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Propagation and breakup of pulses in fiber amplifiers and dispersion-decreasing fibers
with third-order dispersion
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We develop a theory for pulses propagating in normal dispersion fiber amplifiers with constant and varying
gain, and for dispersion-decreasing fibers, including the effect of third-order dispersion. These solutions of the
generalized nonlinear Schrödinger equation are based on asymptotical methods, first-order perturbation theory,
and a renormalization procedure. We have also found an explicit equation for the critical length corresponding to
pulse breakup and a criterion which ensure the accuracy of the asymptotic solutions. This criterion is confirmed
numerically, showing that the analytical description of the pulses and the critical length formulas developed here
for fiber amplifiers and dispersion-decreasing fibers with third-order dispersion are very accurate.
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I. INTRODUCTION

Self-similarity is a fundamental physical property that has
been studied for many areas in physics and, in particular, in
optics [1–5]. In addition, recent studies in nonlinear optics
have revealed an important type of optical pulse (similaritons)
with parabolic profiles and linear frequency chirps that
propagate in nonlinear optical fibers with normal second-order
group-velocity dispersion [6] and in optical fiber amplifiers
with constant and distributed gain functions [7–9]. These
propagating pulses in optical fiber amplifiers with normal
dispersion are asymptotically self-similar and their asymptotic
behavior depends only on the input energy. This remarkable
property is connected with a global attractor [10] which attracts
the trajectories of the pulses with different initial conditions
to the same self-similar structurally stable asymptotic so-
lution [10,11]. Moreover, this similariton solution is exact
asymptotically when the propagation distance tends to infinity.

These results have been confirmed theoretically [7–9,12]
and experimentally [7]. Self-similar parabolic pulses are of
fundamental interest because they represent a new class of
solution to the nonlinear Schrödinger equation (NLSE) with
gain having wide-ranging practical significance, since their
linear chirp leads to highly efficient pulse compression to the
sub-100-fs domain [13]. The fiber amplifiers and lasers which
use self-similar propagating pulses in the normal dispersion
regime have been demonstrated experimentally to achieve
high-energy pulses [7,14–16]. The amplifier similariton evo-
lution also yields practical features such as parabolic output
pulses with high energies, and the shortest pulses to date from
a normal-dispersion laser [17]. In addition, the self-similar
dynamics in fibers with longitudinally varying parameters is
connected with pulse shaping and pulse compression [18–20].

In recent papers the effect of third-order fiber dispersion
(TOD) on similariton pulse propagation has been studied
in fiber amplifiers and mode-locked lasers [21–24]. In fact,
the impact of TOD on parabolic pulse propagation is to
generate optical shock-type instabilities [25,26]. A recent
study of a fiber amplifier with TOD and constant gain [27]
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has used asymptotical methods, first-order perturbation theory,
and a renormalization procedure. We note that the solution
presented in Ref. [27] describes all of the features induced
by TOD. A fiber amplifier with TOD also has been studied
previously using perturbation theory and some approximations
[28] and without perturbation theory but using different
approximations [29]. The analytical solutions in these papers
differ quantitatively from the analytical description of the
quasi-similaritons [27] for fiber amplifiers where the TOD
effects are sizable.

In this paper, we derive the analytical solution generalizing
the results presented in Ref. [27] for the nonlinear Schrödinger
equation (NLS) with constant and distributed gain and TOD
for fiber amplifiers, which is in close agreement with numerical
simulations. Our approach is based on an asymptotical method,
perturbation theory by TOD, and a renormalization procedure.
We use in the perturbation theory a constant dimensionless pa-
rameter ε which is proportional to β3. In the formulation below
it is also introduced a nontrivial small dimensionless parameter
ε(z) which is distance dependent and leads to distortion of the
similariton and to non-self-similar propagation of the pulse.
We may, however, describe such pulses as quasi-similaritons
which retain their integrity, although the pulse shape deviates
from parabolic and the chirp becomes nonlinear.

We also formulate a renormalization procedure for the
solution which yields the exact energy as a function of
propagating distance and takes into account higher orders of
the small parameter in the perturbation theory for the effective
width of the pulse. This procedure is more general than in our
previous work [27] and leads to a highly accurate description
of the propagating pulses.

We present in this paper a transformation which maps the
solution of the NLS for an arbitrary distributed gain function
and TOD onto the solution for fiber with decreasing second-
order and third-order dispersions. This transformation, for the
particular case of constant gain and β3 = 0, maps the parabolic
solution [7] into the solution for a fiber with decreasing second-
order dispersion [30].

We have also found in the case when the gain is constant
an analytical solution for the critical distance zc describing the
pulse breakup due to the shock-type instabilities. In the general
case for fiber amplifiers with TOD and an arbitrary varying
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gain function we have proved, in the first-order perturbation
theory, that the critical distance zc does not depend on the sign
of TOD which is also confirmed in our numerical simulations.

In the last section of the paper we formulate the criterion for
the initial value ε0 = ε(0) of an introduced distance-dependent
small dimensionless parameter ε(z) of the theory providing
high accuracy for analytical description of asymptotic of
the power profiles, the chirp function of the pulses and the
critical lengths. The high accuracy of our theory describing
all features of TOD effects, including pulse breakup in the
quasi-similariton regimes, has been confirmed by numerical
simulations.

