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Periodicity property of relativistic Thomson scattering with application to exact calculations
of angular and spectral distributions of the scattered field
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We prove that the analytical expression of the intensity of the relativistic Thomson scattered field for a system
composed of an electron interacting with a plane electromagnetic field can be written in the form of a composite
periodic function of only one variable, that is, the phase of the incident field. This property is proved without
using any approximation in the most general case in which the field is elliptically polarized, the initial phase of
the incident field and the initial velocity of the electron are taken into consideration, and the direction in which
the radiation is scattered is arbitrary. This property leads to an exact method for calculating the angular and
spectral distributions of the scattered field, which reveals a series of physical details of these distributions, such
as their dependence on the components of the initial electron velocity. Since the phase of the field is a relativistic
invariant, it follows that the periodicity property is also valid when the analysis is made in the inertial system in
which the initial velocity of the electron is zero in the case of interactions between very intense electromagnetic
fields and relativistic electrons. Consequently, the calculation method can be used for the evaluation of properties
of backscattered hard radiations generated by this type of interaction. The theoretical evaluations presented in
this paper are in good agreement with the experimental data from literature.
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I. INTRODUCTION

Important nonlinear interactions between fields and parti-
cles were predicted theoretically in the early years of lasers,
even when laser intensities were too small to allow experimen-
tal studies of these interactions [1–3]. Starting in the 1970s,
due to the development of high-power lasers, a large number
of both theoretical and experimental papers analyzed these
interactions, most notably the nonlinear Thomson scattering
[4–16]. More recently, the emergence of ultraintense laser
pulses, characterized by beam intensities higher than 1018 W
cm−2, led to increased interest in this area of research since
nonlinear Thomson scattering opened up the possibility of
high-brightness hard-x-ray production using lasers [17–24].
Concurrently, the same physical phenomenon was analyzed in
complementary papers as Compton scattering [25–30].

The majority of the nonlinear Thomson scattering ap-
proaches presented in literature are based on relativistic
solutions to the equations of motion of the electrons involved,
which lead to expressions for the electrons’ velocities and
accelerations. These expressions are then introduced in the
equations of the energy radiated per solid angle and per unit
frequency interval corresponding to an arbitrary direction,
namely, Eqs. (14.60) and (14.67) from Jackson’s book on clas-
sical electrodynamics [31], which are deduced from Fourier
transforms of the Liènard-Wiechert relation. For example,
Refs. [4,6,8–12,14–16] use Eq. (14.67), the treatment from
Ref. [7] is a continuation of that from Ref. [4], and Ref. [5]
uses (14.60). On the other hand, Ref. [13] uses an expression
for the angular distribution, which is derived by the summation
of harmonics in the spectral and angular distribution, as it
results in quantum electrodynamics [32]. A disadvantage of
calculating the intensities of the scattered radiation harmonics
based on Eqs. (14.60) and (14.67) from Ref. [31] is the fact
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that this method leads to infinite sums of Bessel functions. This
issue is analyzed in Ref. [4], which shows that the general result
for the nth harmonic scattering can not usually be expressed
in a tractable form. For this reason, certain approximations are
imposed in the frame of this method such as, for example, the
approximation which led from Eq. (29) to Eq. (33) in Ref. [10].

In this paper, we propose a different approach, which is
based on the observation that the velocity and acceleration
of the electron are periodic functions of the phase of the
electromagnetic wave. This property results rigorously from
the equations describing the electron motion in the most
general case in which the electromagnetic field is elliptically
polarized and the initial phase of the field and the initial
components of the electron velocity are taken into account.
Currently, the techniques for solving these equations are very
well known [33]. Since the velocity and acceleration of the
electron enter in the Liènard-Wiechert relation, which gives
the intensity of the scattered field, it follows that this intensity
and the intensity of the scattered beam in an arbitrary direction
are periodic functions of only one variable, namely, the phase
of the incident electromagnetic field. Due to the periodicity,
the spectrum of the scattered radiation is obtained by a Fourier
series expansion of the scattered field expression. The result
is that the frequency of the fundamental component of the
spectrum is identical to the frequency of the incident field.
It follows that the intensity of the scattered radiation and its
harmonics can be expressed in the analytic form of simple
composite functions of one variable, which can be calculated
by simple computer programs. Since the phase of the field is
a relativistic invariant, it follows that our approach is valid in
the case of interactions between very intense electromagnetic
fields and relativistic electrons when the analysis is made in the
inertial system in which the initial velocity of the electron is
zero. Due to the periodicity property, our treatment leads to the
existence of harmonics of the backscattered beam frequency.
This result has been recently confirmed experimentally [34].
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The profile of the backscattered beam and its energy result
accurately.

In order to verify the accuracy of the calculation
method, we calculate typical angular and spectral distributions
of the scattered field and compare them with numerous
reliable theoretical and experimental data from literature. In
the same time, we show that the method, due to its accuracy,
can be useful for the study of new physical details, such as,
for example, the influence of the values of the electron initial
velocity components on angular and spectral distributions of
the scattered radiation.

Remarkably, the relations used to demonstrate periodicity
are useful also for revealing new properties of the system.
In this respect, we prove that the divergence of the energy-
momentum four-vector is zero in the general case for the
system analyzed in this paper. It follows that, by virtue of
a property proven by Motz and Selzer [35], the Klein-Gordon
equation written for our system is verified exactly by the wave
function associated to the classical motion of the electron.
This result is an explanation for the accuracy of the classical
treatment presented in our paper.

The paper is structured as follows. In Sec. II, we demon-
strate the periodicity of the electron velocity and acceleration,
and also the periodicity of the intensity of the electric scattered
field. This analysis leads to the algorithm used to calculate
the average intensity of the scattered field and the average
harmonics intensities. For completeness, we present a justifi-
cation of the classical treatment. We present physical details
of the angular and spectral distributions of the scattered beam,
which result from theory and are confirmed by experimental
data from literature. We show that the calculations reveal an
influence of initial electron velocity on these distributions.
In Sec. III, we calculate the properties of the backscattered
radiation in the case of the interaction between very intense
electromagnetic beams and relativistic electrons when the
analysis is made in the system in which the electron velocity
is zero. The equations are written in the International System.

II. PERIODICITY PROPERTIES OF THE THOMSON
SCATTERED BEAM

A. Initial data

We analyze a system composed of an electron interacting
with a very intense electromagnetic elliptically polarized
plane field of a laser beam. We consider the following initial
hypotheses:

(h1) In a Cartesian system of coordinates, the intensity of
the electric field and of the magnetic induction vector, denoted,
respectively, by EL and BL, are polarized in the plane xy, while
the wave vector, denoted by kL, is parallel to the axis oz. The
expression of the electric field is

EL = EM1 cos ηi + EM2 sin ηj (1)

with

η = ωLt − |kL|z + ηi and |kL|c = ωL, (2)

where i, j , and k are versors of the ox, oy, and oz axes, EM1

and EM2 are the amplitudes of the electric field oscillations
in the ox and oy directions, ωL is the angular frequency of

the laser electromagnetic field, c is the light velocity, ηi is an
arbitrary initial phase, and t is the time in the xyz system in
which the motion of the electron is studied.

From the properties of the electromagnetic field, it follows
that the corresponding magnetic induction vector is

BL = −BM2 sin ηi + BM1 cos ηj (3)

with

EM1 = cBM1, EM2 = cBM2, and cBL = k × EL, (4)

where BM1 and BM2 are the amplitudes of the magnetic field
oscillations in the oy and ox directions.

