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Bistable moving optical solitons in resonant photonic crystals
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We consider some new aspects of the formation of moving optical solitons in a medium of Bragg-type
resonant grating doped with two-level atoms. For generality, account is taken of the local-field effect assisted by
a sufficiently high density of resonant atoms. It is established analytically that there exists a family of soliton
solutions to the two-wave Maxwell-Bloch system of equations, with these solitons exhibiting bistable properties.
The existence of bistable solitons and their properties are confirmed by numerical simulations.
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I. INTRODUCTION

Nowadays the nonlinear interaction of ultrashort optical
pulses with periodic resonant media is of practical significance.
This is due to the search for novel properties of pulse propa-
gation which are expected to find applications of considerable
promise. Active investigations of pulse propagation through
periodic resonantly absorbing media began in the mid 1980s
and are actively being continued at present. Mantsyzov was the
first to derive the so-called two-wave Maxwell-Bloch system
of equations describing the coherent interaction of light with a
one-dimensional periodic medium (Bragg grating) represented
as a periodical array of thin layers of two-level atoms
[1]. Further studies were devoted to the dynamics of pulse
propagation in Bragg gratings under different conditions. In
particular, they were concerned with the formation of solitons
in the case of a weak violation of the Bragg conditions [2],
investigations of oscillating solitonlike solutions influenced by
inhomogeneous broadening spectra of two-level atoms [2], and
the delay of pulse reflection from Bragg gratings [3]. Mention
should also be made of the theoretical prediction of forming
an optical zumeron [4] and oscillating gap 2π pulses [5]
in resonantly absorbing lattices. The results of Mantsyzov’s
research, as well as extensive literature on the problem of
optics of periodic media are reviewed in his monograph [6].

The next important step concerning research into the
dynamics of pulses in periodic media was an extension of
the system of equations [1] to the case of a spatial modulation
of the refractive index of a host medium where the layers
of resonant atoms are located. The complete derivation of
a system of equations, as well as particular solutions for
“zero-velocity” dark and bright solitons, can be found in
Refs. [7,8]. In spite of a detailed analysis of zero-velocity
solitons, the moving solitonlike analytical solution cannot be
found, strictly speaking, from zero-velocity soliton solutions
because of the absence of Galilean or Lorentzian invariance of
the system (see [7] for details). The one-parameter subfamily
of solitons is found in [9] where the solution is expressed
in a sech-like form at the band-gap edge. An alternative
method for finding an analytical solitonlike solution is to
asymptotically reduce the system of equations to nonlinear
Schrödinger equation [7]. When simulated numerically, the
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stable moving solitons were obtained by adding the phase
modulation to the zero-velocity solitons [10].

In Ref. [11], attention was paid to the fact that in periodic
resonant structures the formation of stationary pulses can
markedly be affected by the dipole-dipole interactions (local
field) [12]. The dipole-dipole interaction is known to result
in a number of new phenomena: Lorentz shift [13], ultrafast
optical switching [14], enhancement of inversionless gain and
refractive index without absorption [15], reduction of the
electromagnetically induced transparency [16], enhancement
of the spontaneous emission rate in a dielectric [17], modifi-
cation of the superradiant amplification [18], and incoherent
solitons and phase modulation of self-induced transparency
solitons [19,20].

As shown in Ref. [11], the influence of the local field
substantially changes the conditions of existence of zero-
velocity solitons. This is shown analytically and numerically.
However, the study of moving solitons is restricted to the
numerical simulation similar to that conducted in Ref. [10],
where the moving pulse is obtained from the zero-velocity
soliton by introducing an artificial phase modulation.

Based on numerical simulations, the effect of the local field
on the formation of ultrashort pulses in a medium with the
modulated refractive index (for a homogeneous distribution of
the resonant level particles along the sample) is considered in
Refs. [21,22]. It is shown that the local field leads to a phase
change, whereas the amplitude changes due to the influence of
dipole-dipole interactions are rather small.

It is pertinent to emphasize that the majority of the
above-mentioned studies concerning moving solitons are
predominantly simulated numerically. Analytical results are
appropriate to simplified models or specific cases. That is,
a sufficiently general analytical approach is lacking in the
current theory. It is self-evident that some theoretical aspects
of the problem under study are not yet fully understood.

The present paper deals with the self-induced transparency
(SIT) in resonant photonic crystals where the interplay of
the resonant nonlinearity, Bragg reflection, and near dipole-
dipole interaction (local field) takes place. It is our intention
here to reveal the existence and explain the properties of
SIT solitons. Their formation is examined analytically and
numerically. Particular emphasis is placed on the analytical
solution, because it is just what we are going to benefit from to
arrive at the bistability. As applied to temporal solitons, by the
bistability is meant the existence of solitons in two steady states
(in one or another), their envelopes in these states differing,
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for example, in amplitude (peak) at the same duration [23,24].
Of course, the concept of two steady states must be common
for bistable temporal solitons of any nature.

The bistability seems by itself to be interesting as a novel
property of SIT solitons in periodic media. In addition, the
matter may also concern potential applications associated with
their controllable propagation.

The rest of our paper is structured as follows. In the
second section we address the model of propagation of
an electromagnetic wave through a resonantly absorbing
medium with a one-dimensional modulation of the refractive
index. The third section is devoted to finding solitonlike
analytical solutions of the equations used in our model,
with their properties being discussed. In the fourth section
we numerically check the stability of the soliton solutions
obtained, and consider their interaction and formation. At that,
the fourth-order Runge-Kutta method used in our numerical
experiments is treated in detail. At the end of paper we will
discuss the possibility of the experimental realization of the
found regimes of propagating and perform the estimation of the
parameters of the problem. In conclusion, in the sixth section,
the basic results are briefly discussed.