II. QUASIPARABOLIC PULSES IN FIBER AMPLIFIERS
WITH TOD

In the presence of TOD the pulse propagation in fiber am-
plifiers can be described by the generalized NLS equation [31]

iψz = β2

2
ψττ + i

β3

6
ψτττ − γ |ψ |2ψ + i

g(z)

2
ψ, (1)

where ψ(z,τ ) is the slowly varying pulse envelope in a comov-
ing frame, β2, β3, and γ , respectively, are the second-order
and third-order dispersion parameters and the nonlinearity
coefficient, and g(z) is the distributed gain along the fiber.
Using the ansatz

ψ(z,τ ) = exp
(

1
2G(z)

)
ψ̃(z,τ ), (2)

with the definitions

G(z) =
∫ z

0
g(z′)dz′, �(z) = γ exp[G(z)] , (3)

we transform the generalized NLSE to NLSE without gain:

iψ̃z = β2

2
ψ̃ττ + i

β3

6
ψ̃τττ − �(z)|ψ̃ |2ψ̃. (4)

The Eq. (4) with a complex function written in the form
ψ̃(z,τ ) = A(z,τ ) exp[	(z,τ )] yields the system of equations
for real amplitude A(z,τ ) and the phase 	(z,τ ) as

(A2)z = β2	ττA
2 + β2	τ (A2)τ − β3

2
(A2)τ (	τ )2

−β3A
2	τ	ττ + β3

3
AAτττ , (5)

	z = �A2 + β2

2
(	τ )2 + β3

6
	τττ − β3

6
(	τ )3

− β2

2

(
Aττ

A

)
+ β3

2
	ττ

(
Aτ

A

)
+ β3

2
	τ

(
Aττ

A

)
. (6)

Because we search for an asymptotical solution of Eq. (4),
some terms in this system of equations can be neglected
since they decrease much faster than the other ones when
ξ = gz � 1 in the asymptotical regime. We note that an
asymptotical regime ξ � 1 takes place when the condition
ξc = gzc � 1 is satisfied. Here zc is the distance where the
pulse breaks up due to shock-type instabilities resulting from
TOD. In particular, we may neglect in an asymptotical regime
the last term (∼AAτττ ) in the right-hand part of Eq. (5) and
three last terms (∼Aττ /A and ∼Aτ/A) in the right-hand part
of Eq. (6).

This statement can be proved using the explicit expressions
for the functions A(z,τ ) and 	(z,τ ) found in the next section.
In the proof of this statement one can also use the equations:

Aτ

A
= AT

wA
,

Aττ

A
= AT T

w2A
, AAτττ = A2 AT T T

w3A
, (7)

where w = w(z) is the effective width of the pulse and
T = τ/w(z). We note that the effective width w(z) (defined
in the next section) coincides with the width of the parabolic
pulses [7].

Using the definition A(z,τ )2 = P (z,τ ) and the exchange
β3 → εβ3 in the system of Eqs. (5) and (6), and neglecting the
mentioned terms (∼Aτ/A, ∼Aττ /A, and ∼AAτττ ) we find the
system of equations:

Pz = β2	ττP + β2	τPτ − εβ3

2
(	τ )2Pτ − εβ3	τ	ττP,

(8)

	z = �P + β2

2
(	τ )2 + εβ3

6
	τττ − εβ3

6
(	τ )3. (9)

Here ε is the formal parameter which is used to indicate the
order of “small” dimensionless parameter of the theory. We
do not introduce at this stage an explicit form of this small
constant parameter, which we assume to be proportional to
β3. It is worth pointing out that in the final stage of the
perturbation procedure the formal parameter must be taken as
ε = 1. One of the basic concepts of our perturbation method is
the decomposition of the functions P (z,τ ) and 	(z,τ ) in the
form:

P (z,τ ) = α0 − εα1τ − α2τ
2 − εα3τ

3 − ε2α4τ
4 − · · · , (10)

	(z,τ ) = c0 + εc1τ + c2τ
2 + εc3τ

3 + ε2c4τ
4 + · · · . (11)

The series here have a special form because we assume that
at β3 = 0 (ε = 0) the solution of the Eq. (1) is a parabolic
pulse [7,8]. We also emphasize that the power P (z,τ ) of the
pulse and the phase 	(z,τ ) in Eqs. (10) and (11) are defined
only in some interval τa < τ < τb of variable τ where P (z,τ )
is positive and satisfies the condition P (z,τa) = P (z,τb) = 0.

Substitution of the series in Eqs. (10) and (11) into the
system of Eqs. (8) and (9) and neglecting the terms which are
proportional to ε2 and higher order of ε leads to the following
system of nonlinear differential equations for the functions
αn(z) and cn(z) (n = 0,1,2,3):

dα0

dz
= 2β2c2α0, (12)

dα1

dz
= 4β2c2α1 − 6β2c3α0 + 2β2c1α2 + 4β3c

2
2α0, (13)

dα2

dz
= 6β2c2α2, (14)

dα3

dz
= 8β2c2α3 + 12β2c3α2 − 8β3c

2
2α2, (15)

dc0

dz
= �α0, (16)

dc1

dz
= 2β2c1c2 − �α1, (17)
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dc2

dz
= 2β2c

2
2 − �α2, (18)

dc3

dz
= 6β2c2c3 − 4

3
β3c

3
2 − �α3. (19)

To find a unique solution of the system of Eqs. (12)–(19) we
formulate the boundary conditions:

α0,α1,α2,α3 → 0 for z → ∞. (20)

These conditions follows from the fact that there is no gain term
in Eq. (4) and hence P (z,τ ) → 0 at z → ∞. The boundary
conditions in Eq. (20) are formal and they are not connected
with the pulse breakup. We also require that the solution of
Eq. (1) [which is connected with a solution of Eq. (4)] at
β3 = 0 transforms to the known similariton solution [7,8].
In the conclusion of this section we emphasize that the
system of Eqs. (12)–(19) with �(z) = γ exp [G(z)] is valid
for an arbitrary gain function g(z) when some dimensionless
parameter ε of the theory (∼β3) is small.