(h2) We consider the following initial conditions in the most
general case when the components of the electron velocities,
denoted by vx , vy , and vz, have arbitrary values:

t = 0, x = y = z = 0, vx = vxi,

vy = vyi, vz = vzi, and η = ηi. (5)

(h3) Since the “acceleration-field” component in the
Liènard-Wiechert relation is related to the electromagnetic
wave radiated by the particle [36], the intensity of the electric
field generated by the electron motion is given by the relation

E = −e

4πε0cR

n × [(n − β) × β̇]

(1 − n · β)3
. (6)

Here, e is the absolute value of the electron charge, ε0 is the
vacuum permittivity, β = v/c, where v is the electron velocity,
R is the distance from the electron to the observation point (the
detector), and n is the versor of the direction electron detector.
The dot in β̇ signifies derivation with respect to time. By virtue
of the significance of the quantities entering in the Liènard-
Wiechert equation, it results that the field E corresponds to the
time t + R/c and we have E = E(r + Rn,t + R/c), where r

is the position vector of the electron with respect to a system
having its origin at the point defined by (5). The relation R � r

is overwhelmingly fulfilled [31].
By using spherical coordinates for which θ is the azimuthal

angle between the n and k versors and φ is the polar angle in
the plane xy, the versor n can be written as

n = sin θ cos φi + sin θ sin φj + cos θk. (7)

Taking into account Eqs. (1) and (3), the equations of
motion of the electron are

m
d

dt
(γ vx) = −eEM1 cos η + evzBM1 cos η, (8)

m
d

dt
(γ vy) = −eEM2 sin η + evzBM2 sin η, (9)

m
d

dt
(γ vz) = −evxBM1 cos η − evyBM2 sin η, (10)

where

γ = (
1 − β2

x − β2
y − β2

z

)− 1
2 (11)

with βx = vx/c, βy = vy/c, and βz = vz/c.
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Using Eq. (4), the equations of motion become

d

dt
(γβx) = −a1ωL(1 − βz) cos η, (12)

d

dt
(γβy) = −a2ωL(1 − βz) sin η, (13)

d

dt
(γβz) = −ωL(a1βx cos η + a2βy sin η), (14)

where

a1 = eEM1

mcωL

and a2 = eEM2

mcωL

(15)

are relativistic parameters.
From this point on, no approximation is being made in order

to solve the equation system comprised of Eqs. (6), (12), (13),
and (14).

B. Periodicity properties of β̄ and ˙̄β

We calculate first βx , βy , βz, β̇x , β̇y , and β̇z, which are
necessary in our analysis. We multiply Eqs. (12), (13), and
(14), respectively, by βx , βy , and βz. Taking into account that
β2

x + β2
y + β2

z = 1 − 1/γ 2, their sum leads to

dγ

dt
= −ωL(a1βx cos η + a2βy sin η). (16)

From (14) and (16), we obtain d(γβz)/dt = dγ /dt . We
integrate this relation with respect to time between 0 and t ,
taking into account the initial conditions (5), and obtain γ −
γi = γβz − γiβzi . Using (2), we have

1 − βz = 1

ωL

dη

dt
= f0

γ
(17)

with

f0 = γi(1 − βzi), (18)

where βxi = vxi/c, βyi = vyi/c, βzi = vzi/c, and γi = 1/√
1 − β2

xi − β2
yi − β2

zi .

We integrate (12) with respect to time between 0 and t ,
taking into account (17) and the initial conditions (5) and
obtain

γβx − γiβxi = −a1(sin η − sin ηi) (19)

or

βx = f1

γ
, (20)

where

f1 = f1(η) = −a1(sin η − sin ηi) + γiβxi . (21)

Similarly, by integrating (13) and taking into account (5)
and (17), we obtain

βy = f2

γ
, (22)

where

f2 = f2(η) = −a2(cos ηi − cos η) + γiβyi . (23)

We substitute the expressions of βx , βy , and βz, respectively,
from Eqs. (20), (22), and (17) into (11) and obtain the
expression of γ :

γ = γ (η) = 1

2f0

[
1 + f 2

0 + f 2
1 + f 2

2

]
. (24)

From (17), we obtain

βz = f3

γ
, (25)

where

f3 = f3(η) = γ − f0. (26)

From (16), (20), and (22), we have also

dγ

dt
= −ωL

γ
(a1f1 cos η + a2f2 sin η). (27)

From Eq. (12), we obtain β̇x :

β̇x = − 1

γ

[
βx

dγ

dt
+ a1ωL(1 − βz) cos η

]
. (28)

By introducing in (28) the expressions of βx , βz, and dγ /dt ,
respectively, from (20), (17), and (27), we obtain

β̇x = ωLg1, (29)

where

g1 =g1(η)=−a1f0

γ 2
cos η+ f1

γ 3
(a1f1 cos η + a2f2 sin η). (30)

Similarly, from (13) and (14), we obtain β̇y and β̇z:

β̇y = ωLg2, (31)

where

g2 = g2(η) = −a2f0

γ 2
sin η + f2

γ 3
(a1f1 cos η + a2f2 sin η)

(32)

and

β̇z = ωLg3, (33)

where

g3 = g3(η) = − f0

γ 3
(a1f1 cos η + a2f2 sin η). (34)

We observe that, from (21) and (23), it follows that f1 and
f2 are periodic functions of only one variable, that is, η. By
virtue of this property, from (24) and (26), it follows that γ

and f3 are also periodic functions of η. Taking into account
these relations, from (30), (32), and (34), it results that g1, g2,
and g3 are periodic functions of η. Finally, from (20), (22),
(25), (29), (31), and (33), it follows, respectively, that βx , βy ,
βz, β̇x , β̇y , and β̇z are periodic functions of only one variable
η.

The above relations are written in the general case of an
elliptically polarized field when the constants ηi , βxi , βyi , and
βzi are arbitrary. These relations can be written for the motion
of the electron in a circularly polarized field, substituting
EM1 = EM2, BM1 = BM2, and a1 = a2. Also, these relations
can be written in the case of a linearly polarized field when
EM2 = 0, BM2 = 0, and a2 = 0.
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The above relations are valid during the entire duration
of the laser pulse. At the end of the pulse, the values of
EM1 and EM2 decrease to zero in a very short period
of time. We note this by EM1 → 0 and EM2 → 0.
From (15), it follows that a1 → 0 and a2 → 0, and
from (21) and (23), it follows that f1 → γiβxi and
f2 → γiβyi . By virtue of (18), (20), and (24), we have βx →
2γi(1 − βzi)(γiβxi)/[1 + γ 2

i (1 − βzi)2 + (γiβxi)2 + (γiβyi)2].
It results that, at the end of the laser pulse, when EM1 → 0
and EM2 → 0, a simple calculation leads to βx → βxi .
A similar calculation shows that βy → βyi and βz → βzi .
Consequently, after the interaction with the laser field, the
total energy transferred from the electromagnetic field to
the electron is zero. Remarkably, this conclusion holds also
if the interaction between the electromagnetic field and
a free electron is analyzed in the frame of the quantum
electrodynamics. Indeed, Sec. 4.1 of Ref. [37] shows that,
by virtue of the momentum conservation law, the electrons
can neither emit nor absorb a free photon in such systems.
Therefore, after the interaction, the kinetic energy of the
electron remains unchanged.