II. BASIC EQUATIONS

We consider a medium with the one-dimensional periodic
modulation of the refractive index n(z) along the direction of
propagation of an electromagnetic wave. It is assumed that the
one-dimensional periodic grating has a period d and resonant
centers are located in the maxima of the refractive index z =
zj . The length of these layers is much smaller than the period
of the periodic grating. At the same time, we assume that the
“local” density σ (zj ) of two-level atoms is great enough so
that the dipole-dipole interactions cannot be neglected.

To be more consequent in our presentation, let us recall
some important steps of deriving model equations, which are
covered in detail in Refs. [7,8] without allowance for the local
field. The local-field correction to the system of [7,8] was
introduced for the first time in [11], to our knowledge. Here
we present the main steps of deriving a system of equations
describing the propagation of light in periodic resonant media
(this system is often called a two-wave Maxwell-Bloch
system). While deriving it, we follow Refs. [7,8,11].

A. Subsystem of the Bloch equations

To derive the Bloch equations for two-level atoms, we start
from the Heisenberg equation of motion for operators,

ih̄
dÂ

dt
= [Â,Ĥ ], (1)

and the Hamiltonian of a two-level atom in the electromagnetic
field,

Ĥ = h̄ω0

2
ŵ − E d̂, (2)

where ŵ = |e〉〈e| − |g〉〈g| is the atomic inversion operator,
|e〉 and |g〉 are the excited and ground states, respectively, ω0

is the resonant transition frequency of the two-level atom, E
is the magnitude of the electromagnetic field vector E, d̂ is

the projection of the atomic dipole moment operator d̂ to the
vector of electromagnetic field E, and h̄ is Planck’s constant.

The dipole momentum operator can be introduced in the
form

d̂ = μ

2
(P̂ + P̂ †), (3)

where μ is the dipole matrix element (is to be real) and the
two-level atom polarization operator can be written as

P̂ = 2|g〉〈e|. (4)

In what follows we define the polarization and population
inversion as p = ieiωct 〈P̂ 〉 and w = 〈ŵ〉; the macroscopic field
E is represented as

E(z,t) = E(z,t)e−iωct + c.c., (5)

where ωc is the central frequency of the fundamental gap
(this will be clarified below), and c.c. denotes the complex
conjugation.

Using the Heisenberg equation of motion, we obtain the
Bloch equations of evolution of the two-level atom in the
electromagnetic field in the rotating wave approximation:

∂p

∂t
= −i(ω0 − ωc)p + 2μ

h̄
wE, (6)

∂w

∂t
= −μ

h̄
(p∗E + pE∗). (7)

To take into account the influence of the local field, the
macroscopic field in Eqs. (6) and (7) should be corrected for
the local field. According to Ref. [18], the local field Eloc can
be expressed as

Eloc = E + 1
3Pl + 1

3Pnl, (8)

where Pl = 3 n2−1
n2+2Eloc is the linear polarization of dielectric

media with the refractive index n and Pnl is the nonlinear
polarization of the two-level atoms.

Expressing the local field Eloc in terms of macroscopic field
E and nonlinear polarization Pnl, we obtain

Eloc = n2 + 2

3

(
E + 1

3
Pnl

)
. (9)

The nonlinear polarization Pnl can be expressed as

Pnl(z,t) = 4πσ (z)〈d̂〉
= −2πiσ (z)μpe−iωct + c.c., (10)

where σ (z) is the density of two-level atoms.
In view of this and replacing the macroscopic field in

Eqs. (6) and (7) by the local one (E → Eloc), the Bloch
equations then become

∂p

∂t
= −i(ω0 − ωc + ωLw)p + 2μ

h̄

n2 + 2

3
wE, (11)

∂w

∂t
= −μ

h̄

n2 + 2

3
(p∗E + pE∗), (12)

where

ωL = 4πμ2σ

h̄

n2 + 2

9
is the Lorentz frequency.
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One can see from this system that the local-field effect
results in a nonlinearity determined by the interplay between
w and p.

B. Subsystem of Maxwell equations

The propagaton of light through the periodic media is
governed by the one-dimensional Maxwell equation(

c2 ∂2

∂z2
− n(z)2 ∂2

∂t2

)
E(z,t) = ∂2

∂t2
Pnl(z,t), (13)

where n(z) is the refractive index and c is the velocity of light
in vacuum. Because of the periodic modulation of refractive
index along the media, the square of n(z) can be expressed as
Fourier series

n(z)2 = n2
0

⎛
⎝1 +

∞∑
j=1

aj cos(2jkcz)

⎞
⎠ , (14)

where kc = π/d (and ωc = kcc/n0).
On the other hand, the electromagnetic field can be

represented in the form

E(z,t) = [EF (z,t)eikcz + EB(z,t)e−ikcz]e−iωct + c.c. (15)

In other words, the original envelope of the electromagnetic
field E(z,t) in Eq. (5) is split into the forward EF (z,t) and
backward EB (z,t) propagating components. Then, substituting
Eqs. (14) and (15) into Eq. (13) and performing slowly varying
envelopes approximation∣∣∣∣∂2EF,B(z,t)

∂z2

∣∣∣∣ �
∣∣∣∣kc

∂EF,B(z,t)

∂z

∣∣∣∣ , (16)∣∣∣∣∂2EF,B(z,t)

∂t2

∣∣∣∣ �
∣∣∣∣ωc

∂EF,B(z,t)

∂t

∣∣∣∣ , (17)

after averaging over the wavelength λ = 2π/kc and period
T = 2π/ωc, we obtain the set of equations describing the
evolution of the forward and backward field components,

∂EF

∂t
+ c

n0

∂EF

∂z
− ia1ωc

4
EB = i

2n2
0ωc

P−, (18)

∂EB

∂t
− c

n0

∂EB

∂z
− ia1ωc

4
EF = i

2n2
0ωc

P +, (19)

where, by definition,

P± =
〈
∂2Pnl

∂t2
e±ikcz+iωct

〉
λ,T

.

