength (though it is accompanied by additional
unstable solutions).

of atoms (see Fig. 6). The stability and symmetry of these
solutions varies greatly depending on the detuning. We will see
later that quantum fluctuations may affect tunneling between
these stable solution branches. We remark that for the range of
detunings where the isola has a single stable solution (between
�̃ ≈ −2.2κ and �̃ ≈ −2.7κ) the light mode has an additional
symmetric stable solution, but the side mode still remains dark.
It becomes macroscopically occupied once the symmetry of
the optical isola is broken. Lastly, we examine the effect of
allowing depletion of the zero-momentum condensate mode;
that is, we look at the steady-state values X̄0 and P̄0. From
Eq. (5), we have c̄0 = √

N + X̄0/
√

2 + iP̄0/
√

2. We find that
X̄0 (not plotted here) is negative in sign and quite a bit smaller
in magnitude than

√
N ; considering only this fact we might

wonder if the evolution of the zero-momentum mode is really
worth examination. However, when the system’s symmetry is
broken and the sine mode acquires a finite occupancy, P̄0 can

FIG. 5. Mean intracavity photon number |αi |2 as a function of �̃.
All parameters are as in Fig. 1, except rather than a fixed η, we take
αD = 0.25. Stable solutions are solid and unstable are dashed.

023834-5



S. K. STEINKE AND P. MEYSTRE PHYSICAL REVIEW A 84, 023834 (2011)

FIG. 6. Mean sine mode position and momentum as a function
of �̃. All parameters as in Fig. 5. The outer branches are position
solutions and the inner are momentum.

actually be fairly significant compared to the relevant scale,√
2N ≈ 134 (it should be noted that X̄0, though small in

magnitude, still reduces the real part of c̄0 enough such that
|c̄0|2 � N ; the condensate cannot “grow” from this treatment).
This result strongly suggests that the replacement of ĉ0 by

√
N

is not always the optimal ansatz to make; here it seems that
ĉ0 should be a dynamical, rather than static, quantity. To put
this another way, we expect the classical steady-state solutions
of the equations of motion to be comprised of coherent states
of the light and matter fields, including the zero-momentum
mode. When the sine mode attains a finite occupancy, its
presence can cause a major shift in the quantum state of
the zero-momentum mode beyond just the removal of a few
atoms.

IV. QUANTUM EFFECTS

A. Linearized quantum equations of motion

We now turn to a discussion of the impact of small
quantum fluctuations on the dynamics of the system. To
proceed, and armed with our detailed results on the mean-
field behavior in hand, we include quantum fluctuations
in the original equations of motion, assuming that these
fluctuations remain sufficiently small that their effects may

FIG. 7. Mean P̄0 as a function of �̃. All parameters are as in Fig. 5.

adequately be described by linearized equations of motion.
Specifically we introduce the fluctuations in the familiar
fashion via small quantum corrections to the mean-field
solutions,

X̂0 → X̄0 + x̂0, (23)

and so forth, and linearize the Heisenberg-Langevin equations
of motion in these fluctuations. This process is justified as
long as the quantum fluctuations are small compared to the
classical means (or in the case of the sine mode, with its zero
mean, as long as the quadratic terms are smaller than the linear
ones). But we remark again that because of the instabilities
demonstrated here and in Ref. [31] this will not always be the
case, so some care must be taken when selecting values for the
parameters.

This linearization procedure yields the 10 coupled operator
equations of motion

˙̂xi = −κx̂i − �̃p̂i + �Bp̂j

+ (−1)i(χ0x̂s + ℘0p̂s) + ξ̂xi ,

˙̂pi = −κp̂i + �̃x̂i − �Bx̂j − χcx̂0

−χ0x̂c − ℘cp̂0 − ℘0p̂c + ξ̂pi ,

˙̂x0 = −γ x̂0 + �p̂c + ℘c(x̂1 + x̂2) + ξ̂x0,

˙̂p0 = −γ p̂0 − �x̂c − χc(x̂1 + x̂2) + ξ̂p0, (24)