C. Periodicity properties of the electromagnetic field

The periodicity of the scattered electromagnetic field results
directly from the Liènard-Wiechert relation (6), by virtue of
the periodicity of β̄ and ˙̄β. By introducing the components
of n, β̄, and ˙̄β from (7), (20), (22), (25), (29), (31), and (33)
into (6), we obtain the following expression of the scattered
electric field intensity:

E = K

F 3
1

(h1i + h2j + h3k) with K = −eωL

4πε0cR
, (35)

where

h1 = F2

(
nx − f1

γ

)
− F1g1, (36)

h2 = F2

(
ny − f2

γ

)
− F1g2, (37)

h3 = F2

(
nz − f3

γ

)
− F1g3, (38)

and

F1 = 1 − nx

f1

γ
− ny

f2

γ
− nz

f3

γ
, (39)

F2 = nxg1 + nyg2 + nzg3, (40)

nx = sin θ cos φ, ny = sin θ sin φ, and nz = cos θ. (41)

With the aid of relation (35), we write the intensity of the
total scattered radiation as

I = cε0E
2 = cε0K

2 1

F 6
1

(
h2

1 + h2
2 + h2

3

)
. (42)

The average of the intensity of the total scattered radiation,
normalized to cε0K

2, is denoted by I av and is given by the
relation

I av = 1

2π

∫ 2π

0

1

F 6
1

(
h2

1 + h2
2 + h2

3

)
dη. (43)

Since the components of the field given by (35) are periodic
functions of η, they can be developed in Fourier series, and the
expression of the field, normalized to K , becomes

Ē

K
= f1c0i +

⎛
⎝ ∞∑

j=1

f1sj sin jη +
∞∑

j=1

f1cj cos jη

⎞
⎠ ī

+f2c0j +
⎛
⎝ ∞∑

j=1

f2sj sin jη +
∞∑

j=1

f2cj cos jη

⎞
⎠ j̄

+f3c0k +
⎛
⎝ ∞∑

j=1

f3sj sin jη +
∞∑

j=1

f3cj cos jη

⎞
⎠ k̄, (44)

where

fαc0 = 1

2π

∫ 2π

0

hα

F 3
1

dη; fαsj = 1

π

∫ 2π

0

hα

F 3
1

sin jη dη;

fαcj = 1

π

∫ 2π

0

hα

F 3
1

cos jη dη (45)

with α = 1,2,3.
We observe that the quantity

Ēj = Ējs + Ējc, (46)

where

Ējs = K(f1sj ī + f2sj j̄ + f3sj k̄) sin jη

= K(f1sj ī + f2sj j̄ + f3sj k̄) cos j (η − π/2) (47)

and

Ējc = K(f1cj ī + f2cj j̄ + f3cj k̄) cos jη (48)

is the intensity of the j th harmonic of the electric field. This
harmonic is obtained by the addition of two plane fields having
phases j (η − π/2) and jη and the same values of the angular
frequency and wave-vector magnitude. The latter two are
equal, respectively, to jωL and j |k̄L|.

It follows that the angular frequency of the fundamental
component of the scattered radiation corresponding to j = 1
is identical to the angular frequency of the incident laser field.
This result is accurately confirmed by the experimental data
presented in Ref. [38], which refers to the relativistic Thomson
scattering. That paper shows that the experimental value of the
frequency of the fundamental scattered radiation is equal to
the laser frequency.

The average of the intensity of the total scattered radiation
is denoted by Iav and it is given by the relation

Iav = ε0c
1

2π

∫ 2π

0
Ē2dη. (49)

Taking into account (44), (49), and the relations∫ 2π

0 cos mη cos nη dη = πδmn,
∫ 2π

0 sin mη sin nη dη = πδmn,

and
∫ 2π

0 sin mη cos nη dη = 0, where m and n are integer
numbers, the expression of the average intensity of the total
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scattered radiation, normalized to ε0cK
2, which is denoted by

I av, becomes

I av = Iav

ε0cK2
= 1

2

∞∑
j=1

(
f 2

1sj + f 2
1cj + f 2

2sj + f 2
2cj + f 2

3sj

+f 2
3cj

) + f 2
1c0 + f 2

2c0 + f 2
3c0. (50)

The term f 2
1c0 + f 2

2c0 + f 2
3c0 in the above relation corre-

sponds to a constant component of the electric scattered field.
It reflects the effect of relativistic rectification, as it is called
by Mourou [39].

The quantity

I j = 1
2

(
f 2

1sj + f 2
1cj + f 2

2sj + f 2
2cj + f 2

3sj + f 2
3cj

)
(51)

is the average intensity of the j th harmonic of the scattered
field. This results directly from the integral

∫ 2π

0 Ē2
j d(jη),

taking into account Eqs. (46)–(48)
The periodicity property, which has been proved above,

is important because it makes it possible to express physical
quantities as composite functions of one variable that assume
the form f (η) = f (f1(f2(f3( . . . fn(η))))). This strongly sim-
plifies the calculation because, in this case, it is not necessary
to write explicitly f (η) since its calculation reduces simply
to successive calculations of functions fn, f3, . . . , f2, f1, and
f , operations that can be performed numerically very fast and
accurately [40].

In our case, the quantities E and I are composite functions
of f1, f2, f3, g1, g2, g3, and γ , which in their turn are periodic
functions of η. It follows that the above quantities I av and I j ,
which characterize the relativistic Thomson scattering, can be
calculated directly with basic mathematics software.

The results presented in this paper were obtained using
MATHEMATICA 7, a commercial mathematics computer pro-
gram. The numerical algorithm implemented in MATHEMATICA

7 comprises two steps: In the first step, we introduce the initial
data of the system, which are a1, a2, βxi , βyi , βzi , ηi , θ , φ, and
j . In the second step, we calculate the composite functions
in the following order: f0, f1, f2, γ , f3, g1, g2, g3, F1, F2,
h1, h2, h3, f1c0, f1sj , f1cj , f2c0, f2sj , f2cj , f3c0, f3sj , f3cj ,
I av, and I j . The relative errors of our calculations are of the
order 10−12. Since the quantities βxi , βyi , βzi , ηi , θ , φ, and
j enter as arbitrary parameters in the program, any type of
variation of the quantities I av and I j , when these parameters
are changed, can be accurately calculated. See Supplemental
Material [41] that presents the MATHEMATICA 7 scripts for our
calculations.

D. Justification of the classical treatment

In the following analysis, we calculate the divergence of
the energy-momentum four-vector, that is, (px,py,pz,H/c),
where px , py , pz are the components of p, the electron
momentum, and H is the total energy. The divergence of this
four-vector is [31,36]

D = ∇ · p + 1

c

∂(H/c)

∂t
= ∂

∂x
(mcγβx) + ∂

∂y
(mcγβy)

+ ∂

∂z
(mcγβz) + 1

c

∂

∂t
(mcγ ). (52)

We introduce in the above relation the quantities βx , βy ,
γ , and βz, taken, respectively, from (20), (22), (24), and (25).
Taking into account that these quantities are functions of only
the phase η, we obtain

D = mc
df1

dη

∂η

∂x
+ mc

df2

dη

∂η

∂y
+ mc

df3

dη

∂η

∂z
+ m

dγ

dη

∂η

∂t

= −mc
df3

dη
kL + m

dγ

dη
ωL. (53)

From (2) and (26), we have, respectively, c|kL| = ωL and
df3/dη = dγ /dη and (53) becomes

D = m
dγ

dη
(−c|kL| + ωL) = 0. (54)

On the other hand, since ∇S = p − eA and H = −∂S/∂t

[31,36], where S is the action of the system electron-
electromagnetic field and A is the magnetic vector potential of
the field, the expression of D can be put in the following form:

D = ∇ · (∇S + eA) + 1

c

∂

∂t

(−∂S

c∂t

)

= ∇ · (∇S + eA) − ∂2S

c2∂t2
= 0. (55)

Motz and Selzer [35] proved that, for systems for which
the divergence of the energy-momentum four-vector is zero,
the Klein-Gordon equation is verified exactly by the classical
wave function of the system, that is, exp(iS/h̄), where h̄ is the
normalized Planck constant. The demonstration of Motz and
Selzer is performed without using the WKB approximation.
In the Appendix, we present a different demonstration of
this property. From this property, it follows that a classical
treatment of the system in discussion is justified.

E. Typical calculations of angular and spectral distributions
of the scattered beam, compared with theoretical

and experimental data from literature

We present a first verification of our calculation method
in the particular case when the initial velocity of the electron
is neglected. The variation of the normalized intensity I av as
a function of θ for the case when the laser field is linearly
polarized, a2 = 0, φ = 0, βi = 0, and ηi = 0, for three values
of parameter a1, is represented in Fig. 1. Our calculation is
made for the same initial data as those from Fig. 2(A) of
Ref. [42]. Despite the fact that in Ref. [42] the calculation
is made with the aid of Eq. (14.67) from Ref. [31], and
our calculation was made by the method which has been
previously described, the results of the two calculations are
almost identical. It is remarkable to see that fine details, such
as the small valleys before the maximum of the curves, appear
in both calculations. Also, in both cases, the spatial distribution
is broad and becomes more collimated as a1 increases.