In Eqs. (18) and (19), averaging over λ and T is denoted as
〈X(z,t)〉λ,T = 1

λT

∫
λ

∫
T

X(z,t)dt dz.
As discussed earlier, thin (much shorter than 1/kc) layers

of two-level atoms are located in maxima of the periodically
modulated refractive index, and the density of atoms is high
enough so that the local field can be significant. While
averaging the right-hand sides of Eqs. (18) and (19), we assume
that the distribution of two-level atoms can be approximated
by the function

σ (z) = σ0λ

2

∑
j

δ(z − zj ), (20)

where the Dirac delta function δ(z − zj ) indicates that atoms
are placed in the maxima of the refractive index zj = jλ/2
and σ0 is the density averaged over wavelength. Substituting
Eq. (20) into Eqs. (18) and (19), applying slowly varying
amplitude approximation in time for polarization Pnl and
averaging over the period and wavelength, we get the following
equations:

P± =
〈
∂2Pnl

∂t2
e±ikcz+iωct

〉
λ,T

=
〈
−2πiμσ (z)e±ikcz+iωct

∂2

∂t2
(pe−iωct − p∗eiωct )

〉
λ,T

≈ −2πiμω2
c 〈σ (z)pe±ikcz〉λ

= −2πiμω2
c

1

λ

∫ z+λ/2

z−λ/2

σ0λ

2

∑
j

δ(ξ−ξj )p(ξ )e±ikcξ dξ

= −2πiμω2
cσ0p. (21)

C. Dimensionless form of the equations

Now we are in a position to write the complete set of relevant
two-wave Maxwell-Bloch equations which read

∂EF

∂t
+ c

n0

∂EF

∂z
− ia1ωc

4
EB = πμωcσ0

n2
0

p, (22)

∂EB

∂t
− c

n0

∂EB

∂z
− ia1ωc

4
EF = πμωcσ0

n2
0

p, (23)

∂p

∂t
=−i(ω0−ωc+ωLw)p+ 2μ

h̄

n(zj )2 + 2

3
w(EF +EB),

(24)

∂w

∂t
= −μ

h̄

n(zj )2 + 2

3
[p∗(EF + EB) + c.c.], (25)

where n(zj ) indicates that the refractive index is calculated in
the points where the thin layers of two-level atoms are located
(namely, in maxima). For the further analysis it is convenient
to introduce the dimensionless variables and parameters in
accordance with the following normalization:

	F,B = 2μτ0

h̄

n(zj )2 + 2

3
EF,B, τ = t

τ0
, ζ = n0

τ0c
z,

δ = (ω0 − ωc)τ0, ε = ωLτ0 = 4πμ2σ

h̄

n(zj )2 + 2

9
τ0,

η = a1ωcτ0

4
, τ 2

0 = 3n2
0h̄

2πμ2ωcσ0[n(zj )2 + 2]
.

Here τ and ζ are the dimensionless time and space
coordinate, δ is the dimensionless detuning of resonant
frequency of two-level atoms ω0 from the central frequency
of the fundamental gap ωc, ε is the local field parameter, η

is the ratio of characteristic absorption distance to the Bragg
reflection distance, and τ0 is the characteristic absorption time.
Thereafter the complete system (22)–(25) can be written in the
form

∂	F

∂τ
+ ∂	F

∂ζ
= iη	B + p, (26)
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∂	B

∂τ
− ∂	B

∂ζ
= iη	F + p, (27)

∂p

∂τ
= −i(δ + εw)p + w(	F + 	B), (28)

∂w

∂τ
= −1

2
[p∗(	F + 	B) + p(	F + 	B)∗]. (29)

Equations (26)–(29) may, however, be rearranged to read as
in Refs. [7–11]. This is brought about by introducing the new
variables �± = 	F ± 	B and recasting the equations of the
Maxwell subsystem of equations into the second-order partial
differential equations(

∂2

∂τ 2
− ∂2

∂ζ 2

)
�+ = 2

∂

∂τ
p + 2iηp − η2�+, (30)

(
∂2

∂τ 2
− ∂2

∂ζ 2

)
�− = −2

∂

∂ζ
p − η2�−, (31)

∂p

∂τ
= −i(δ + εw)p + w�+, (32)

∂w

∂τ
= −1

2
(p∗�+ + p�∗

+). (33)

In this work use is made of system (26)–(29), which is
more convenient for analytical calculations and numerical
simulations. That is, for our purposes the system in question
is more useful as it stands.

