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Geometrical interpretation of optical absorption
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We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate
variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using
homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of
hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line
crossing all the meridians at the same angle.
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I. INTRODUCTION

One-dimensional continuous models are very useful to
provide a detailed account of the behavior of a variety of
systems [1,2]. Frequently, linear approximations are enough
to capture the essential features with sufficient accuracy.
The nature of the actual particles, or states, or elementary
excitations, as they may be variously called, is irrelevant for
many purposes: there are always two input and two output
channels related by a 2 × 2 transfer matrix [3–6]. Such a
matrix is just a compact way of setting out the integration
of the differential equations involved in the model with the
pertinent boundary conditions; this is what makes the method
so effective.

However, a quick look at the literature immediately reveals
the very different backgrounds and habits in which the transfer
matrix is used and the very little “cross talk” between them,
which sometimes leads to confusion. To fill this gap, in recent
years a number of geometrical concepts have been introduced
to display the topic in a unifying mathematical scenario that
can be clarifying for the different applications [7–10].

In this paper we continue this programm and extend the
theory to absorbing systems. In that case, the transfer matrix
is an element of the group SL(2,C) of unimodular complex
2 × 2 matrices. The algebraic structure of these matrices is
very appealing; in particular, SL(2,C) is locally isomorphic to
the Lorentz group SO(1,3) in (1 + 3) dimensions [11]. Apart
from a relativistic presentation of the topic, which has interest
in its own, this gives rise to a bilinear transformation that
nicely depicts the physics in the complex plane. Hyperbolic
geometry allows then for an exhaustive classification of these
actions. For the problem at hand, it turns out that the system
induces a loxodromic transformation when viewed in the
proper variables, so it is exactly a rhumb line in standard
navigation (a line on the surface of a sphere that always makes
an equal angle with every meridian). The consequences of this
remarkable fact are fully explored in what follows.

II. TRANSFER MATRIX: RELATIVISTIC VARIABLES

We restrict our analysis to the optical transfer matrix, al-
though the discussion is independent of the example employed
and could be easily translated to electronic states, plasmons,
long wave acoustic or piezoelectric modes, or whatever.

To simplify the details as much as possible, we look at
the simplest system we can imagine: an isolated absorbing
(homogeneous and isotropic) film embedded between two
identical ambient a and substrate s media, which we take
to be air. The generalization to more involved structures is
rather obvious. A monochromatic, linearly polarized plane
wave falls from the ambient with amplitude E+,a , as well as
another plane wave of the same frequency and polarization,
and amplitude E−,s from the substrate (see Fig. 1 for a scheme
of all the fields). Without loss of generality, we assume normal
incidence, so we do not need to make a distinction between p

and s polarizations.
As a result of multiple reflections in the interfaces of the

film, we have a backward-traveling plane wave in the ambient,
denoted E−,a , and a forward-traveling plane wave in the
substrate, denoted E+,s . If the field amplitudes are treated
as a column vector

E =
(

E−
E+

)
, (2.1)

the amplitudes at both the ambient and the substrate sides are
related by

Ea = M Es , (2.2)

where M is the transfer matrix. For the case in point it can be
shown that [12]

M =
(

(T 2 − R2)/T R/T

−R/T 1/T

)
≡

(
a b

c d

)
, (2.3)

the complex numbers R and T being, respectively, the
reflection and transmission coefficients

R = r[1 − exp(−i2δ)]

1 − r2 exp(−i2δ)
, T = (1 − r2) exp(−iδ)

1 − r2 exp(−i2δ)
. (2.4)

Here, r is the Fresnel reflection coefficient for the interface of
air and film, and δ = 2πNd/λ is the normal-incidence film
phase thickness, where N is the complex refractive index,
d the film thickness, and λ the wavelength in vacuo. Note
that in this symmetric configuration the coefficients R and T

do not depend on which side (ambient or substrate) the light
is impinging on, and, consequently, we have the constraint
b = −c in M. Additionally, since the ambient and substrate are
identical, we have that det M = +1, so the transfer matrices
belong to the group SL(2,C).
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FIG. 1. (Color online) Scheme of the input (blue arrows) and
output (red arrows) fields in an absorbing film. The subscripts + and
− refer to the positive and negative directions of the Z axis, while
a and s refer to the media (ambient and substrate) in which the field
propagates. We assume normal incidence.