Without giving details, we report that our calculations
lead to results almost identical to those presented in Fig. 3
from Ref. [42]. These calculations show the influence of the
longitudinal component of the electron initial velocity on the
angular distribution of the radiation.

Figure 2 shows typical graphs of the normalized averaged
intensity I av and normalized intensities of the first harmonics

023824-5



ALEXANDRU POPA PHYSICAL REVIEW A 84, 023824 (2011)

0 10 20 30 40 50 60 70 80
100

101

102

103

104

105

106

θ (degrees)

a  = 6

a  = 4

a  = 21

1

1

I
(a

rb
. u

ni
ts

)
av

FIG. 1. The variation of the normalized averaged intensity I av

with θ when the incident field is linearly polarized, a2 = 0, φ = 0,
βi = 0, and ηi = 0 for three values of parameter a1.

I 1 and I 2 corresponding to j = 1 and 2, with respect to θ , for
an arbitrary set of values of a1, a2, βxi , βyi , βzi , and ηi . Since the
curves for j � 3 agglomerate below the curve corresponding
to j = 2, for clarity of the image, we represent only the curves
for j = 1 and 2. Figure 2 shows that the angular distribution of
the global intensity of the scattered radiation is almost identical
to the angular distribution of a given harmonic. This result
shows that, generally, Eq. (43) can be used for the calculation
of the angular distribution of the scattered radiation, while
Eq. (51) gives the spectral distribution of the radiation emitted
in a given direction.

As it is shown in Ref. [30], a unique analytical result is
due to Goreslavskii et al. [13] who have obtained, by direct
analytical calculation, a closed-form expression for the photon
angular distribution corresponding to any initial configuration
of the electron and laser beams. Reference [13] shows that,
depending on the initial components of the electron velocity,
the two emission lobes could became asymmetrical and, in
some circumstances, one lobe could be strongly diminished.
Our calculations confirm these results, despite the fact that our
results are slightly different, as we will show below.

In this respect, we illustrate in Fig. 3 the angular distri-
butions of I av, normalized to the maximum values, versus
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FIG. 2. Typical variations of the normalized averaged intensity
I av and normalized intensities of the first harmonics I 1 and I 2, with
θ for φ = 0, a1 = 2, a2 = 1.5, βxi = 0.2, βyi = 0.2, βzi = 0.2, and
ηi = 45◦.
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FIG. 3. Polar plots of I av, normalized to maximum values, as
functions of θ in the case of the interaction between a circular
polarized field, having a1 = a2 = 2, which propagate in the oz

direction, and relativistic electrons, which move in the opposite
direction. Calculations are made for φ = 0, βxi = βyi = 0, and ηi = 0
for three cases when γi = 1 and βzi = 0 (curve 1), γi = 1.189 and
βzi = −0.5410 (curve 2), and γi = 3 and βzi = −0.9428 (curve 3).

θ in the plane xz in the case of the interaction between a
circular polarized field, having a1 = a2 = 2, which propagate
in the oz direction, and relativistic electrons which move
in the opposite direction. Calculations are made for φ = 0
and ηi = 0 for three cases represented by the curves 1, 2, and
3, which correspond, respectively, to γi = 1, γi = 1.189, and
γi = 3. These values correspond to βzi = 0, βzi = −0.5410,
and βzi = −0.9428, while βxi = βyi = 0 for all three curves.
Figure 4 shows the angular distributions I av, normalized to
maximum values, versus θ in the plane xz for a1 = a2 = 2
when the electron moves in the direction ox, perpendicular to
the direction of the incident wave propagation. Calculations
are made for φ = 0 and ηi = 0 for three different initial
velocities of the electron represented by the curves 1, 2, and
3. The initial conditions are, respectively, γi = 1, γi = 1.1,
and γi = 10, which correspond to βxi = 0, βxi = 0.4166, and
βxi = 0.9950, while βyi = βzi = 0 for all three curves.

A comparison between Fig. 3 and Fig. 1 of Ref. [13] reveals
that the general properties of the scattered beam are the same
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FIG. 4. Polar plots of I av, normalized to maximum values, as
functions of θ in the case of the interaction between a circular
polarized field, having a1 = a2 = 2, which propagate in the oz

direction, and relativistic electrons, which move in the ox direction.
Calculations are made for φ = 0, βyi = βzi = 0, ηi = 0 for three
cases when γi = 1 and βxi = 0 (curve 1), γi = 1.1 and βxi = 0.4166
(curve 2), and γi = 10 and βxi = 0.9950 (curve 3).
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in both cases. The scattering emission lobes are symmetrical
and, when the initial electron velocity is small, the radiation
is emitted in the oz direction. When the velocity increases,
the angle θ0 between the axis of the emission lobe and the oz

axis increases. When the initial electron velocity is sufficiently
big, this electron emits radiation in the forward direction
with respect to the direction of the initial velocity and in the
backward direction with respect to the propagation direction
of the incident wave. For very high values of |βzi |, there is only
one backscattered emission lobe. However, there is a difference
between our results and those of Ref. [13]. Thus, compared to
Fig. 1 of Ref. [13], our Fig. 3 shows an increased component
of the backscattered radiation in the negative direction of the
oz axis when |βzi | is increased.

Figure 4 shows the normalized averaged intensity of the
scattered radiation when the electron moves in the direction
perpendicular to the direction of the incident wave propaga-
tion. Different initial velocities of the electron are considered.
A comparison between this figure and Fig. 2 of Ref. [13] shows
similar properties of the scattered beam. More specifically,
when |βxi | increases, the emission lobes are asymmetrical,
one lobe is diminished, and the bigger emission lobe is shifted
toward the ox direction. However, unlike Fig. 2 of Ref. [13],
we obtained that, for sufficiently high values of the initial
electron velocity corresponding to γi > 4, one emission lobe
is completely diminished.

In spite of the fact that, for some directions of the
initial velocity of the electron, the emission lobes become
asymmetrical, the shape of the scattered radiation spectrum
remains the same for relatively high values of a1 and a2.
Figure 5 shows such a spectrum, namely, the variation of I j

with j when the incident electromagnetic field is elliptically
polarized. For this example, we chose the values of θ and
φ that correspond to the maximum value of I av, namely, to
the top of the lobe, and the values of a1, a2, βxi , βyi , βzi ,
and ηi given in the caption of Fig. 5. Similar figures can be
derived for other values of these parameters. The spectrum
of Fig. 5 has an increasing portion for small values of j , a
maximum and a slow decreasing portion for high values of
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FIG. 5. Typical spectral distribution of the scattered Thomson
radiation, namely, the variation of I j with j , when the incident
electromagnetic field is elliptically polarized for θ = 4.182◦, φ =
−15.1◦, a1 = 15, a2 = 10, βxi = 0.15, βyi = −0.10, βzi = 0.20, and
ηi = 30◦.
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FIG. 6. Typical angular distributions of I av versus θ when the
laser field interacts with nine electrons, the velocities of which are
situated in the the plane xz, as shown in the inset, for a1 = 5.6, a2 = 0,
φ = 0, and ηi = 0. Curve 1 corresponds to the electron having the
initial velocity βi = v1/c, and so on. The initial velocities are as
follows: βxi = 0, βyi = 0, βzi = 0.6574 for curve 1, βxi = 0.4792,
βyi = 0, βzi = 0.45 for curve 2, βxi = 0.5850, βyi = 0, βzi = 0.30 for
curve 3, βxi = 0.6401, βyi = 0, βzi = 0.15 for curve 4, βxi = 0.6574,
βyi = 0, βzi = 0 for curve 5, βxi = 0.6401, βyi = 0, βzi = 0 − 0.15
for curve 6, βxi = 0.5850, βyi = 0, βzi = −0.30 for curve 7, βxi =
0.4792, βyi = 0, βzi = −0.45 for curve 8, and βxi = 0, βyi = 0, βzi =
−0.6574 for curve 9.

j , its shape being similar to the spectrum shown in Fig. 7 of
Ref. [42].