III. ANALYTICAL SOLUTION

We seek a solitonlike solution of system (26)–(29) in the
form

	F (τ,ζ ) = F (u) exp(−iητ ),

	B(τ,ζ ) = B(u) exp(−iητ ),
(34)

p(τ,ζ ) = Q(u) exp(−iητ ),

w(τ,ζ ) = W (u) exp(−iητ ),

where u = τ − ζ/v. In so doing, unlike [9], a shift of the
carrying frequency of the soliton toward the band-gap edge is
taken into account from the very outset, but the field envelope is
not yet specified and is to be determined. Substituting Eq. (34)
into system (26)–(29), we get the following set of equations:(

v − 1

v

)
∂F

∂u
= Q + iη (F + B) , (35)(

v + 1

v

)
∂B

∂u
= Q + iη (F + B) , (36)

∂Q

∂τ
= W (F + B) − i (δ − η + εW ) Q, (37)

∂W

∂u
= −1

2
[Q∗(F + B) + Q(F + B)∗]. (38)

From Eqs. (35) and (36) it is easy to find the relation
between F (u) and B(u):

B = C1 + v − 1

v + 1
F, (39)

where C1 is a constant of integration. We are interested only
in bright solitons, and for this reason C1 should be set to zero
to meet the conditions at infinity [F (±∞) = B (±∞) = 0].

Then introducing a new function

� = F + B = F + v − 1

v + 1
F = 2v

v + 1
F, (40)

one can obtain the system(
v2 − 1

2v2

)
∂�

∂u
= Q + iη�, (41)

∂Q

∂u
= W� − i(δ − η + εW )Q, (42)

∂W

∂u
= −1

2
(Q∗� + Q�∗). (43)

This set of equations is quite similar to the Maxwell-Bloch
system of equations for optically dense resonant media used
in Refs. [19,20], where the dipole-dipole interactions of the
two-level atoms are taken into account. As is shown in
Refs. [19,20], such an extended Maxwell-Bloch system of
equations has a family of solitons with a nonlinear phase
modulation. Below, seeking a soliton solution, we will follow
the approach used in Refs. [19,20]. Thereupon Eq. (41) can
be solved for Q and the solution may be substituted into other
equations. These manipulations give

γ
∂2�

∂u2
+ i [γ (δ − η + εW ) − η]

∂�

∂u

+[(δ − η)η + (εη − 1) W ]� = 0, (44)

∂W

∂u
= −γ

(
∂�∗

∂u
� + ∂�

∂u
�∗

)
, (45)

where γ = ( v2−1
4v2 ).

The solution of Eq. (45) is then

W = −1 − γ�∗�, (46)

where the conditions at infinity correspond to the absence of
electromagnetic field [� (±∞) = 0] and population inversion
of two-level atoms [W (±∞) = −1].

As a result, we arrive at the final equation

∂2�

∂u2
+ i

[
δ − η − ε

(
1 + γ

2
|�|2

)
− η

γ

]
∂�

∂u

+ 1

γ

[
(δ − η)η + (1 − εη)

(
1 + γ

2
|�|2

)]
� = 0. (47)

Equation (47) can be reduced to a set of familiar equations.
To this end, let us seek a solution in the form of �(u) =
A(u) exp [iψ(u)], where A(u) and ψ(u) are real functions.
Substituting the �(u) into Eq. (47), one can obtain the two
real equations

∂2A

∂u2
+

{
1

γ
+ η

γ
(δ−ε−η)+ ∂ψ

∂u

[
−δ+η

(
1+ 1

γ

)
− ∂ψ

∂u

]}
A

+1

2

[
1 − ε

(
η − γ

∂ψ

∂u

)]
A3 = 0, (48)

A
∂2ψ

∂u2
+2

∂ψ

∂u

∂A

∂u
− ∂A

∂u

[
γ

2
A2−δ + ε + η

(
1+ 1

γ

)]
= 0.

(49)

By multiplying Eq. (49) by A (u) and subjecting it to the
condition A(±∞) = 0, integration can be easily performed to
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yield

∂ψ

∂u
= 4 [η + γ (ε − δ + η)] + γ 2εA2

8γ
. (50)

By substituting Eq. (50) into Eq. (48) and integrating it at
the condition A (±∞) = 0, the final equation for the amplitude
is obtained to read(

∂A

∂u

)2

= a2A
2 − a4A

4 − a6A
6, (51)

where the coefficients are

a2 = −η2 + γ 2(δ − ε − η)2 + 2γ [2 + η(δ − ε − η)]

4γ 2
,

a4 = 1

8
{2 − ε [η + γ (δ − ε − η)]} , a6 = γ 2ε2

64
.

The soliton solution of Eq. (51) is

A(u) =
√√√√ 2a2

a4 +
√

a2
4 + 4a2a6 cosh(2u

√
a2)

, (52)

The phase is found to be

ψ(u) = [η + γ (ε − δ + η)]

2γ
u

+ arctan

((−a4 +
√

a2
4 + 4a2a6

)
2
√

a6a2
tanh(u

√
a2)

)
,

(53)

where the constant of integration related to a constant phase
shift is omitted.

As seen from Eq. (53), the phase modulation is a nonlinear
function of the variable u. The nonlinear part of the phase
modulation [as is seen from Eq. (50)] is a consequence of
the dipole-dipole interaction of two-level atoms; it disappears
when the local field is negligibly small.