˙̂xc = −γ x̂c + ωrp̂c + �p̂0 + ℘0(x̂1 + x̂2) + ξ̂xc,

˙̂pc = −γ p̂c − ωrx̂c − �x̂0 − χ0(x̂1 + x̂2) + ξ̂pc,

˙̂xs = −γ x̂s + ωrp̂s + ℘0(p̂2 − p̂1) + ξ̂xs ,

˙̂ps = −γ p̂s − ωrx̂s − χ0(p̂2 − p̂1) + ξ̂ps,

where i = {1,2}, j = 3 − i, and

�B = �0√
2

[(
√

2N + X̄0)X̄c + P̄0P̄c],

χ0 = �0αD(
√

2N + X̄0), χc = �0αDX̄c, (25)

℘0 = �0αDP̄0, ℘c = �0αDP̄c.

The first two of Eqs. (24) describe the fluctuations of the
light field, and the last six the matter-wave fluctuations in the
zero-momentum component and in the sine and cosine side
modes. The terms proportional to �B describe Bragg scattering
between the two counterpropagating optical fields due to the
material grating formed by the zero-momentum matter wave
and the cosine mode. The coupling between the light and
matter operators is determined by the constants χ0, χc, ℘0, and
℘c, which act as small perturbations that couple the evolution
of the four light and six matter operators. Note that there
is no coupling dependent on the occupancy of the sine side
mode at the level of these equations of motion. The coupling
coefficients involve only the classical, mean optical, and matter
wave fields. Thus, the coupling to the sine side mode only
occurs indirectly via quantum fluctuations in the symmetric
driving situation considered here.

While the exact eigenvalues and eigenvectors of the 10 × 10
matrix defined by these equations cannot be found explicitly
in closed form, standard perturbation theory states that the
eigenvalues associated to the uncoupled optical and matter
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blocks of equations, for example, for χ0,c = ℘0,c = 0, match
those of the coupled system up to second order in the
perturbation. Numerical testing confirms that the values indeed
remain close. These eigenvalues are

λLc = −κ ± i(�̃ + �B), λLs = −κ ± i(�̃ − �B),

λMc = −γ ± i

√
�2 + ωr

2

(
ωr ±

√
4�2 + ω2

r

)
, (26)

λMs = −γ ± iωr .

The reason for this nomenclature is clear when one considers
the corresponding eigenvectors (normal modes of evolution).
While their explicit expressions are not possible to write
in closed form and are exceedingly unwieldy even when
only expanded to first order in the perturbation, a qualitative
inspection yields some useful information. The two pairs
of eigenvalues λLc and λLs correspond to light-dominated
evolution with a small mixture of cosine and zero-momentum
state matter modes, in the first case, and of the sine matter
mode, in the second case. As one might anticipate, the
oscillation frequencies of these optical modes have shifts
of opposite sign depending on whether they are coupled
to the symmetric or antisymmetric matter grating. The four
λMc eigenvalues correspond to normal modes dominated
by the cosine mode and zero-momentum mode (in unequal
proportion) and coupled to the light fields. The λMs values
correspond to sine-dominated normal modes coupled to the
light fields. The sine-dominated normal modes only contain a
tiny contribution from the cosine mode and zero-momentum
modes and vice versa, a direct consequence of the dark-state
nature of the sine mode at the classical, mean-field level. This
explains why the sine normal mode’s oscillation frequency
is just ωr : to lowest order, it is decoupled from the other
normal modes of the system. Since γ is typically the smallest
dimensional parameter, as one increases the coupling between
the light and matter fields, for example by increasing αD , the
real part of λMc can become positive even though the change
in |λMc| is relatively small. This leads to the instability in
the dark sine mode solution seen in Fig. 4. Because κ 	 γ

the optical transients die out rapidly and the light fields
follow adiabatically the matter wave fields, with noise- and
interaction-dominated fluctuations.