III. ANALYTICAL SOLUTION FOR FIBER AMPLIFIERS
WITH TOD

We consider in this section, pulse propagation in fiber
amplifiers with constant gain based on the nonlinear system
of differential equations [Eqs. (12)–(19)] with the boundary
condition given by Eq. (20). In this case the function � in the
system of Eqs. (12)–(19) is �(z) = γ egz, and the solution of
this system of nonlinear differential equations with boundary
conditions Eq. (20) is given by

α0(z) = �e−gz/3, α1(z) = gβ3�

18β2
2

e−gz/3, (21)

α2(z) = g2

18γβ2
e−gz, α3(z) = − 2β3g

3

243γβ3
2

e−gz, (22)

c0(z) = φ0 + 3γ�

2g
e2gz/3, c1(z) = −γβ3�

18β2
2

e2gz/3, (23)

c2(z) = − g

6β2
, c3(z) = 7β3g

2

486β3
2

, (24)

where φ0 and � are some constants. We show below that a
positive constant � is defined by the input energy E0 of the
pulse. Hence, the solution given by Eqs. (21)–(24) is the unique
solution of the system of Eqs. (12)–(19) for the boundary
conditions given in Eq. (20).

Neglecting the higher-order terms (∼εn with n > 1) in
Eq. (10) and using Eqs. (21) and (22) we find

A(z,τ )2 = �e−gz/3

[
1 − ε(z)

(
τ

w(z)

)
−

(
τ

w(z)

)2

+ 8

3
ε(z)

(
τ

w(z)

)3 ]
I(z,τ ), (25)

where the effective width w(z) and the parameter ε(z) are

w(z) = 3

g

√
2γβ2� exp

(
1

3
gz

)
, (26)

ε(z) = β3

6β2
2

√
2γβ2� exp

(
1

3
gz

)
. (27)

FIG. 1. (Color online) Polynomial Q(z,T ) for different propaga-
tion distances: (a) β3 > 0 and (b) β3 < 0.

Thus, we define here a small dimensionless parameter
ε(z), which is distance dependent and hence leads to non-
self-similar propagation of the quasi-similaritons. However,
we emphasize that the perturbation theory developed in the
paper is based on a constant formal parameter ε which is
proportional to β3. We also note that the constant parameter of
the perturbation theory can be defined as ε0 = ε(0).

The rectangular function I(z,τ ) defines here the region of
variable τ where the polynomial

Q(z,T ) = 1 − ε(z)T − T 2 + 8
3ε(z)T 3, (28)

with T = τ/w(z) is positive and Eq. (25) describes the power
of a bounded pulse with finite support. To define this region
of τ we should consider the roots of the polynomial Q(z,T )
(see Fig. 1). From Eq. (28) it follows that the three roots
of an equation Q(z,Tk) = 0 are real only when z � zc (for
some critical distance zc), and when z < zc all of them
differ and can be ordered as T1(z) < T2(z) < T3(z). A critical
parameter εc = ε(zc) can be calculated using the condition that
at z = zc the two roots of the polynomial Q(z,T ) are equal:
T2(zc) = T3(zc) or T1(zc) = T2(zc) for positive or negative β3,
respectively. This condition yields the critical parameter εc by
an equation 32ε4

c − 429ε2
c + 12 = 0, and hence εc = ±0.167

for positive and negative β3, respectively. We note that for
z > zc the polynomial Q(z,T ) has only one real root, which is
unphysical because the pulse must be bounded. The fact that
the power of the pulse is not a bounded function of τ and the
pulse does not have a finite support in the region z > zc is also
demonstrated in Fig. 1. The origin of this unphysical behavior
of the solution is connected with instabilities which arise for
propagating lengths z > zc. This fact allows us to identify zc

with the distance for which the pulse breaks up due to the
shock-type instabilities [27].

Thus the bounded pulse with finite support can be defined
in the region z � zc by the rectangular function:

I(z,τ ) =
{

1 if w(z)Tk(z) � τ � w(z)Tk+1(z)
0 otherwise , (29)

where k = 1 for β3 > 0 and k = 2 for β3 < 0, respectively.
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We have found above the limitation on the parameter
ε(z): |ε(z)| � |εc| = 0.167. Hence the function ε(z) is a small
dimensionless distance-dependent parameter in this theory and
in the case when β3 = 0 we have ε(z) = 0, and the pulse
becomes parabolic.

We can write the solution of Eq. (1) in the form ψ(z,τ ) =
U (z,τ ) exp[i	(z,τ )] where U (z,τ ) is the positive amplitude
and 	(z,τ ) is the phase, then for g = const. from Eq. (2)
follows that:

U (z,τ ) = |ψ(z,τ )| = A(z,τ ) exp
(

1
2gz

)
. (30)

Equations (25) and (30) yield the amplitude U (z,τ ):

U (z,τ ) = egz/3
√

�Q(z,τ/w(z))I(z,τ ). (31)

Using Eq. (31) one can find the energy of the pulse as

E(z) =
∫ +∞

−∞
|ψ(z,τ )|2dτ = 4

3
�w(z)ηk(z)e2gz/3, (32)

where the functions ηk(z) for k = 1,2 are

ηk(z) = 3

4
[Tk+1(z) − Tk(z)] − 3ε(z)

8

[
T 2

k+1(z)−T 2
k (z)

]
− 1

4

[
T 3

k+1(z) − T 3
k (z)

]+ε(z)

2

[
T 4

k+1(z) − T 4
k (z)

]
,

(33)

with k = 1 for β3 > 0 and k = 2 for β3 < 0, respectively.
The first-order perturbation theory using the small param-

eter ε yields the following equations for the roots of the
polynomial Q(z,T ):