From Eq. (52), the soliton duration can be defined as

τp = 1√
a2

. (54)

By combining Eq. (54) and the previously defined expres-
sion of γ and a2, the relationship between the inverse square
velocity and pulse duration can be expressed as

1

v2±
= 4 + [8 + (δ − ε + η)2]τ 2

p

4 + [4 + (δ − ε)2 − η2]τ 2
p ± 4

√
−η2τ 2

p + [1 + η(δ − ε − η)]τ 4
p

, (55)

Hence it is immediately evident that the inverse square
velocity is a two-valued function of the duration τp. This
two-valuedness may be regarded as the bistability, and such a
property implies that, in general, two envelopes (or states) are
allowed for the soliton to exist in either state at the same pulse
duration.

At first, let us consider the limiting case where all the
parameters tend to zero (δ,ε,η → 0). There are two asymptotes
to Eq. (55): 1

v2+
→ 1 and 1

v2−
→ 1 + τ 2

p . The last is derived
for the periodic thin layers of two-level atoms in [1], the
envelope being of the sech-like form. Obviously, the first limit
1
v2+

→ 1 corresponds to the linear pulse propagation without
the interaction with resonant atoms. Such a pulse may not be
classified among solitons.

The mechanisms underlaying the bistability are determined
by the appropriate parameters entering into expression (55).
The basic mechanisms are related to the local field (ε) and
spatial modulation of the refractive index (η). In the general
case the parameters δ,ε,η 
= 0 and the joint action of these
mechanisms takes place. Then there is a range of parameters
where the function 1/v2

(
τp

)
is bistable and the bistability

is most pronounced. Figure 1 demonstrates the branches of
Eq. (55) at the parameters ε = 0.8, δ = −0.6, and η = 0.5.
The envelopes of population inversion W and electromagnetic
field A [see Eqs. (52) and (46)] of both solitons at τp = 2.5
are shown in Fig. 2. The dot-dashed curves correspond to
the lower branch of the functions shown in Fig. 1, and the
solid curve corresponds to the upper one. While the distinction

of the electromagnetic field envelopes is slight, nevertheless
it is quite observable. According to Fig. 2, the population
inversions differ more significantly, and here it should be noted
that the upper branch soliton interacts with two-level atoms
more effectively than the lower branch soliton. In addition, the
bistability of solitons is most pronounced at short durations.
The main reason for this is also a more effective interaction

FIG. 1. Inverse square velocity of the soliton versus its duration at
ε = 0.8, δ = −0.6, η = 0.5. The solid line indicates the v− solution,
the dot-dashed line indicates the v+ solution.
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FIG. 2. Envelopes A (u) and W (u) of the bistable solitons as
functions of the autowave variable u at ε = 0.8, δ = −0.6, η = 0.5,
and τp = 2.5. The solid line indicates the envelopes for the upper
branch; the dot-dashed line indicates the soliton of the lower branch
of Fig. 1.

of the solitons of both branches of Eq. (55) with resonant
atoms.

At the same time it is not unreasonable to single out one
mechanism for the purpose of gaining a better insight into its
nature. In this connection, an intriguing question arises as to
whether there is bistability in the absence of the local field.

At ε → 0 the pulse envelope approaches a sech-like form
and the phase modulation becomes linear. Here the bistability
also takes place. Figure 3 illustrates the inverse square velocity
versus the pulse duration at ε = 0.0, δ = −1.0, and η =
0.5. The bistability, as before, is observed in a region of
shorter pulse durations (τp ∼ 2), but it is somewhat modified.
This modification permits the amplitudes (maxima) be equal,
however, envelopes are distinguished by their extensions along
the propagation coordinate ζ . At that the population inversions
differ significantly. To clarify the distinction of the bistable
solitons more pictorially, in Fig. 4 are exhibited the field

FIG. 3. Inverse square velocity of the soliton versus its duration
at ε = 0.0, δ = −1.0, and η = 0.5.

FIG. 4. Envelopes A (ζ ) and W (ζ ) of the bistable solitons as
functions of space variable ζ at ε = 0.0, δ = −1.0, η = 0.5, and
τp = 1.5. The solid line displays the envelopes for the upper branch;
the dot-dashed line displays the soliton of the lower branch of Fig. 3.

envelope A (ζ ) and population inversion W (ζ ) as functions
of the space coordinate ζ (the pulse duration is τp = 1.5).
As seen from Fig. 4, the soliton corresponding to the upper
branch is shorter in space than the soliton corresponding to
the lower branch, and its interaction with two-level atoms is
more effective. Moreover, as follows from Eqs. (39) and (40),
the pulses possess the different relations of the forward and
backward components of the electromagnetic field due to the
velocity distinction. Surprisingly enough, when the spatial
modulation is eliminated (η = 0) and there occurs the local
field only (ε 
= 0), the bistability is absent (v+ ≡ 1).

Thus, there is good reason to believe that the modulation
of the refractive index is basically responsible for the soliton
bistability. However, the influence of the local field enhances
the bistable properties. And, as a consequence, there arises the
distinction between the field amplitudes, too. Also, when the
local field is taken into account, the phase modulation becomes
nonlinear.

IV. NUMERICAL SIMULATION

This section is devoted to the numerical investigation of the
properties of bistable solitons. We will focus on the stability,
formation, and collision of solitons. Our numerical tests are
performed with the help of a fourth-order numerical integration
scheme which is briefly explained below.