Now we show that the angular distributions of I av when
the laser field interact with electrons having nonzero initial
velocities is broader than the theoretical prediction when the
initial electron is at rest, in agreement with experimental data
from literature. Assume that the average initial total energy
of the electrons, denoted by Ei , is equal to 0.9 MeV, which
corresponds, by virtue of the relation Ei = mc2/

√
1 − βi

2,
to the value |βi | = 0.6574. Figure 6 shows typical variations
of I av with θ , for a1 = 5.6, a2 = 0, φ = 0, and ηi = 0 when
the laser field interacts with many electrons (particularly, we
consider nine electrons), with the directions of the initial
velocities of the electrons, denoted by v1, v2, . . . ,v9, being
uniformly distributed in the plane xz, as illustrated in the
inset. Figure 7 shows similar variations of I av with θ , for
a1 = 5.6, a2 = 0, φ = 0, and ηi = 0, when the directions of
the initial velocities of five electrons, denoted by v1, v2, . . . ,v5,
are uniformly distributed in the plane xy, as it is shown in the
inset. The analysis of Fig. 6 shows that the global angular
distribution of I av with respect to θ is comprised between the
curves that correspond to the forward and backward directions
of the initial electron velocities with respect to the oz axis,
namely, in our case, by the curves 1 and 9. We notice that
the angular distribution of the Thomson scattered radiation
is significantly broadened to approximately 40◦, compared to
the theoretical width of around 15◦ if the electron is initially
at rest, as it results from Fig. 1. This broadening is similar
to that from Fig. 6 of Ref. [42], which represents the spatial
distribution of the observed scattered Thomson radiation when
the initial electron energies are around 0.9 MeV. On the other
hand, Fig. 7 shows that electron 3, the initial velocity of which
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FIG. 7. Typical angular distributions of I av versus θ when the
laser field interacts with five electrons, the velocities of which are
situated in the the plane xy, as it is shown in the inset, for a1 = 5.6,
a2 = 0, φ = 0, and ηi = 0. Curve 1 corresponds to the electron having
the initial velocity βi = v1/c, and so on. The initial velocities are as
follows: βxi = 0, βyi = −0.6574, βzi = 0 for curve 1, βxi = 0.4649,
βyi = −0.4649, βzi = 0 for curve 2, βxi = 0.6574, βyi = 0, βzi = 0
for curve 3, βxi = 0.4649, βyi = 0.4649, βzi = 0 for curve 4, and
βxi = 0, βyi = 0.6574, βzi = 0 for curve 5. The curve 1 is identical
to the curve 5, while the curve 2 is identical to the curve 4.

is directed toward the ox axis, has a dominant contribution
to the global scattered spectrum. Thus, the electrons situated
in the xz plane have also a dominant contribution. This is an
explanation of the fact that the shape of the envelope of the
curves in Fig. 6 is very similar to the shape of the curve from
Fig. 6 of Ref. [42].

III. COMPOSITE FUNCTIONS IN THE CASE OF HARD
BACKSCATTERED RADIATIONS GENERATED BY

INTERACTION BETWEEN RELATIVISTIC
ELECTRONS AND VERY INTENSE

ELECTROMAGNETIC BEAMS

A. Analysis of the electron motion in the system of reference
in which the initial electron velocity is zero

The generation of backscattered radiation when the electro-
magnetic beam and relativistic electrons collide head-on with
each other is a very promising souce of hard x rays [17–24]. In
this case, the initial data from Sec. II A remain valid, with the
difference that the initial conditions, written in the laboratory
reference system, denoted by S(t,x,y,z), are as follows:

t = 0, x = y = z = 0, vx = vy = 0,

vz = −|V0|, and η = ηi. (56)

By virtue of the theory presented in Sec. 5.22 of Ref. [43],
it is convenient to calculate the motion of the electron in the
inertial system of reference denoted by S ′(t ′,x ′,y ′,z′), in which
the initial velocity of the electron is zero. The Cartesian axes
in the systems S(t,x,y,z) and S ′(t ′,x ′,y ′,z′) are parallel. In our
case, the S ′ system moves with velocity −|V0| along the oz

axis (Fig. 8). Since our analysis is performed in the S ′ system,
we have to calculate the parameters of the laser field, denoted
by E

′
L, B

′
L, k

′
L, and ω′

L, in the S ′ system.

x

z

y

x'

z'

y'

V0

EL
BL

E'L
B'L

kL

k'Lk'1

B'

E'

1

1
E

B

k1

1

1

S S'

o o'

FIG. 8. Components of the laser field and of the field generated
by Thomson scattering in the S and S ′ systems.

The four-dimensional wave vectors are denoted, respec-
tively, by (ωL

c
,kLx,kLy,kLz) and (ω′

L

c
,k′

Lx ′ ,k
′
Ly ′ ,k

′
Lz′) in the

systems S and S ′. By virtue of the Lorentz transformation,
given by relations (11.22) of Ref. [31], we have

ω′
L

c
= ωL

c
γ0(1 + |β0|), (57)

k′
Lz′ = |k′

L| = |kL|γ0(1 + |β0|), (58)

k′
Lx ′ = kLx = k′

Ly ′ = kLy = 0, (59)

where

β0 = −|V0|
c

k and γ0 = (
1 − β2

0

)− 1
2 . (60)

Since the scalar product between the four-dimensional wave
vector and the space-time four-vector is invariant, it follows
that the phase of the electromagnetic wave is invariant [31],
and we have

η = ωLt − kL · r + ηi = ω′
Lt ′ − k

′
L · r ′ + ηi = η′, (61)

where r and r ′ are the position vectors of the electron in the
two systems.

We use Eqs. (11.149) from Ref. [31], which give the Lorentz
transformation of the fields. By writing these relations in
the International System, and using Eqs. (4) and (60), we
obtain the following expressions for the components of the
electromagnetic field in the S ′ system:

E
′
L = γ0(EL + β0 × cBL) = γ0(1 + |β0|)EL, (62)

B
′
L = γ0(BL − β0 × EL/c) = γ0(1 + |β0|)BL. (63)

The equations of motion of the electron in the S ′ system
can be written as

m
d

dt ′
(γ ′v′

x ′ )

= γ0(1 + |β0|)(−eEM1 cos η′ + ev′
z′BM1 cos η′), (64)

m
d

dt ′
(γ ′v′

y ′ )

= γ0(1 + |β0|)(−eEM2 sin η′ + ev′
z′BM2 sin η′), (65)

m
d

dt ′
(γ ′v′

z′)

= γ0(1 + |β0|)(−ev′
x ′BM1 cos η′ − ev′

y ′BM2 sin η′), (66)
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where v′
x ′ , v′

y ′ , and v′
z′ are the components of the electron

velocity in S ′ and

γ ′ = (
1 − β ′

x ′
2 − β ′

y ′
2 − β ′

z′
2)− 1

2 (67)

with β ′
x ′ = v′

x ′/c, β ′
y ′ = v′

y ′/c, and β ′
z′ = v′

z′/c.
By using Eqs. (4) and (57), the equations of motion become

d

dt ′
(γ ′β ′

x ′ ) = −a′
1ω

′
L(1 − β ′

z′ ) cos η′, (68)

d

dt ′
(γ ′β ′

y ′ ) = −a′
2ω

′
L(1 − β ′

z′ ) sin η′, (69)

d

dt ′
(γ ′β ′

z′ ) = −ω′
L(a′

1β
′
x ′ cos η′ + a′

2β
′
y ′ sin η′), (70)

where

a′
1 = γ0(1 + |β0|)eEM1

mcω′
L

= a1 and

a′
2 = γ0(1 + |β0|)eEM2

mcω′
L

= a2. (71)

Remarkably, the relativistic constants a1 and a2 are invari-
ants and Eqs. (68)–(70) have the same form as (12)–(14). Since
the analysis is made in the system S ′, the only difference is
with respect to the initial conditions, which are

t ′ = 0, x ′ = y ′ = z′ = 0, v′
x ′ = 0, v′

y ′ = 0,

v′
z′ = 0, and η = η′ = ηi. (72)