To proceed further, let us construct the matrices

E =
( |E−|2 E∗

−E+
E−E∗

+ |E+|2
)

(2.5)

for both a and s variables. They are quite reminiscent of the
coherence matrix in optics or the density matrix in quantum
mechanics [13]. One can readily verify that

Ea = M Es M† , (2.6)

so they transform under the action of the transfer matrix M by
conjugation.

Let now σμ (the Greek indices run from 0 to 3) be the set
of four Hermitian matrices σ 0 = 1 (the identity) and σ (the
standard Pauli matrices). They constitute a natural basis of the
vector space of 2 × 2 complex matrices, and we can define the
coordinates eμ with respect to that basis as

eμ = 1
2 Tr(E σμ) , (2.7)

obtaining

e0 = 1
2 (|E−|2 + |E+|2) , e1 = Re(E∗

−E+) ,

e2 = Im(E∗
−E+) , e3 = 1

2 (|E−|2 − |E+|2) .

(2.8)

As a result, the conjugation (2.6) induces a transformation on
the variables eμ of the form

eμ
a = �μ

ν (M) eν
s , (2.9)

where �μ
ν can be found to be

�μ
ν (M) = 1

2 Tr(σμMσνM†) , (2.10)

and it turns out to be a Lorentz transformation [14]. Clearly,
the matrices M and −M generate the same �, so this
homomorphism is two-to-one.

The variables eμ are coordinates in a Minkowskian (1 + 3)-
dimensional space and the action of the system can be seen as a
Lorentz transformation. To give a physical feeling of this point,
let us recall that any matrix M ∈ SL(2,C) can be decomposed
in one and only one way in the form M = HU, where H is
a positive-definite Hermitian (“modulus”) and U is unitary
(“phase”). Under the homomorphism (2.10), H generates a
boost of velocity β = v/c, while U induces a pure spatial
rotation. The parameters of the boost and the rotation can be
easily related to those of M; the explicit expression can be
found, e.g., in Ref. [15].

To gain physical insights, let us focus for a moment on
a lossless film, for which such a decomposition appears
particularly transparent. The transfer matrix (2.3) reduces then
to

Mlossless =
(

1/T ∗ R/T

R∗/T ∗ 1/T

)
, (2.11)

so it belongs to the group SU(1,1). By simple inspection it can
be checked that Mlossless can be decomposed as

Mlossless = HU =
(

1/|T | R/|T |
R∗/|T | 1/|T |

)(
eiτ 0

0 e−iτ

)
,

(2.12)

where we have written

R = |R| exp(iρ), T = |T | exp(iτ ) , (2.13)

so ρ and τ are the phase changes in reflection and transmission,
respectively. The unitary component U generates, under the
homomorphism (2.10), the matrix

R(U) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos(2τ ) sin(2τ ) 0

0 − sin(2τ ) cos(2τ ) 0

0 0 0 1

⎞
⎟⎟⎟⎠ , (2.14)

that is, a rotation in the plane e1-e2 of angle twice the phase of
the transmission coefficient.

The Hermitian component H generates the boost

L(H) =

⎛
⎜⎜⎜⎝

γ −γβ cos ρ −γβ sin ρ 0

−γβ cos ρ 1 + (γ − 1) cos2 ρ (γ − 1) cos ρ sin ρ 0

−γβ sin ρ (γ − 1) cos ρ sin ρ 1 + (γ − 1) sin2 ρ 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

(2.15)
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FIG. 2. (Color online) Components of the velocity β =
(β1,β2,β3) and its modulus |β| of the boost generated by a film
of germanium when its thickness varies from 0 to 0.3 μm. We
work at λ = 0.6199 μm, and the complex refractive index is
N = 5.588 − 0.933 i.

where the velocity β = |β| and the relativistic factor γ =
1/

√
1 − β2 are given by

β = 2|R|
1 + |R|2 , γ = 1 + |R|2

1 − |R|2 . (2.16)

The matrix L(H) is then a boost to a reference frame moving
with a constant velocity β in the plane e1-e2, in a direction
forming a counterclockwise angle ρ with the axis e1.

If, as it is usual, we introduce the rapidity ζ from the
relations

β = tanh ζ, γ = cosh ζ, (2.17)

we have the following very appealing identification of the
reflection and transmission coefficients with the parameters of
the Lorentz transformation:

R = tanh(ζ/2) exp(iρ), T = sech(ζ/2) exp(iτ ). (2.18)

Therefore, |R| = tanh(ζ/2) behaves as a velocity (and they
add accordingly), while |T | behaves as 1/γ .