A. Numerical algorithm

For the numerical simulations, we use a modification of the
fourth-order method of characteristics developed in Ref. [25]
for a system of two nonlinear hyperbolic equations. According
to Ref. [25], each equation of system (26)–(29) along the
characteristics can be formally written as

∂y

∂x
= f (x,y), (56)
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FIG. 5. Integration algorithm scheme. The dotted lines depict
the characteristic curves α and α±. The time and space states are
numbered by n + j/2 and m + l/2, respectively.

and its formal integration can be performed with the help of
the following two-step procedure:

yn+1/2 = yn + h{a21f (xn,yn) + a22f (xn+1/2,yn+1/2)

+ a23f (xn+1,yn+1)}, (57)

yn+1 = yn + h{a31f (xn,yn) + a32f (xn+1/2,yn+1/2)

+ a33f (xn+1,yn+1)}, (58)

where the coefficients are a21 = 5/24, a22 = 1/3, a23 =
−1/24, a31 = 1/6, a32 = 2/3, and a33 = 1/6.

In contrast to the system considered in Ref. [25], sys-
tem (26)–(29) involves two linear equations (26)and (27)
with the characteristics α± = ζ ± τ and two nonlinear equa-
tions (28) and (29) with the characteristic α = τ . This fact can
be taken into account by an appropriate choice of characteristic
intersection points and interpolation of data. Our modification
of method proposed in Ref. [25] is schematically represented
in Fig. 5, where the dotted lines with arrows indicate the
characteristics of Eqs. (26)–(29) and the dashed lines show
the time layers.

As illustrated in Fig. 5, all the characteristics intersect
at points where τ = nh and ζ = mh. However, to integrate
Eqs. (26) and (27) along the characteristics, it is necessary
to know a value of polarization at τ = (n + 1/2) h and ζ =
(m + 3/2) h. These values can be calculated by interpolating
data from points where the polarization is known, namely,
τ = (n + 1/2) h and ζl = (m + l) h, where l = 0,1,2,3. This
is achieved by the fourth-order accurate interpolation algo-
rithm. Accordingly, to integrate Eqs. (28) and (29) along the
characteristic, it is also necessary to perform the interpolation
of the field components 	F and 	B to points τ = nh and
ζ = mh.

B. Bistability of solitons

As indicated above, the moving soliton in resonantly
absorbing photonic crystals possesses the bistable properties.
However, the bistability of a stationary solution does not need
to mean the stability of solitons corresponding to the two
branches. In order to check the stability of obtained solutions,
advantage is taken of the numerical simulations to prove the
stability of the solitons (52) and (53). In our simulation, use is
made of the analytical solutions of the field components 	F

and 	B , polarization P , and population inversion W , obtained
in the previous section, as initial conditions, and then the
system is numerically integrated using algorithm (56)–(58).

FIG. 6. Evolution of A of the upper branch soliton shown in Fig. 1
at τp = 2.5.

Figure 6 shows the evolution of soliton (52)–(53) corre-
sponding to the upper branch of Fig. 1 at τp = 2.5. The soliton
propagates through the sample without changes at the velocity
predicted by analytical expression (55). Soliton (52)–(53)
corresponding to the lower branch of Fig. 1 at τp = 2.5
demonstrates a similar stable evolution at a higher velocity
(see Fig. 7).

So, as seen from Figs. 6 and 7, the bistability of solitons
takes place. Here we should also note that solitons correspond-
ing to both branches are formed if the initial conditions of 	F ,
	B , P , and w are taken sufficiently close to the analytically
predicted ones. After the transient process, the solitons are
formed but their parameters can be slightly different due to
changes during the transient process.

C. Stability against perturbations

Figure 8 gives the soliton evolution analogous to that shown
on Fig. 6 but in the presence of random noise. The stochastic
perturbations are added to all dynamic variables (	F ,	B ,P ,w)
and comprise about 10% of amplitude of any variable. As is

FIG. 7. Evolution of A of the lower branch soliton shown in Fig. 1
at τp = 2.5.
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FIG. 8. Evolution of A of the upper branch soliton shown in Fig. 1
at τp = 2.5 in the presence of random noise. Initial and final states
of evolution are shown below in comparison with corresponding
evolution without random noise shown in Fig. 6. The evolutions with
noise are denoted by the gray lines, whereas the evolutions without
noise are denoted by the dashed black lines.

obvious from Fig. 8, the soliton envelope is stable against
random perturbations. Moreover, the velocity of the soliton
remains the same as in case of the absence of perturbations.
Referring to Fig. 8, we have initial and final envelopes of the
soliton after its propagation through the sample with noise and
without it up to τ = 200.

These figures suggest that the soliton remains stable against
random noise arising in the sample. In other words, the profile
of the soliton retains its shape on the background of noise, and
it propagates at the same velocity, as in the absence of noise.
The same situation is observed for the soliton corresponding
to the lower branch of inverse square velocity (55) (see Fig. 9).

D. Inelastic collision of solitons

Of fundamental interest are the collisions of solitons in the
framework of model (26)–(29). Figure 10 demonstrates the
collision of the solitons of the similar and different branches
at different evolution times. The initial state is depicted by
the dot-dashed line, the moment of the collision is depicted
by the gray solid line, and final state is depicted by the
black solid line. It is evident from Fig. 10 that the solitons
belonging to the upper branch collide “more” inelastically as
compared to the solitons belonging to the lower branch. The
reason for this is obvious: a more intensive interaction of the
upper-branch solitons with two-level atoms. The collisions of
solitons assigned to different branches diverge considerably.
Figure 10(c) illustrates the collision between the lower branch
soliton moving from the left and the upper branch soliton
moving from the right. As seen from the evolution profiles,

FIG. 9. Evolution of A of the lower branch soliton shown in Fig. 1
at τp = 2.5 in the presence of random noise. Initial and final states
of evolution are shown below in comparison with corresponding
evolution without random noise shown in Fig. 7. The evolutions with
noise are depicted by the gray lines, whereas the evolutions without
noise are depicted by the dashed black lines.

the lower branch soliton is subjected to a more significant
distortion upon scattering on the upper branch soliton (see
Fig. 10).