Tk(z) = −1 + 5
6ε(z), Tk+1(z) = 1 + 5

6ε(z), (34)

where k = 1 for β3 > 0 and k = 2 for β3 < 0, respectively.
The substitution of these roots in Eq. (33) leads in the first
order in the small parameter ε to the equation ηk(z) = 1 for
k = 1,2. Thus, to first order in ε the energy of the pulse is

E(z) = 4

3
�w(z)e2gz/3, E0 = 4

g

√
2γβ2�3, (35)

where E0 = E(0). From Eq. (35) follows that the parameter
� is given by

� = 1

4

(
2g2E2

0

γβ2

)1/3

. (36)

This equation allows us to present the solution of Eq. (1)
with g = const. as a function of input energy E0. Using
Eq. (36) we find the amplitude of the pulse given by Eq. (31)
as

U (z,τ ) =
(

3E(z)

4w(z)

)1/2 √
Q(z,τ )I(z,τ ), (37)

where E(z) = E0e
gz and the function Q(z,τ ) is

Q(z,τ )=1 − ε(z)

(
τ

w(z)

)
−

(
τ

w(z)

)2

+ 8

3
ε(z)

(
τ

w(z)

)3

.

(38)

Here the effective width w(z) of the pulse and the small
dimensionless parameter ε(z) are

w(z) = 3

(
γβ2E0

2g2

)1/3

egz/3, (39)

ε(z) = β3g

18β2
2

w(z) = β3

6β2
2

(
1

2
γβ2gE0

)1/3

egz/3. (40)

We note that the effective width w(z) defined by Eq. (39)
coincides with the effective width of the parabolic pulses [7].
It is follows from Eqs. (29) and (34) that in the first order of
small parameter ε the duration of the pulse is w(z)[Tk+1(z) −
Tk(z)] = 2w(z). We also note that in the first order of small
parameter ε the full width at half maximum for quasiparabolic
pulses is

√
2w(z).

The rectangular function I(z,τ ) is defined here by Eq. (29)
for z � zc, where the critical length zc is given by εc =
ε(zc). Because ε(zc) = ε0e

gzc/3, the critical length is zc =
(3/g)ln(|εc|/|ε0|), where ε0 = ε(0) = β3gw(0)/(18β2

2 ).
The phase of the pulse in first order in ε follows from

Eq. (11) and Eqs. (23), (24), and (36):

	(z,τ ) = φ0 + 3

8

(
2γ 2E2

0

β2g

)1/3

e2gz/3

− β3g

72β2
2

(
2γ 2E2

0

β2g

)1/3

e2gz/3τ −
(

g

6β2

)
τ 2

+
(

7β3g
2

486β3
2

)
τ 3. (41)

Hence the chirp function �(z,τ ) = −	τ (z,τ ) of the pulse is
quadratic in τ :

�(z,τ ) = β3g

72β2
2

(
2γ 2E2

0

β2g

)1/3

e2gz/3

+
(

g

3β2

)
τ −

(
7β3g

2

162β3
2

)
τ 2.

The solution given by Eqs. (37)–(41) is based on statement
that in an asymptotical regime ξ = gz � 1 we can neglect the
last term (∼AAτττ ) in the right-hand part of Eq. (5) and also we
can neglect three last terms (∼Aττ /A and ∼Aτ/A) in the right-
hand part of Eq. (6). This statement, which is also confirmed by
our numerical simulations, can be proved using the solution
found above together with Eq. (7). We do not present here
this tedious but technically simple proof. The asymptotical
regime for ξ � 1 applies only when the condition ξc = gzc �
1 is satisfied. Numerical simulations (see below) show that
the condition ξc � 1 is important in this theory, providing a
highly accurate analytical description of propagating quasi-
similaritons and critical lengths zc in fiber amplifiers with
TOD.

It follows from Eqs. (32), (36), and (39) that the energy
of the pulse is E(z) = E0ηk(z) exp(gz), where the functions
ηk(z) (k = 1,2) are given by Eq. (33). To demonstrate the
dependence of the functions ηk(z) on the propagation distances
z we plot in the Fig. 2 the function η1(z) for the case β3 > 0,
and the function η2(z) for the case β3 < 0 with the same input
energies. It is seen in the graph that η1(z) = η2(z) and the
functions ηk(z) are very close to 1 for all values of ξ � ξc
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FIG. 2. (Color online) Renormalization functions η1(z) for β3 >

0 (κ = 3.018 × 10−2) and η2(z) for β3 < 0 (κ = −3.018 × 10−2)
with input dimensionless energy V0 = 3.922 × 10−2.

leading to a small deviations from 1 in the vicinity of ξ =
ξc = 14.09. We use in Fig. 2 the dimensionless parameters for
normalized distance, the energy, and TOD as ξ = gz, V0 =
γE0/

√
gβ2, and κ = β3

√
g/β3

2 , respectively.
Since ηk(z) = 1 (k = 1,2) in the first order in ε, the energy

of the propagating pulses in the first order of the perturbation
theory is E(z) = E0e

gz. It is also easy to see that, in the
limit β3 → 0, the solution for propagating pulses in fiber
amplifiers with TOD [Eqs. (37)–(41)] reduces to a parabolic
solution [7,8]. Because the small function ε(z) of the theory is
bounded by the condition |ε(z)| � |εc| = 0.167 (|ε(z)| � 1),
the solution [see Eqs. (37)–(41)] describes the pulses which we
may interpret as quasi-similaritons that retain their integrity,
although the pulse shape deviates from parabolic and the chirp
becomes nonlinear. From the solution above it also follows that
the critical length zc = (3/g)ln(|εc|/|ε0|) can be identified with
the critical length at which the TOD generates pulse breakup
because at z > zc the pulse becomes unbounded which is
unphysical. We consider this issue in more detail in Sec. VI.