B. A formal parenthesis

To proceed further we open a small parenthesis to introduce
a somewhat formal result that will prove useful in the analysis
of higher-order correlation functions of the quantized atomic
and optical fields, in particular the correlations of various
orders of the matter-wave and light modes, as well as the cross
correlations between the matter and light fields. This formal
development extends much of the machinery familiar from
systems with a single damped operator to deal with multiple
noise sources with distinct characteristics.

Consider a quantum system described, in the Heisenberg
picture, by a set of d operators Ôk that comprise a d-

dimensional vector operator 
̂O. Let 
̂O evolve according to
a linear (or linearized) system of d coupled Heisenberg-

Langevin equations,

d

dt

̂O(t) = W 
̂O(t) + 
̂ξ (t), (27)

where W is a d × d matrix with c-number coefficients and 
̂ξ
are noise operators with 0 mean (i.e., any net input to the system
has already been absorbed into the equations of motion). For
convenience we have merged the usual factors of

√
2κ needed

to preserve commutation relations into 
̂ξ , since they may vary
for each operator.

These equations can be integrated in a straightforward
fashion, yielding


̂O(t) = eWt 
̂O(0) +
∫ t

0
eW(t−u) 
̂ξ (u) du. (28)

For each i,j � d, and at all times s,t > 0 we have

〈Ôi(0)ξ̂j (t)〉 = 0, (29)

〈ξ̂i(s)ξ̂j (t)〉 = Nij δ(s − t), (30)

where the first condition is satisfied axiomatically, and the
second one holds for white noise sources, an approximation
that should be adequate for the system under study. The
expectation values of the operators alone are just

〈 
̂O(t)〉 = eWt 〈 
̂O(0)〉, (31)

since 〈
̂ξ (t)〉 = 0.
Under these conditions we can obtain the correlation matrix

〈 
̂O(s) ⊗ 
̂O(t)〉 = eWs〈 
̂O(0) ⊗ 
̂O(0)〉eWT t

+
∫ min(s,t)

0
eW(s−u)NeWT (t−u)du, (32)

which lets us compute all quadratic correlations at all times,
for example, 〈x̂1(s)p̂c(t)〉.

For the rest of the paper we shall work in the long-time
limit, in which the transient behavior of the operators has
decayed to 0. In physical terms, for the model in question,
this corresponds to times t 	 1/γ , which are experimentally
accessible for long-lived BECs. In this limit, the initial values
have decayed to irrelevance, and the correlations are simply

〈 
̂O(s) ⊗ 
̂O(t)〉 =
∫ min(s,t)

0
eW(s−u)NeWT (t−u)du. (33)

This is the central result of this section. For a Gaussian process
we can easily determine higher order correlations as well:
all three-operator correlators are 0, and the four operator
correlators are given by

〈 
̂O(s) ⊗ 
̂O(t) ⊗ 
̂O(u) ⊗ 
̂O(v)〉
= 〈 
̂O(s) ⊗ 
̂O(t)〉 ⊗ 〈 
̂O(u) ⊗ 
̂O(v)〉

+ 〈 
̂O(s) ⊗ 
̂O(u)〉 ⊗ 〈 
̂O(t) ⊗ 
̂O(v)〉
+ 〈 
̂O(s) ⊗ 
̂O(v)〉 ⊗ 〈 
̂O(t) ⊗ 
̂O(u)〉. (34)

Now, we apply this technique to our model. The operators

̂O are the x̂ and p̂, with the coefficients W given by (24).