An identical procedure as that of Sec. II B leads to the
following solution of the equation system (68)–(70):

f ′
1 = f ′

1(η′) = −a1(sin η′ − sin ηi), (73)

f ′
2 = f ′

2(η′) = −a2(cos ηi − cos η′), (74)

γ ′ = γ ′(η′) = 1

2

(
2 + f ′

1
2 + f ′

2
2)

, (75)

f ′
3 = f ′

3(η′) = γ ′ − 1, (76)

β ′
x ′ = f ′

1

γ ′ , (77)

β ′
y ′ = f ′

2

γ ′ , (78)

β ′
z′ = f ′

3

γ ′ , (79)

g′
1 = g′

1(η′) = − a1

γ ′2 cos η′ + f ′
1

γ ′3 (a1f
′
1 cos η′ + a2f

′
2 sin η′),

(80)

g′
2 = g′

2(η′) = − a2

γ ′2 sin η′ + f ′
2

γ ′3 (a1f
′
1 cos η′ + a2f

′
2 sin η′),

(81)

g′
3 = g′

3(η′) = − 1

γ ′3 (a1f
′
1 cos η′ + a2f

′
2 sin η′), (82)

β̇ ′
x ′ = ω′

Lg′
1, (83)

β̇ ′
y ′ = ω′

Lg′
2, (84)

β̇ ′
z′ = ω′

Lg′
3. (85)

From these relations, we observe that the functions f ′
1, f ′

2,
γ ′, f ′

3, g′
1, g′

2, g′
3, β ′

x ′ , β ′
y ′ , β ′

z′ , β̇ ′
x ′ , β̇ ′

y ′ , and β̇ ′
z′ are periodic

functions of one variable η′.

B. Periodicity of the electromagnetic field in the S′ system

The periodicity of the scattered electromagnetic field results
directly from the Liènard-Wiechert relation, by virtue of the
periodicity of β̄ ′ and ˙̄β ′. In the S ′ system, the Liènard-Wiechert
relation is

E
′ = −e

4πε0cR′
n′ × [(n′ − β

′
) × β̇

′
]

(1 − n′ · β
′
)3

, (86)

where R′ is the distance from the electron to the observation
point (the detector) and n′ is the versor of the direction
electron detector. We calculate the right-hand side of Eq. (86)
at time t ′. By virtue of the significance of the quantities
entering in the Liènard-Wiechert equation, it results that
the field E

′
corresponds to the time t ′ + R′/c and we have

E
′ = E

′
(r ′ + R

′
,t ′ + R′/c), where R

′ = R′n′. The inequality
R′ � r ′ is strongly fulfilled. In the S ′ system, the expression
of the versor n′ is

n′ = i sin θ ′ cos φ′ + j sin θ ′ sin φ′ + k cos θ ′, (87)

where θ ′ is the azimuthal angle between the n′ and k versors
and φ′ is the polar angle in the plane x ′y ′.

Introducing the components of n′, β̄ ′, and ˙̄β ′ from the above
relations in (86), we obtain the following expression of the
intensity of the scattered electric field in system S ′:

E
′ = K ′

F ′
1

3

(
h′

1i + h′
2j + h′

3k
)

with K ′ = −eω′
L

4πε0cR′ , (88)

where

h′
1 = F ′

2

(
n′

x ′ − f ′
1

γ ′

)
− F ′

1g
′
1, (89)

h′
2 = F ′

2

(
n′

y ′ − f ′
2

γ ′

)
− F ′

1g
′
2, (90)

h′
3 = F ′

2

(
n′

z′ − f ′
3

γ ′

)
− F ′

1g
′
3 (91)

with

F ′
1 = 1 − n′

x ′
f ′

1

γ ′ − n′
y ′

f ′
2

γ ′ − n′
z′

f ′
3

γ ′ , (92)

F ′
2 = n′

x ′g
′
1 + n′

y ′g
′
2 + n′

z′g
′
3, (93)

n′
x ′ = sin θ ′ cos φ′, n′

y ′ = sin θ ′ sin φ′, and

n′
z′ = cos θ ′. (94)

Since the components of the field given by (88) are periodic
functions of η′, they can be developed in Fourier series and the
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expression of the field normalized to K ′ becomes

Ē′

K ′ = f ′
1c0i +

⎛
⎝ ∞∑

j=1

f ′
1sj sin jη′ +

∞∑
j=1

f ′
1cj cos jη′

⎞
⎠ ī

+f ′
2c0j +

⎛
⎝ ∞∑

j=1

f ′
2sj sin jη′ +

∞∑
j=1

f ′
2cj cos jη′

⎞
⎠ j̄

+f ′
3c0k +

⎛
⎝ ∞∑

j=1

f ′
3sj sin jη′ +

∞∑
j=1

f ′
3cj cos jη′

⎞
⎠ k̄,

(95)

where

f ′
αc0 = 1

2π

∫ 2π

0

h′
α

F ′
1

3 dη′; f ′
αsj = 1

π

∫ 2π

0

h′
α

F ′
1

3 sin jη′dη′;

f ′
αcj = 1

π

∫ 2π

0

h′
α

F ′
1

3 cos jη′dη′ (96)

with α = 1,2,3.

The quantity

Ē′
j = Ē′

js + Ē′
jc, (97)

where

Ē′
js = K ′(f ′

1sj ī + f ′
2sj j̄ + f ′

3sj k̄
)

sin jη′

= K ′(f ′
1sj ī + f ′

2sj j̄ + f ′
3sj k̄

)
cos j (η′ − π/2) (98)

and

Ē′
jc = K ′(f ′

1cj ī + f ′
2cj j̄ + f ′

3cj k̄
)

cos jη′ (99)

is the intensity of the j th harmonic of the electric field. This
harmonic is obtained by the addition of two plane electromag-
netic fields, the intensities of which are, respectively, Ē′

js and
Ē′

jc. These fields have phases j (η′ − π/2) and jη′ and the
same angular frequency and absolute value of the wave vector,
which are equal to jω′

L and j |k̄′
L| = jω′

L/c, respectively.
The corresponding components of the magnetic field are

B
′
js = n′ × E

′
js

c
and B

′
jc = n′ × E

′
jc

c
. (100)

In the same time, Ē′
j is a function of θ ′ and φ′, consequently,

it is easy to calculate the spectral structure of the field emitted
in a given direction specified by the versor n′ as follows. By
virtue of relations (57) and (58), the angular frequency and
wave vector, corresponding to this direction, are given by the
following relations:

ω′
j = jω′

L = jωLγ0(1 + |β0|), (101)

k
′
j = j |k′

L|n′ = j |kL|γ0(1 + |β0|)n′. (102)

The fundamental component of the frequency corresponds
to j = 1. Since the experimental data regarding hard-x-ray
generation presently available for the interaction between
relativistic electrons and very intense laser beams corresponds
to the case when the fundamental component is dominant
[17,18], we limit our analysis to this case. From the theory
presented above, it follows that harmonics of this frequency is
possible. Recently, this result was proved experimentally [34].