Finally, we note that the phase given by Eq. (41) can also
be written as

	(z,τ ) = φ0 +
(

g

12β2

)
w(z)2 −

(
g

18β2

)
ε(z)w(z)τ

−
(

g

6β2

)
τ 2 +

(
7g

27β2

)
ε(z)

w(z)
τ 3. (42)

Hence the phase is presented here in an explicit form as
a function of w(z) and ε(z) which is important for the
renormalization procedure developed below.

IV. RENORMALIZATION PROCEDURE AND SOLUTION
FOR DISPERSION-DECREASING FIBERS

It was found above that the energy of the propagating pulses
(quasi-similaritons) coincides with the exact energy E(z) =
E0e

gz of the pulses only in the first order in the small constant
parameter ε. We formulate in this section a renormalization
procedure for the solution given by Eqs. (37)–(41) which

yields the exact energy with distance of the pulse and takes
into account higher orders of parameter ε (ε ∼ β3) in the
perturbation theory for the effective width of the pulse.

We formulate the generalized renormalization procedure of
the solution by the exchange E(z) → E(z)/ηk(z) and w(z) →
w

(n)
k (z) in Eqs. (37), (38) and (29), where w

(n)
k (z) is

w
(n)
k (z) = w(z)

ηk(z)n
= 3

(
γβ2E0

2g2

)1/3
egz/3

ηk(z)n
. (43)

Here the functions ηk(z) are given by Eq. (33) with k = 1
for β3 > 0 and k = 2 for β3 < 0, respectively, and w(z)
is defined by Eq. (39). We emphasize that the exchange
E(z) → E(z)/ηk(z) in Eq. (37) yields the exact energy with
distance of the pulse and the exchange w(z) → w

(n)
k (z) in

Eqs. (37), (38), and (29) yields the renormalization of the
pulse width. Here n is a renormalization parameter (some real
quantity) which can be found analytically by a variational
procedure or numerically. We have found (see Sec. VII) that
with a high accuracy this parameter can be chosen as an
integer number n = 3. The renormalization parameter is equal
to n = 1 and the phase is nonrenormalized in the previous
solution [27].

Using the procedure described above we can present the
renormalized amplitude UR(z,τ ) and polynomial QR(z,τ ) as

UR(z,τ ) =
(

3E(z)

4ηk(z)w(n)
k (z)

)1/2 √
QR(z,τ )IR(z,τ ), (44)

QR(z,τ ) = 1 − ε(z)

(
τ

w
(n)
k (z)

)
−

(
τ

w
(n)
k (z)

)2

+ 8

3
ε(z)

(
τ

w
(n)
k (z)

)3

, (45)

where E(z) = E0e
gz and small parameter (function) ε(z) is

given by Eq. (40).
The exchange w(z) → w

(n)
k (z) also yields a new rectangular

function IR(z,τ ) in Eq. (44) given by

IR(z,τ ) =
{

1 if w
(n)
k (z)Tk(z) � τ � w

(n)
k (z)Tk+1(z)

0 otherwise
, (46)

with k = 1 for β3 > 0 and k = 2 for β3 < 0. New renormalized
phase follows by the exchange w(z) → w

(n)
k (z) in Eq. (42):

	R(z,τ ) = φ0 +
(

g

12β2

)
w

(n)
k (z)2 −

(
g

18β2

)
ε(z)w(n)

k (z)τ

−
(

g

6β2

)
τ 2 +

(
7g

27β2

)
ε(z)

w
(n)
k (z)

τ 3. (47)
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This yields a renormalized chirp given by

�R(z,τ ) = β3g

72β2
2

(
2γ 2E2

0

β2g

)1/3
e2gz/3

ηk(z)n
+

(
g

3β2

)
τ

−
(

7β3g
2

162β3
2

)
ηk(z)nτ 2. (48)

Using Eq. (44) for the renormalized amplitude UR(z,τ )
we may calculate the energy of the pulse E(z) =∫ +∞
−∞ UR(z,τ )2dτ = E0e

gz. Thus the energy of the pulse with
distance for the renormalized solution is described by an exact
equation. We emphasize that the renormalization procedure
yields only a small correction to the solution because for all
distances z � zc the parameter ε(z) is small. Our simulations
show (see Fig. 2) that the functions ηk(z) (k = 1,2) are very
close to the value 1 for z � zc and hence the difference between
the functions w(z) and w

(n)
k (z) is small. Such corrections are

noticeable only in the vicinity of the critical distance z = zc.
In the conclusion of this section we consider the renor-

malization functions η1(z) and η2(z) for the cases which
differ only with the parameter β3: (1) β3 = β+

3 > 0 and
(2) β3 = β−

3 < 0, where β−
3 = −β+

3 . The ordered roots of
the polynomial Q(z,T ) in Eq. (28) for these two cases are
connected as T −

1 (z) = −T +
3 (z), T −

2 (z) = −T +
2 (z), T −

3 (z) =
−T +

1 (z), where the indexes ± indicate two different cases (1)
and (2), respectively. Using this result and Eqs. (33) and (43)
we can prove that η1(z) = η2(z) and hence w

(n)
1 (z) = w

(n)
2 (z)

where the functions η1(z), w
(n)
1 (z), and η2(z), w

(n)
2 (z) are

defined here for the cases (1) and (2), respectively. This result
is also confirmed in Fig. 2 where we present the numerical
simulations for the functions η1(z) and η2(z) with some fixed
parameters for fiber amplifier.