Lastly, we determine the ξx,p, and hence, N from the following
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relations:

〈ξ̂ai(s)ξ̂ †
ai(t)〉 = 2κδ(s − t)

(
N th

i + 1
)
, (35)

〈ξ̂ †
ai(s)ξ̂ai(t)〉 = 2κδ(s − t)N th

i , (36)

〈ξ̂cI (s)ξ̂ †
cI (t)〉 = 2γ δ(s − t)

(
N th

I + 1
)
, (37)

〈ξ̂ †
cI (s)ξ̂cI (t)〉 = 2γ δ(s − t)N th

I , (38)

where i = {1,2}, I = {0,c,s}, the N th are thermal noise
occupancies of the baths near the characteristic frequencies of
the system as given by Bose-Einstein statistics, and all other
quadratic noise correlations are 0. The noise matrix N for the
position and momentum operators thus has the form of five
2 × 2 block matrices, each with 2N th + 1 for the on-diagonal
entries and ±i for the off-diagonal entries with all four entries
multiplied by γ or κ as appropriate. Because we are dealing
with optical photons and a BEC at a temperature of at most
a few micro-Kelvin, going forward we take all N th → 0, or,
equivalently, we take the bath temperatures to be 0. We find that
typically increasing the N th just adds directly to the occupancy
of the corresponding fields.

C. Second-order correlations and quantum occupancies

With these formal results at hand, and working with a set
of parameters that are a combination of those in Figs. 4–7 and
with �̃ = −1.0 × κ , αD = 0.25, we are now in a position to
explore a few results for the cross operator correlations, before
looking at the quantum-fluctuation-augmented occupancy of
the side modes. Further calculations not presented here have
shown that the results obtained for these particular parameter
values are fairly typical of the monostable regime in which we
are interested.

As expected, the fluctuations in the zero-momentum and
cosine modes are virtually uncorrelated with those of the sine
mode 〈(x̂,p̂)0,c(x̂,p̂)s〉 ≈ 0 but are slightly correlated with
each other (e.g., 〈x̂0x̂c〉 ≈ 0.022, for comparison X̄0X̄c ≈ 0.11
so the classical mean-field correlation is a more significant
contribution). By far the largest correlation between distinct
matter and/or light fields, however, is the one that confirms
our intuition, namely, the sine mode’s fluctuations are very
strongly correlated to those of the light field [e.g., 〈x̂i x̂s〉 ≈
(−1)i0.32,i = 1,2]. This shows that, indeed, the occupation
of the sine side mode is driven by and interdependent with the
fluctuations in the light fields.

We also consider the occupancy of the side modes as
functions of the most easily tunable parameters �̃ and αD .
Keeping in mind that all single operator expectation values
such as 〈x̂i〉 decay to 0, we have

〈
X̂2

i

〉 = X̄2
i + 〈

x̂2
i

〉
, (39)

etc. When evaluating these quantities we must be careful to
avoid those regions in parameter space where the dark sine
mode steady-state solution is unstable, in particular, we need
αD < 0.4. The results are shown in Figs. 8 and 9. In the
former we see a noticeable occupation of the sine mode before
the classical bifurcation. This may be sufficient to shift the
bifurcation point to a lower value of αD . This possibility
is corroborated by the observed shift to the left in the plot
of 〈Nc〉 versus N̄c; that is, when quantum fluctuations are

FIG. 8. Side mode occupancies 〈Nc〉,〈Ns〉 as functions of αD .
Parameters as in Fig. 3. The cosine mode (solid) has a larger
occupancy than that of the sine mode (dashed). For reference, the
classical mean N̄c is plotted as well (dotted line).

included, the cosine mode behaves as if αD were slightly
larger. On the other hand, a somewhat different behavior is
seen in the latter plot. As �̃ decreases from 0 and approaches
the bifurcation seen above in Figs. 5–7, the sine mode initially
starts to increase in occupancy, but then its (and the cosine
mode’s) quantum fluctuations are suppressed as |�̃| increases
further. Nevertheless, as we see below, the variance in the sine
mode’s occupation is so large that the quantum fluctuations
may still influence the character of the system’s behavior in
the case −2.5κ � �̃ � −1.0κ .