As an illustrative example, in Fig. 2 we have plotted the
components of the boosts generated by a film of germanium
when its thickness d changes continuously from 0 to 0.3 μm.
First of all, |β| is almost 1 (except for values close to d = 0),
which shows, perhaps unexpectedly, that the film operates at
the ultrarelativistic limit. The components of β show damped
oscillations, tending fast to constant values as the thickness
increases. When no absorption is present, the coordinate e3

(that is, the semidifference of the fluxes at each side of the film)
remains invariant and β3 = 0, while the other two components
depend periodically on d. In consequence, the appearance of
β3 is a clear evidence of absorption.

III. GEOMETRY OF THE TRANSFER MATRIX

The value of the interval (for both a and s) is

(e0)2 − (e1)2 − (e2)2 − (e3)2 = 0 , (3.1)

so it is lightlike. Equation (3.1) defines the light cone in
special relativity. Since it is impossible to plot it in a

three-dimensional Euclidean world, we consider the intersec-
tion of the hyperplane e0 = 1 and the future light cone (i.e., the
one with e0 > 0), which gives the unit sphere S2. This can be
alternatively characterized by using homogeneous coordinates

e1 = e1

e0
, e2 = e1

e0
, e3 = e1

e0
, (3.2)

in terms of which (3.1) can be recast as

(e1)2 + (e2)2 + (e3)2 = 1 . (3.3)

In this way we have established a correspondence between
points (e0,e1,e2,e3) and points (e1,e2,e3) in S2. This also
transfers the Minkowski metric [ds2 = (de0)2 − (de1)2 −
(de2)2 − (de3)2] to S2, giving the projective or Klein model
of the hyperbolic geometry [16].

Moreover, we can map the points of S2 onto the complex
plane C (identified with the plane e3 = 0) by the stereographic
projection from the north pole. The point (e1,e2,e3) becomes
then

z = e1 + ie2

1 + e3
= E−

E+
. (3.4)

This confirms that what matters here are the transforma-
tion properties of the field quotients rather than the fields
themselves. Therefore, the relativistic Lorentz transformation
(2.9) can also be interpreted as the Möbius (or bilinear)
transformation [17]

za = azs + b

czs + d
, (3.5)

induced by M. When no light is incident from the substrate,
zs = 0 and then za = R. For the inverse matrix M−1 the
transform of the origin is −b/a = R/(R2 − T 2).

We briefly recall that the fixed points are of great sig-
nificance for the characterization of Möbius transformations.
These points are defined as the field configurations such that
za = zs ≡ zf in Eq. (3.5), whose solutions are

zf ± = (a − d) ±
√

[Tr(M)]2 − 4

2c
. (3.6)

So they are determined by the trace of M. When the trace is a
real number, the induced Möbius transformations are called
elliptic, hyperbolic, or parabolic, when [Tr(M)]2 is lesser
than, greater than, or equal to 4, respectively. The canonical
representatives of those matrices are [18](

eiθ/2 0

0 e−iθ/2

)
︸ ︷︷ ︸

elliptic

,

(
eξ/2 0

0 e−ξ/2

)
︸ ︷︷ ︸

hyperbolic

,

(
1 α

0 1

)
︸ ︷︷ ︸
parabolic

, (3.7)

while the induced geometrical actions are

za = zse
iθ , za = zse

ξ , za = zs + α , (3.8)

that is, a rotation of angle θ , a squeezing of parameter ξ ,
and a parallel displacement of magnitude α, respectively. The
relativistic versions of these transformations can be easily
worked out using Eq. (2.10).
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FIG. 3. (Color online) Transform of the origin zs = 0 (blue point)
by the matrix M of an absorbing film of germanium when its thickness
varies continuously, as in Fig. 2. The two fixed points (marked in red)
are r (left) and 1/r (right).

For an absorbing system the transfer matrix has, in general,
a complex trace. The canonical representative is then a
combination of a hyperbolic and an elliptic transformation:

(
eξ/2 0

0 e−ξ/2

)(
eiθ/2 0

0 e−iθ/2

)
. (3.9)

This global action gives a logarithmic spiral. Because of
its unique mathematical properties, it was named by Jacob
Bernouilli as spira mirabilis (marvelous spiral) and appears in
many instances in nature [19].