A. Pulse propagation in fibers with decreasing dispersions

The generalized NLS, Eq. (1), can be transformed to
the equation describing the propagation of the pulses in a
fiber with decreasing second-order and third-order dispersion
parameters. Such a transformation applied to the solution given
by Eqs. (37)–(41) leads to the solution of the NLSE describing
pulse propagation in a fiber with decreasing dispersion
parameters. In the case when in Eq. (1) g = const. the trans-
formation is ψ̄(s,τ ) = ψ̃(z,τ ) where s = (egz − 1)/g. This
transformation applied to Eq. (4) yields the equation for a fiber
with decreasing second-order and third-order dispersions as

iψ̄s = β̄2(s)

2
ψ̄ττ + i

β̄3(s)

6
ψ̄τττ − γ |ψ̄ |2ψ̄, (49)

β̄2(s) = β2

1 + gs
, β̄3(s) = β3

1 + gs
. (50)

We may consider the variable s in Eq. (49) as a propagation
distance in a fiber with decreasing dispersion parameters β̄2(s)
and β̄3(s), and the parameter g here is a factor describing
decreasing dispersion parameters. In the case of g = const.,
Eq. (2) has the form ψ̃(z,τ ) = e−gz/2ψ(z,τ ) and the
transformation for solution in a fiber with decreasing
second-order and third-order dispersions can be written as

ψ̄(s,τ ) = 1√
1 + gs

ψ(z,τ ), z = 1

g
ln(1 + gs). (51)

We note that a similar transformation [30] has been applied
to a parabolic solution in the case β3 = 0. Using the ansatz
ψ̄(s,τ ) = ŪR(s,τ ) exp[i	̄R(s,τ )] and Eq. (51) we can
transform the solution given by Eqs. (43)–(48) to the solution
of the Eq. (49) with decreasing second-order and third-order
dispersions given by Eq. (50). This transformation yields the
amplitude ŪR(s,τ ) in the form:

ŪR(s,τ ) = 1

2

(
2g2E2

0

γβ2

)1/6

η̄k(s)(n−1)/2(1 + gs)−1/6

×
√
Q̄R(s,τ )ĪR(s,τ ), (52)

Q̄R(s,τ ) = 1 − ε̄(s)

(
τ

w̄
(n)
k (s)

)
−

(
τ

w̄
(n)
k (s)

)2

+ 8

3
ε̄(s)

(
τ

w̄
(n)
k (s)

)3

. (53)

ε̄(s) = β3

6β2
2

(
1

2
γβ2gE0

)1/3

(1 + gs)1/3. (54)

w̄
(n)
k (s) = w̄(s)

η̄k(s)n
= 3

(
γβ2E0

2g2

)1/3 (1 + gs)1/3

η̄k(s)n
. (55)

The functions η̄k(s) (k = 1 for β3 > 0 and k = 2 for β3 < 0,
respectively) are connected to the renormalization procedure
and they are given by

η̄k(s) = 3

4
[T̄k+1(s) − T̄k(s)] − 3ε̄(s)

8

[
T̄ 2

k+1(s) − T̄ 2
k (s)

]
− 1

4

[
T̄ 3

k+1(s) − T̄ 3
k (s)

] + ε̄(s)

2

[
T̄ 4

k+1(s) − T̄ 4
k (s)

]
,

(56)

where T̄k(s) are the roots of the polynomial Q̄(s,T̄ ):

Q̄(s,T̄ ) = 1 − ε̄(s)T̄ − T̄ 2 + 8
3 ε̄(s)T̄ 3, (57)

with T̄ = τ/w̄
(n)
k (s). We assume here that s � sc, where

sc = g−1(egzc − 1) is the critical distance, and all roots T̄k(s)
are real and ordered: T̄1(s) < T̄2(s) < T̄3(s) for s < sc. The
rectangular function ĪR(s,τ ) is defined as

ĪR(s,τ ) =
{

1 if w̄
(n)
k (z)T̄k(z) � τ � w̄

(n)
k (z)T̄k+1(z)

0 otherwise
, (58)

with k = 1 for β3 > 0 and k = 2 for β3 < 0, respectively.
The phase of the propagating pulses in a fiber with

decreasing second and third-order dispersion parameters given
by Eqs. (49) and (50) has the form:

	̄R(s,τ ) = φ0 + 3

8

(
2γ 2E2

0

β2g

)1/3

η̄k(s)−2n(1 + gs)2/3

− β3g

72β2
2

(
2γ 2E2

0

β2g

)1/3

η̄k(s)−n(1 + gs)2/3τ

−
(

g

6β2

)
τ 2 +

(
7β3g

2

486β3
2

)
η̄k(s)nτ 3. (59)
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Hence the chirp function �̄(s,τ ) = −	̄τ (s,τ ) of the pulse is a
quadratic in τ :

�̄R(s,τ ) = β3g

72β2
2

(
2γ 2E2

0

β2g

)1/3

η̄k(s)−n(1 + gs)2/3

+
(

g

3β2

)
τ −

(
7β3g

2

162β3
2

)
η̄k(s)nτ 2. (60)

We emphasize that the renormalization procedure used in
this solution for propagating pulses in a fiber with decreasing
second- and third-order dispersions leads to conservation of
the pulse energy: E(z) = const. = E0. However, the deviation
of the functions η̄k(s) from 1 for distances s � sc is very small
and hence this procedure leads to small corrections. Hence, one
can take in the above equations η̄k(s) = 1, which considerably
simplifies the solution, although in this case the pulse energy
differs slightly along the fiber from input energy E0.