Here we should also point out that the collision of solitons,
depending on the parameters, can be more complex. Inelas-
ticity may be strong and can lead to a significant distortion of
one or both solitons.

E. Formation of bistable solitons as a boundary value problem

Up to now, considering the interaction and propagation
of bistable solitons, we have assumed that the solitons are
formed in advance and thus we have assumed that the
initial field distribution in the medium corresponds exactly
to the analytical expressions. On the other hand, an important
issue is the formation of solitons from pulses at the boundary of
the sample. In other words, we must show that by changing the
boundary conditions, it is possible to achieve the formation of
solitons corresponding to both the upper and lower branches.
Below, for simplicity, we consider the formation of solitons
in the absence of the local field (dipole-dipole interactions).
We only note here that the formation of solitons influenced
by the local field does not result in additional special features.
Additionally, the influence of the local field tells only on the
nonlinear phase modulation of pulses and changes in initial
conditions.

To formulate the boundary conditions, let us choose a pulse
that is phase modulated and shaped to be of a simple form

E (ζ = 0,τ ) = A0
exp (−iλτ )

cosh [(τ − τ0) /β]
. (59)
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(a) (b) (c)

FIG. 10. Collision of solitons of Figs. 1 and 2 at τp = 2.5 and envelopes of the solitons collusion at different times. (a) is the collision of
the upper branch solitons, (b) is the collision of the lower branch solitons, and (c) is the collision of the lower branch soliton (moving from right
to left) and the upper branch soliton (moving from left to right). Initial states are specified by the dot-dashed line, the moment of the collusion
is specified by the gray solid line, and the final state is specified by the black solid line.

It is intended that the soliton formation occurs in compli-
ance with the curve of Fig. 3. The envelopes of the field and

FIG. 11. Evolution of A at the formation of the upper branch
soliton of Figs. 3 and 4 (at the top) and evolution of the maximum of
A at different instants of time (at the bottom).

population inversion are shown in Fig. 4 (the pulse duration
τp = 1.5).

The process of formation of the soliton corresponding to
the upper branch occurs in the manner indicated in Fig. 11
(at A0 = 1.66, β = 1.4, τ0 = 10β, and λ = 0.24). Figure 11
illustrates time-dependent evolution of the maxima of the
soliton envelope A at different instants. The soliton takes on its
form and phase and becomes unchangeable upon completion
of some transient process within a time about 200, which can
be estimated from the tendency of the amplitude to a steady
value. Comparison of the pulse envelope and the population
inversion at a time of 1250 (at the end of its formation) is
shown in Fig. 12. The envelopes are seen to be nearly the
same.

The formation of the soliton corresponding to the lower
branch is depicted in Fig. 13 (at A0 = 1.0, β = 2.55, τ0 = 10β,
and λ = −3.7). It differs significantly from the formation of
the upper branch soliton. Figure 13 also shows the evolution
of the maxima (amplitudes) of the soliton envelope A versus
time. It turns out that the formation time of the soliton increases
significantly in comparison with the time of upper branch
soliton formation. The soliton maxima varied in the vicinity
of the value predicted by the analytical expression, and tend
to it with soliton propagation along the sample. Comparison
of the pulse envelopes at the final stage of evolution is shown
in Fig. 14 (τ = 1450). One can see here that the envelopes
slightly differ.

It is obvious that distinctions in the formation of soliton
pulses are directly related to the efficiency of their interaction
with resonant atoms. Judging from Figs. 2 and 4, the upper
branch soliton interacts with two-level atoms more effectively.
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FIG. 12. Field A and the population inversion envelopes W at the
final stage (τ = 1450) of evolution shown in Fig. 11 (depicted by
dots) as compared to the corresponding stationary soliton envelopes
shown in Fig. 4 (sketched by the solid gray line).

This leads to its rapid formation and a slower propagation of
it along the sample.

V. EXPERIMENTAL REALIZATION

As a matter of fact, some credible materials have already
been proposed. For the experimental realization of SIT soli-
tons, in Refs. [7,8,11] it was suggested to use quantum wells
embedded in a semiconductor structure with the periodically
alternating linear index of refraction Refs. [7,8,11]. The

FIG. 13. Evolution of A at the formation of the lower branch
soliton of Figs. 3 and 4 (at the top) and evolution of the maximum of
A at different instants of time (at the bottom).

FIG. 14. Envelopes of the field A and the population inversion
W at the final stage (τ = 1250) of evolution shown in Fig. 13
(depicted by dots) as compared to the corresponding stationary soliton
envelopes shown in Fig. 4 (sketched by the solid gray line).

estimations presented in Refs. [7,8,11] provide the average
refractive index of the periodic structure n0 ≈ 3.6 at the wave-
length (in the medium) λ ≈ 232 nm (ωc ≈ 2.26 × 1015 s−1)
with the modulation depth a1 ≈ 0.3. The excitons in quantum
wells at bulk densities about σ0 ≈ 1015–1016 cm−3 [or surface
density of σ (zj ) ≈ 1010–1011 cm−2) may be identified with
two-level resonant centers. The estimation of the characteristic
absorption time yields τ0 ≈ 10−13–10−12 s (at an electron-hole
displacement of about 1–10 nm). In this case η can vary
from 0 to 100 and the unit of dimensionless detuning δ is
10−3–10−2 fraction of ωc = 2π/λ. The main disadvantage
of such a suggestion is the fact that the dephasing time for
excitons is rather small: T2 ≈ 10−13 s. This means that the
duration of the pulses should be τp � 10−14 s, which is close
to the validity of slowly varying envelope approximation. To
prolong the dephasing T2, the temperature of the sample should
be decreased up to cryogenic temperatures.