C. Relations between azimuthal and polar angles
in the S and S′ systems

By virtue of Eqs. (101) and (102), the angular frequency and
the wave vector corresponding to the fundamental scattered
radiation (i.e., j = 1) for an arbitrary direction specified by θ ′
and φ′ in the S ′ system are given by the relations

ω′
1 = ω′

L = ωLγ0(1 + |β0|), (103)

k
′
1 = |k′

1|n′ = |k′
1|i sin θ ′ cos φ′ + |k′

1|j sin θ ′ sin φ′

+|k′
1|k cos θ ′, (104)

where

|k′
1| = |kL|γ0(1 + |β0|) = ω′

1/c. (105)

We use again the Lorentz relations to calculate the angular
frequency and the wave vector for the fundamental radiation,
denoted, respectively, by ω1 and k1, in the laboratory system
S. As before, we apply relations (11.22) from Ref. [31],
taking into account (60) and (103)–(105), and find ω1 and
the components of k1, as follows:

ω1

c
= γ0

(
ω′

1

c
+ β0 · k

′
1

)
= γ0|k′

1|(1 − |β0| cos θ ′), (106)

k1z = γ0

(
k′

1z′ − |β0|ω
′
1

c

)
= γ0|k′

1|(cos θ ′ − |β0|), (107)

k1x = k′
1x ′ = |k′

1| sin θ ′ cos φ′, (108)

k1y = k′
1y ′ = |k′

1| sin θ ′ sin φ′. (109)

From (106)–(110), it is easy to verify that

|k1| = ω1

c
. (110)

On the other hand, from (107), we have k1z = |k1| cos θ =
γ0|k′

1|(cos θ ′ − |β0|) and from (106) and (110), we obtain

cos θ = cos θ ′ − |β0|
1 − |β0| cos θ ′ . (111)

This equation allows us to calculate the angle θ in the S system,
which corresponds to angle θ ′ in the S ′ system. We note that
this relation is identical to relation (5.6) from Landau’s book
[36], which has been deduced in a completely different way.

On the other hand, since in the S system the wave propagates
in the direction of the versor n (the components of which
are sin θ cos φ, sin θ sin φ, and cos θ ) and k1x = |k1| sin θ cos φ

and k1y = |k1| sin θ sin φ, it follows from these relations and
(108) and (109) that

φ = φ′. (112)

D. Spectral and angular distributions in the laboratory system.

By virtue of Eqs. (58) and (106), we obtain the quanta
energy of the fundamental radiations in the system S, denoted
by W1, as a function of θ ′:

W1 = ω1h̄ = ωLγ 2
0 (1 + |β0|)(1 − |β0| cos θ ′)h̄. (113)
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The energy of the backscattered radiation corresponds
to θ ′ = θ = π . We note it by Wb1 and the corresponding
frequency by ωb1, and have

Wb1 = ωb1h̄ = ωLγ 2
0 (1 + |β0|)2h̄. (114)

The corresponding wavelength of the backscattered radia-
tion is

λb1 = λL

γ 2
0 (1 + |β0|)2

, (115)

where λL is the wavelength of the incident laser beam.
We use again the Lorentz transformations of the fields given

by Eqs. (11.149) from Ref. [31], and calculate the fundamental
component Ē1s in the system S. From (98) and (100), we
obtain, for j = 1,

Ē1s = γ0(Ē′
1s − β0 × cB̄ ′

1s) − γ 2
0

γ0 + 1
β0(β0 · E

′
1s)

= γ0(1 − |β0| cos θ ′)Ē′
1s

+K ′γ0|β0|f ′
3s1 sin η′

(
n′ − γ0|β0|

γ0 + 1
k

)
. (116)

Similarly, we have

Ē1c = γ0(1 − |β0| cos θ ′)Ē′
1c

+K ′γ0|β0|f ′
3c1 cos η′

(
n′ − γ0|β0|

γ0 + 1
k

)
. (117)

From Eqs. (87), (97)–(99), (116), and (117) and taking into
account that the phase of the electromagnetic field is a rela-
tivistic invariant, namely, η = η′, we obtain the expression for
the intensity of the fundamental electrical field in the system S:

Ē1 = Ē1s + Ē1c = E1xi + E1yj + E1zk, (118)

where

E1x = K ′I1s1 sin η + K ′I1c1 cos η, (119)

E1y = K ′I2s1 sin η + K ′I2c1 cos η, (120)

E1z = K ′I3s1 sin η + K ′I3c1 cos η (121)

with

I1s1 = γ0(1 − |β0| cos θ ′)f ′
1s1 + γ0|β0| sin θ ′ cos φ′f ′

3s1,

(122)

I1c1 = γ0(1 − |β0| cos θ ′)f ′
1c1 + γ0|β0| sin θ ′ cos φ′f ′

3c1,

(123)

I2s1 = γ0(1 − |β0| cos θ ′)f ′
2s1 + γ0|β0| sin θ ′ sin φ′f ′

3s1,

(124)

I2c1 = γ0(1 − |β0| cos θ ′)f ′
2c1 + γ0|β0| sin θ ′ sin φ′f ′

3c1,

(125)

I3s1 = f ′
3s1, (126)

I3c1 = f ′
3c1. (127)

The averaged value of the intensity of the fundamental
component of the scattered radiation, normalized to ε0cK

′2, is

given by

I 1 = I1

ε0cK ′2 = 1

2π

∫ 2π

0

1

K ′2
(
E2

1x + E2
1y + E2

1z

)
dη.

(128)

Taking into account (119)–(121) and (128), a simple
calculation leads to the relation

I 1 = 1
2

(
I 2

1s1 + I 2
1c1 + I 2

2s1 + I 2
2c1 + I 2

3s1 + I 2
3c1

)
. (129)

The numerical calculation procedure is identical to that
which has been described in Sec. II C, with the difference
that, in this case, the initial data comprise a1, a2, ηi , θ ′,
and φ′. Since E1 and I1 are composite functions of η, the
calculation of I 1 reduces to the successive calculations of the
following functions: f ′

1, f ′
2, γ ′, f ′

3, g′
1, g′

2, g′
3, F ′

1, F ′
2, h′

1, h′
2,

h′
3, f ′

1s1, f ′
1c1, f ′

2s1, f ′
2c1, f ′

3s1, f ′
3c1, I1s1, I1c1, I2s1, I2c1, I3s1,

I3c1, and I 1. The calculation of W1 and I 1, given, respectively,
by (113) and (129), as functions of θ ′ is made with the aid of
MATHEMATICA 7. See Supplemental Material [41] that presents
the MATHEMATICA 7 scripts for our calculations.

E. Comparison between theoretical and experimental data

As a practical application, we evaluate now the angular and
spectral distribution of the backscattered radiation in two cases
wherein a linearly polarized laser beam (for which E2 = 0 and
a2 = 0) collides head-on with relativistic electrons. In the first
case, the wavelength of the laser beam is λL = 10.64 μm,
the pulse duration is τL = 180 × 10−12 s, the radius of the
laser beam rL = 32 μm, the energy of the laser pulse is
WL = 0.2 J, and the energy of the electrons is Ei = 60 MeV.
From the relations γ0 = Ei/(mc2), IL = Ei/(πr2

LτL), EM1 =√
2IL/(ε0c), ωL = 2πc/(λL), and a1 = eEM1/(mcωL), we

calculate γ0, IL, EM1, ωL, and a1, the values of which
are given in the caption of Table I. In the second case,
we have λL = 0.800 μm, τL = 54 × 10−15 s, rL = 35 μm,
WL = 0.180 J, and Ei = 57 MeV.

With the aid of Eq. (111), we calculate the values of θ as
function of θ ′, when θ ′ takes values between π/2, and π . The
last angle corresponds to radiations scattered in the backward
direction. With the aid of MATHEMATICA 7 and the procedure
described in the preceding section, we calculate the variations
of W1 and I 1 as functions of θ ′ and show these values in
Table I. In this table, we also show the corresponding values
of the angle α given by the relation

α = π − θ. (130)

Taking into account the values from Table I, in Fig. 9 we record
the angular variations of the intensity of the backscattered
radiation I 1 as function of α, and the spectral variations
of W1 as function of α for the two cases described above.
These curves are symmetrical with respect to the direction
corresponding to θ = π .

Cases 1 and 2 correspond, respectively, to the experimental
data from Refs. [17] and [18]. The analysis of the curves
I 1 = I 1(α) from Fig. 9 shows that the agreement between the
theoretical and experimental values of the divergence angle of
the backscattered beam, denoted by �α, is very good. From
the curve I 1 = I 1(α) of Fig. 9(a), we obtain �α = 8 mrad,
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TABLE I. Variations of θ (in rad), α = π − θ (in mrad), I 1 and W1 (in keV) with respect to θ ′ (in degrees) in two cases. In the first
case, Ei = 60 MeV, γ0 = 117.4, |β0| = 0.999 96, IL = 3.454 × 1017 Wm−2, EM1 = 1.613 × 1010 Vm−1, ωL = 1.770 × 1014 rad s−1, φ′ = 0,
ηi = 0, a1 = 0.053 46, a2 = 0, and Wb1 = 6.42 keV. In the second case, Ei = 57 MeV, γ0 = 111.5, |β0| = 0.999 96, IL = 8.661 × 1020 Wm−2,
EM1 = 8.078 × 1011 Vm−1, ωL = 2.355 × 1015 rad s−1, φ′ = 0, ηi=0, a1 = 0.2012, a2 = 0, and Wb1 = 77.08 keV.