V. AMPLIFIERS WITH VARYING GAIN AND
DISPERSION-DECREASING FIBERS

In this section we consider the general case when the
quasiparabolic pulses propagate in optical fiber amplifiers
with TOD and varying gain function g(z). We describe the
pulse propagation in fiber amplifiers by the nonlinear system
of differential equations Eqs. (12)–(19) with the boundary
condition given by Eq. (20). In this section we consider
a restricted class of varying gain functions for which the
asymptotic behavior of propagating pulses depends only on
the input energy. This remarkable property is connected with
an existence of a global attractor [10] of the nonlinear system of
differential equations, Eqs. (12)–(19). In this case pulses with
different initial conditions are attracted to the same structurally
stable asymptotic solution.

The solution of the Eqs. (12) and (14) and Eqs. (16) and (18)
for the functions α0(z),α2(z) and c0(z),c2(z) can be presented
in the form:

α0(z) = 3E0

4w(z)
, α2(z) = 3E0

4w(z)3
, (61)

c0(z) = φ0 + 3γ

4

∫ z

0

E(z′)
w(z′)

dz′,

c2(z) = −
[

1

2β2w(z)

]
dw(z)

dz
. (62)

Here E(z) = E0 exp(G(z)) is the energy of the pulse for
distributed gain and the effective width w(z) is given by the
following equation:

d2w(z)

dz2
=

(
3γβ2

2

)
E(z)

w(z)2
. (63)

We note that this equation is the same as the equation for the
case β3 = 0 [8]. The solution of this equation does not depend
on the boundary conditions for a restricted class of varying gain
functions mentioned above. Thus, in this case, pulses with
different initial conditions have the same structurally stable
asymptotic solution.

Neglecting the higher-order terms (∼εn with n > 1) in
Eq. (10) and using Eq. (61) we find the amplitude of the pulse
in this general case as

U (z,τ ) =
(

3E(z)

4w(z)

)1/2 √
Q̂(z,τ )Î(z,τ ), (64)

Q̂(z,τ ) = 1 − ε1(z)

(
τ

w(z)

)
−

(
τ

w(z)

)2

+ ε2(z)

(
τ

w(z)

)3

,

(65)

where ε1(z) and ε1(z) are two small dimensionless distance-
dependent parameters:

ε1(z) = α1(z)w(z)

α0(z)
= 4α1(z)w(z)2

3E0
, (66)

ε2(z) = −α3(z)w(z)3

α0(z)
= −4α3(z)w(z)4

3E0
. (67)

We emphasize that the functions ε1(z) and ε2(z) are both
proportional to β3. Moreover, it can be shown that in the
general case, when g 	= const., the functions ε1(z) and ε2(z)
essentially differ: ε1(z) is not proportional to ε2(z). However,
if g = const. we have found above that ε2(z) = (8/3)ε(z) and
ε1(z) = ε(z).

The rectangular function Î(z,τ ) in Eq. (64) has the same
form as in Eq. (29), where the function w(z) is given
here by Eq. (63) and the functions Tk(z) are the roots of
the polynomial Q̂(z,T ) = 1 − ε1(z)T − T 2 + ε2(z)T 3 [T =
τ/w(z)]. All roots of the polynomial Q̂(z,T ) are real when
z � zc and they are ordered: T1(z) < T2(z) < T3(z) for z < zc.
We define the critical length zc as the distance at which two
real roots of the polynomial Q̂(z,T ) are equal: T2(zc) = T3(zc)
or T1(zc) = T2(zc) for positive or negative β3, respectively.
This definition is sensible because for z > zc the polynomial
Q̂(z,T ) has only one real root, which is unphysical (because
the pulse must be bounded) and hence the length zc can be
identified with pulse breakup.

The phase of the pulse for the general case (distributed gain
and TOD) in the first order in ε follows from Eq. (11) and
Eq. (62):

	(z,τ ) = φ0 + 3γ

4

∫ z

0

E(z′)
w(z′)

dz′ + c1(z)τ

− 1

2β2w(z)

(
dw(z)

dz

)
τ 2 + c3(z)τ 3. (68)

In the Eqs. (66)–(68), the functions α3(z) and c3(z) are the
solutions of Eqs. (15) and (19) and the functions α1(z) and
c1(z) are the solutions of Eqs. (13) and (17). The analytical
solution of Eq. (63) as well as Eqs. (15) and (19) and Eqs. (13)
and (17) is possible only for some particular gain functions
g(z) because these equations depend on an arbitrary increasing
positive function E(z) [in Eqs. (16)–(19) �(z) = (γ /E0)E(z)].
The solutions of Eq. (63) with some particular distributed gain
functions have been given elsewhere [10]. The renormalization
procedure for the general case [Eqs. (63)–(68)] is similar
to the procedure described in the previous section (see the
Appendix).
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In the case β3 = 0 the Eqs. (64), (65) and (68) describe the
propagation of the parabolic pulses in the fiber amplifiers with
distributed gain [8]:

U (z,τ ) =
(

3E(z)

4w(z)

)1/2 (
1 − τ 2

w(z)2

)1/2

θ (w(z) − |τ |), (69)

	(z,τ ) = φ0 + 3γ

4

∫ z

0

E(z′)
w(z′)

dz′ − 1

2β2w(z)

(
dw(z)

dz

)
τ 2,

(70)

where the width w(z) is given by Eq. (63) and θ (x) is the
step function: θ (x) = 1 for x � 0 and θ (x) = 0 otherwise. If
g = const. one can find the solution of Eq. (63) in the form
w(z) = w0e

λz which yields λ = g/3 and hence the width w(z)
is given by Eq. (39). Thus the Eqs. (69) and (70) reduce in this
case to the known parabolic solution [7].