In Fig. 3, we have plotted the Möbius transform of the
origin (i.e., the reflection coefficient R) for the same film of
germanium as before when its thickness changes continuously.
When d is thick enough, the film tends to be a bulk medium, the
interferential effects gradually disappear, and limd→∞ R = r ,
which is precisely a fixed point of the transformation. In fact,
a simple exercise shows that M has two fixed points: r and
1/r . The first acts as an attractor for the action of M, while
the second is the attractor of M−1. For these reasons, the total
curve in Fig. 3 involves necessarily both actions (indicated by
the corresponding arrows), despite the fact that M−1 does not
correspond to any physically feasible system. For a lossless
film, this spiral reduces to a circle with its center at the fixed
point.

To better illustrate this behavior, in Fig. 4 we represent the
same transformation, but viewed on the sphere S2, defined
in Eq. (3.3). We have also drawn the meridians through the
two fixed points. As we can nicely appreciate, the trajectory
traced by the system is indeed a rhumb line crossing all
these meridians at the same angle, which is known as a
loxodrome [20]. The stereographic projection from the north
pole of the sphere gives precisely the curve in Fig. 3 in the
complex plane, with the same comportment with respect to
the projected meridians.

From a physical perspective, the spiral can be understood
as the combined effect of interference and absorption. In
Fig. 5, the reflectance and absorptance of the same germanium
film are plotted as a function of the thickness d, showing
oscillations (approximately out of phase between them). When
both magnitudes become almost thickness independent, we are
in the bulk limit and the transmittance vanishes.

FIG. 4. (Color online) Transformation induced on the sphere S2

given in Eq. (3.3) by the same germanium film as before. The
meridians are also shown to stress that the trajectory is a rhumb line
crossing all of them at the same angle. The stereographic projection
from the north pole reproduces Fig. 3. For an easier visualization,
we have projected on the tangent plane to the south pole (e3 = −1),
instead of the equatorial one (e3 = 0).

To round up our exposition, we observe that the matrix M
can always be diagonalized:

C M C−1 =
(

m+ 0

0 m−

)
, (3.10)

with C ∈ SL(2,C). As this conjugation preserves the determi-
nant, the eigenvalues are inverse one of the other, m+ = 1/m−.
The trace is also preserved, so that Tr(M) = m+ + m−, whose
solutions are [21]

m± = 1
2 {Tr(M) ±

√
[Tr(M)]2 − 4} , (3.11)

wherefrom we can conclude that m± = exp(±iδ), where δ is
the film phase thickness. In addition, the matrix in (3.10) must
be of the canonical form (3.9), which fixes the parameters of
the squeezing and the rotation of the loxodrome

θ = 4π
d

λ
Re(N ), ξ = 4π

d

λ
Im(N ) . (3.12)
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FIG. 5. (Color online) Reflectance and absorptance of the same
germanium film as before in terms of its thickness (in microns).
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This remarkable formula shows a clear relation between the
physical parameters of the absorbing film and those of the
geometrical transformation induced by it.

IV. CONCLUDING REMARKS

Modern geometry provides a useful and, at the same
time, simple language in which numerous physical ideas and
concepts may be clearly formulated and effectively treated.

This paper is yet another example of the advantages of these
methods: we have devised a geometrical tool to analyze optical
absorption in a concise way that, in addition, is closely related
to other fields of physics.

In fact, this could be of great benefit in elucidating
models that although apparently complex, display extra
symmetries. This is the case of, e.g., parity-time (PT )–
invariant potentials [22], whose physical interpretation is a
touchy business [23]. Quite recently, optics has provided a
fertile ground where PT -related notions can be implemented
and experimentally investigated [24–26], so our formalism can
pave the way toward understanding the intriguing and unex-
pected properties that rely on nonreciprocal light propagation.

Moreover, this picture permits us to transplant space-time
phenomena to the more familiar arena of the optical world.
However, note that this gateway works in both directions:
here, it has allowed us to establish a relativistic presentation of
absorption; but multilayer optics can be also used as a powerful
instrument for visualizing special relativity [27]. This is more
than an academic curiosity: in fact, some intricate relativistic
effects, such as, e.g., the Wigner angle (or the Thomas
precession), can be measured (and not merely inferred) by
using very simple optical setups [28]. Our paper is one further
step in this fruitful interplay between multilayer optics and
relativity.

We stress that the behavior analyzed here is universal for
any linear absorbing system. It is of application not only in
optics, but also in all the fields in which the method of transfer
matrix is suitable.
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