In our opinion, the most attractive approach for the
realization of resonant absorption in Bragg reflectors is the
use of thin layers of quantum dots. Large dipole moments of
quantum dots result in a noticeable influence of the local field
even at relatively low concentrations of the resonant centers
because the Lorentz frequency ωL is proportional to the square
of the dipole moment. Allowance for the local field in the
interaction of radiation with an ensemble of quantum dots may
be made by analogy with conventional materials [26] with the
result that the modified optical Bloch equations are adequate
for this case, too [27,28].

As before, the layers of quantum dots should be located in
the maxima of the refractive index of semiconductor media and
there must be the refractive index modulation. Usage of such
semiconductor media creates the conditions for the realization
of various regimes of lasing due to a relative ease of modifying
the properties of resonant centers.

To our knowledge, the authors of Ref. [29] were the first
to observe the self-induced transparency in InGaAs quantum-
dot-containing waveguides. Below we estimate the possibility
of creation of periodic resonant media using layers of quantum
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dot parameters where the self-induced transparency has been
observed [29]. The experimental observation of self-induced
transparency was preceded by the observation of Rabi oscil-
lations at cryogenic temperatures [30], measurement of the
dephasing time in a wide range of temperatures [31], and the
theoretical justifications of the possibility of observation of
phenomena [32].

The main advantage of using InGaAs is a relatively long
dephasing time, which is close to the radiative lifetime limit
at cryogenic temperatures and relatively long for higher
temperatures (for example, at the temperature T ≈ 100 K the
dephasing time is T2 ≈ 10 ps [31]). Some other parameters
are close to those estimated in [7,8,11] for exitons in quantum
wells. Namely, bulk densities are about 1015–1016 cm−3 (with
a surface density of 1010–1011 cm−2), an average refractive
index of the periodic structure n0 is about 3.3 at the wave-
length (in the medium) λ ≈ 324 nm (ωc ≈ 5.3 × 1014 s−1),
and a dipole matrix element μ is about 10−17–10−16 esu cm
(μ ≈ 10–100 D) [29–32]. The characteristic absorption time
for quantum dot is estimated as τ0 ≈ 10−13–10−12 s. Large
values of the dipole matrix elements, in spite of a relatively
low concentration of quantum dots, provide a noticeable
value of the Lorentz frequency wL. For the above-mentioned
parameters, the dimensionless local-field parameter can be
estimated to be ε ≈ 10−2–10−1. For comparison, the tran-
sition dipole moment of the erbium atom is a few thou-
sandths Debye, which makes the influence of local field
negligible up to the bulk concentration of resonant centers
σ0 ≈ 1020 cm−3.

VI. CONCLUSION

In summary, we have demonstrated the bistability of
SIT solitons in periodic resonant media (resonant photonic
crystals) where their propagation is influenced not only by the
resonant nonlinearity resonance, but by the Bragg reflection
and local field as well. We succeeded in finding an analytical
solution to the relevant set Maxwell-Bloch equations. This
made it possible to reveal special features of the formation of
bistable solitons. At that the very definition of the bistability
is somewhat modified. In contrast to the case of cubic-quintic
media [23,24] it is not necessary, in general, for the envelopes
to differ in amplitude (peak); they may differ in spatial
extension along the propagation coordinate, being equal in

amplitude. Such type of bistability can exist in the absence
of the local field and depends only on there being Bragg
reflection. The local field fails by itself (without the Bragg
reflection) to result in the bistability. However, while acting
jointly, the local field is capable of enhancing the exhibition
of the bistability to result in a difference between envelopes in
amplitude, too.

These findings are rather unexpected and count in favor of
the Bragg reflection as a basic mechanism of the bistability.
It seems to us that our treatment of the bistability of the SIT
solitons in periodic media is meaningful conceptually: indeed,
we are dealing here with two allowed velocities (and thus with
two allowed envelopes). This viewpoint correlates well with
the nature of self-induced transparency, according to which
there must be a fundamental relationship between the velocity
and soliton duration. It is remarkable that this relationship
becomes two-valued to account for the bistability.

The bistability and stability of the solitons revealed, their
interactions and the boundary value problem have been
reinforced with numerical simulations using the fourth-order
accurate integration algorithm. It has also been shown that the
bistable solitons are stable against stochastic perturbations and
the collision of solitons is, in the general case, inelastic. The
theory developed and computer experiment data are in good
agreement.

The experimental realization of SIT periodical media
seems to be archived by various ways and means. It is our
opinion that the most promising approach is to take advantage
of semiconductor structures which allow producing a deep
modulation of the refractive index and using quantum dots
as resonant centers. Their properties can be changed in a
wide range and allow the observation of soliton formation
to be brought about at relatively high temperatures. The above
theory is best suited to such SIT experiment, and it is hoped
that this can stimulate further combined investigations into the
soliton propagation in resonant Bragg gratings.
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