D. Variance in side mode occupancy

Because the system is coupled to a zero temperature bath,
we compare the variance

σ 2
I = 〈

N̂2
I

〉 − 〈N̂I 〉2 (40)

to that of a bosonic system in thermal equilibrium, in which
case

σ 2
I,TH = 〈N̂I 〉2 + 〈N̂I 〉, (41)

FIG. 9. Side mode occupancies 〈Nc〉,〈Ns〉 as functions of �̃.
Parameters as in Fig. 5, but the range of �̃ has been extended slightly.
The cosine mode (solid) again has a larger occupancy than the sine
mode (dashed). For reference, the classical mean N̄c is plotted as well
(dotted); X̄c and P̄c do not depend on �̃ so it is constant.
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FIG. 10. Variance of side mode occupancy compared to thermal
variance as functions of αD . Parameters as Fig. 8. Cosine mode is
solid and sine mode is dashed.

specifically taking the ratio of (40) to (41). A value less
than one indicates subthermal statistics, as would be the case
when there is a significant classical mean and/or quantum
fluctuations are suppressed. On the other hand, a ratio greater
than one indicates significant fluctuations and a matter or
light field driven out of thermal equilibrium. These ratios are
computed and plotted in Figs. 10 and 11 as functions of αD

and �̃, respectively. In the former, for weak mean intracavity
light field αD , both modes’ statistics are thermal in nature.
As the applied field is increased, the sine mode is perturbed
to slightly higher variance, whereas the cosine mode at first
exhibits less than thermal variance, as the classical mean-field
contribution grows. However, the quantum fluctuations then
take over and its variance grows quickly as αD approaches
the bifurcation at a value of roughly 0.4. We should however
take this result with a grain of salt since it is at this point that
the quantum fluctuation contribution to 〈N̂c〉 exceeds the mean
contribution N̄c, thus endangering the validity of the linearized
treatment. Still, it should of course be expected that increased
fluctuations in the cosine mode significantly alter the existence
and stability of steady-state solutions in this critical region.

In the second of these figures we plot the variances as a
function of the effective detuning �̃. In this case, except for
detunings very near 0, the cosine mode is almost completely
classical, as is the sine mode for sufficiently negative values
of �̃. This implies that, if a zero-momentum condensate is
formed and allowed to evolve for the parameters given and
a �̃ of less than −2.5κ or so, and if it reaches the dark
sine mode steady state, it is quite likely to remain there
indefinitely, as quantum fluctuations are strongly suppressed.
But for less negative values of �̃, the sine mode fluctuations
are significant. It may be possible that these fluctuations
“anticipate” the classical bifurcation nearby in parameter
space, or even that they allow the new stable solutions to
appear for larger values of the detuning than they would

FIG. 11. Variance of side mode occupancy compared to thermal
variance as functions of �̃. Parameters as Fig. 9. Cosine mode is solid
and sine mode is dashed.

otherwise. To test this would likely require simulation of the
full nonlinear quantum evolution of the system.

V. DISCUSSION AND CONCLUSIONS

By analyzing a detailed model including two counterprop-
agating light fields and three matter fields, we are able to find
a region in parameter space, with experimentally accessible
values, where the system’s behavior differs significantly from
that of a BEC in a Fabry-Pérot cavity, and also where quantum
corrections become significant. The classical dynamics are
rich, and near bifurcation points in the mean-field classical sys-
tem, the quantum fluctuations also have intriguing properties.
They appear strong enough to shift or perturb the dynamical
bifurcation points.

This system’s dynamics are richer than the typical optome-
chanical system, and they may be exploited in the future
to investigate numerous nonclassical effects. For instance,
because of the strong cross correlation between the light’s
and the sine mode’s fluctuations, it should be possible, by
measuring the output light fields, to monitor the sine mode as
it tunnels between different possible steady-state branches.
This would contrast with the tunneling suppression seen
in, for example, Ref. [36], and it relies on the optically
driven fluctuations in the matter fields. Also, for significantly
larger condensates, with N ≈ 106, apparently chaotic classical
dynamics are observed. It may be that this behavior persists
even with the minimal (N th = 0) kicks given by the noise
operators ξ̂ . To explore these possibilities, further work will
be needed in the form of a full nonlinear quantum treatment.
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