Case 1

θ ′ (deg) 90 100 110 120 130 140 150 160 170 175 180
θ (rad) 3.1331 3.1345 3.1356 3.1367 3.1376 3.1385 3.1393 3.1401 3.1408 3.1412 3.1416
α (mrad) 8.52 7.15 5.96 4.92 3.97 3.10 2.28 1.51 0.75 0.37 0.00
I 1 0.0 8.3 41.5 110.2 217.5 355.9 506.5 643.1 783.7 764.3 773.1
W1 (keV) 3.21 3.77 4.31 4.82 5.28 5.67 5.99 6.23 6.37 6.41 6.42

Case 2
θ ′ (deg) 90 100 110 120 130 140 150 160 170 175 180
θ (rad) 3.1326 3.1341 3.1353 3.1364 3.1374 3.1383 3.1392 3.1400 3.1408 3.1412 3.1416
α (mrad) 8.97 7.53 6.28 5.18 4.18 3.26 2.40 1.58 0.78 0.39 0.00
I 1 1.6 142.7 621.8 1542.9 2900.6 4560.2 6284.5 7790.2 8815.9 9087.6 9179.5
W1 (keV) 38.54 45.23 51.72 57.81 63.31 68.06 71.92 74.76 76.50 76.93 77.08

which is the same as the value reported in Ref. [17]. Also, the
theoretical curve I 1 = I 1(α) from Fig. 9(b) is almost identical
to the experimental curve shown in Fig. 3(b) from Ref. [18].
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FIG. 9. Variations of intensity I 1 and of quantum energy W 1 with
angle α = π − θ , normalized to maximum values, for two cases:
(a) for Ei = 60 MeV, γ0 = 117.4, |β0| = 0.999 96, IL = 3.454 ×
1017 Wm−2, EM1 = 1.613 × 1010 Vm−1, ωL = 1.770 × 1014 rad s−1,
φ′ = 0, ηi = 0, a1 = 0.053 46, a2 = 0, and Wb1 = 6.42 keV and
(b) for Ei = 57 MeV, γ0 = 111.5, |β0| = 0.999 96, IL = 8.661 ×
1020 Wm−2, EM1 = 8.078 × 1011 Vm−1, ωL = 2.355 × 1015 rad s−1,
φ′ = 0, ηi = 0, a1 = 0.2012, a2 = 0, and Wb1 = 77.08 keV.

Moreover, the theoretical values of Wb1, the energy of
the backscattered radiation, which is given by (114), is in
good agreement with the experimental values from Refs. [17]
and [18]. In the first case, we obtain Wb1 = 6.42 keV, which
corresponds, by virtue of (115), to the value λb1 = 1.93 Å.
This value matches the experimental value reported in Ref.
[17], which is λb1expt = 1.8 Å. In the second case, we obtain
Wb1 = 77.08 keV, which matches the value Wb1expt = 78.5
keV, reported in Ref. [18].

We have proved in Sec. III B the existence of harmonics
of the scattered radiation frequency in the system S ′ [see
Eq. (101)]. An identical calculation, made for j = 2, leads
to the the following expression of the second harmonic of the
energy of the relativistic backscattered radiation:

Wb2 = ωb2h̄ = 2ωLγ 2
0 (1 + |β0|)2h̄. (131)

Recall that the fundamental energy Wb1 = ωLγ 2
0 (1 + |β0|)2h̄

is given by Eq. (114). A recent experiment [34] proved the
existence of the second harmonics. In that experiment, Ei = 60
MeV, γ0 = 117.4, λL = 10.6 μm, ωL = 1.777 × 1014 rad s−1,
and the laser beam is linearly polarized, corresponding to a1 =
0.35. By using (114) and (131), we obtain the following values
for the fundamental energy and for the second harmonic:
Wb1 = 6.45 keV and Wb2 = 12.9 keV. The experimental
values from the aforementioned experiment are, respectively,
Wb1expt = 6.5 keV and Wb2expt = 13 keV, which are in good
agreement with our theoretical values.

Our treatment, which leads to the existence of the harmon-
ics, is based on the periodicity property, which has been proved
in this paper. In Ref. [34], the demonstration of the existence
of the second harmonic is completely different; it is based on
the relativistic Doppler shift of the frequency.

IV. CONCLUSIONS

Starting from basic equations, we proved that the intensity
of the Thomson scattered field in relativistic interactions
between a very intense electromagnetic field and an electron
is a periodic function of the phase of the incident field. Two
consequences of this property result directly.
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The first consequence is that the fundamental frequency
of the scattered field is identical to the frequency of the
incident field. Moreover, the periodicity property leads to the
existence of harmonics, in the case of the backscattering of
the electromagnetic fields on relativistic electrons, when the
analysis is made in the inertial system in which the initial
velocity of the electron is zero. These results are in good
agreement with recent experimental measurements.

The second consequence is that the expressions of the
intensity of the electrical scattered field and of the intensity
of the scattered radiation can be put in the form of a composite
function of only one variable, and it is not necessary to obtain
explicit analytical expressions for these quantities. It results
in the possibility of a very general treatment, in which we
take into account all the parameters of the system such as the
components of the initial velocity of the electron, the initial
phase of the field, and both relativistic parameters when the
field is elliptically polarized. Due to the fact that the treatment
is general, a series of physical effects can be easily revealed.
For example, when the initial velocity is not parallel to the wave
vector of the incident field, then the lobes of the scattered beam
become asymmetrical. Another example is as follows: When
the component of the initial velocity in the negative direction
of the oz axis increases, then the backscattered component also
increases. Since the solution of the basic equations is exact,
the theoretical results are in good agreement with numerous
experimental data from literature.
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APPENDIX: CONNECTION BETWEEN THE QUANTUM
AND CLASSICAL EQUATIONS FOR THE SYSTEM

DISCUSSED IN SECTION II

We show that the property which has been demonstrated
by Motz and A. Selzer [35] results directly from a connec-

tion between Klein-Gordon and relativistic Hamilton-Jacobi
equations, written for the system described in Sec. II A. The
Klein-Gordon for this system is [44][

c2(−ih̄∇ + eA)2 −
(

ih̄
∂

∂t

)2

+ (mc2)2

]
� = 0, (A1)

where � is the wave function. Recall that e is the absolute
value of the electron charge.

With the substitution

� = C exp

(
iσ

h̄

)
, (A2)

where C is an arbitrary constant and σ is a complex valued
function of the electron coordinates and time, the Klein-
Gordon equation (A1) becomes

c2(∇σ + eA)2 −
(

∂σ

∂t

)2

+ (mc2)2

− ih̄c2

[
∇ · (∇σ + eA) − ∂2σ

c2∂t2

]
= 0. (A3)

The relativistic Hamilton-Jacobi equation, written for the
same system, is [36]

c2(∇S + eA)2 −
(

∂S

∂t

)2

+ (mc2)2 = 0. (A4)

In Sec. II D, we proved Eq. (55), that is,

∇ · (∇S + eA) − ∂2S

c2∂t2
= 0. (A5)

By Eqs. (A2)–(A5), we obtain the following property: For a
system composed of an electron interacting with a very intense
electromagnetic field of a laser beam, the Klein-Gordon
equation is verified by the wave function associated to the
classical motion C exp(iS/h̄), where S is the solution of the
relativistic Hamilton-Jacobi equation, written for the same
system.

We observe that the proof of this property does not use any
approximation.
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