A. Fibers with decreasing second- and third-order dispersions

In the general case (g 	= const.) the Eq. (4) can be
transformed to the equation describing the propagation of the
pulses in a fiber with decreasing second-order and third-order
dispersion parameters. This transformation is given by

ψ̄(s,τ ) = ψ̃(z,τ ), s = F (z) ≡
∫ z

0
eG(z′)dz′, (71)

and the equation describing the propagation of the pulses in a
fiber with decreasing dispersion parameters is

iψ̄s = β̄2(s)

2
ψ̄ττ + i

β̄3(s)

6
ψ̄τττ − γ |ψ̄ |2ψ̄. (72)

Here decreasing dispersion parameters β̄2(s) and β̄3(s) are

β̄2(s) = β2 exp[−G(R(s))], β̄3(s) = β3 exp[−G(R(s))],

(73)

where z = R(s) is the inverse function: z = R(F (z)). Using
the ansatz ψ̄(s,τ ) = Ū (s,τ ) exp[i	̄(s,τ )] we can find the
amplitude Ū (s,τ ) and the phase 	̄(s,τ ) of the propagating
pulses in the form:

Ū (s,τ ) = U (R(s),τ ) exp
[− 1

2G(R(s))
]
, (74)

	̄(s,τ ) = 	(R(s),τ ). (75)

where U (z,τ ) and 	(z,τ ) are given by Eqs. (64) and (68).
The general renormalization procedure is described in the
Appendix and leads to both renormalized functions U (z,τ )
and Ū (s,τ ).

VI. BREAKUP AND CRITICAL DISTANCES FOR
PROPAGATING PULSES

The breakup of the pulses propagating in fiber amplifiers
is connected with generation of the optical shock-type insta-
bilities due to TOD [25,26]. The numerical simulations of
Eq. (1) demonstrate that these instabilities can be identified
with some distances z = zc for which the shape of the pulses
becomes “noisy.”

We have also shown in Sec. IV that the transformation given
by Eq. (51) maps the solution of the NLS onto the solution for
fiber with decreasing second-order and third-order dispersions.

Hence the same mechanism (the optical shock-type instability
due to TOD) leads to breakup of the pulses propagat-
ing in fiber with decreasing second-order and third-order
dispersions.

It was shown in Sec. III that the critical length zc and the
critical parameter εc = ε(zc) (|ε(z)| � |εc|) can be calculated
analytically using the condition that, at z = zc, the two roots
of the polynomial Q(z,T ) given by Eq. (28) are equal:
T2(zc) = T3(zc) or T1(zc) = T2(zc) for positive and negative
β3, respectively. For distances z > zc, Eqs. (37)–(42) breaks
down, because in this case the polynomial Q(z,T ) has only
one real root which is unphysical (the pulse must be bounded).
Thus we can identify the critical distance zc with the distance
at which the TOD generate pulse breakup [27].

The condition T2(zc) = T3(zc) [or T1(zc) = T2(zc)] yields
the critical parameter εc as

32ε4
c − 429ε2

c + 12 = 0. (76)

The solution of Eq. (76) is εc = ±0.167 for positive and
negative β3, respectively. The critical distance zc is defined
by equation ε(zc) = εc which yields

zc = 3

g
ln

|εc|
|ε0| , ε0 = β3

6β2
2

(
1

2
γβ2gE0

)1/3

, (77)

with ε0 = ε(0). Hence the critical distance at which the pulse
breaks up is

zc = 1

g
ln

(
σβ5

2

γgE0|β3|3
)

, σ = 432|εc|3, (78)

where σ = 2.01 for εc = ±0.167.
In the case of pulse propagation in fiber with decreasing

dispersions from Eq. (51) follows that sc = g−1(egzc − 1).
Thus [see Eqs. (49) and (50)] the critical length sc in a fiber at
which the pulse breaks up is

sc = 1

g

(
σβ5

2

γgE0|β3|3 − 1

)
. (79)

The critical distance zc for amplifiers with TOD and
distributed gain g(z) follows from the condition that two roots
of the polynomial Q̂(z,T ) = 1 − ε1(z)T − T 2 + ε2(z)T 3 are
equal: T2(zc) = T3(zc) or T1(zc) = T2(zc) for positive and
negative β3, respectively (all roots are real for z � zc). This
condition yields the equation for critical distance zc as

4ε2(zc)ε1(zc)3 + ε1(zc)2 + 18ε1(zc)ε2(zc)

− 27ε2(zc)2 + 4 = 0. (80)

The Eq. (80) reduces to Eq. (76) when g = const. because
in this case ε1(z) = ε(z) and ε2(z) = (8/3)ε(z). We note that
Eqs. (12)–(19) are invariant under exchange β3 → −β3 be-
cause the functions α1(z),α3(z) and c1(z),c3(z) are proportional
to β3. The Eq. (80) is also invariant under the exchange β3 →
−β3 because the functions ε1(z) and ε2(z) are proportional to
α1(z) and α3(z) [see Eqs. (66) and (67)]. Thus we may assert
that the critical distance zc does not depend on sign of β3. In the
particular case g = const. this statement directly follows from
Eq. (78). In the general case of pulse propagation in fiber with
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FIG. 3. (Color online) Numerical pulse profile for dimensionless
distance ξ = 14.43 with κ = 3.018 × 10−2 and V0 = 3.922 × 10−2.

decreasing dispersions [see Eqs. (72) and (73)] the critical
length sc in fiber is defined by equation sc = ∫ zc

0 eG(z′)dz′,
where zc is given by Eq. (80).

The numerical simulations show that for sufficiently long
propagation distances [about z = zc in Eq. (78)], side peaks
gradually develop on the main pulse leading to total breakup
of the pulses. Such an example is shown in Fig. 3 with
dimensionless time ζ = √

g/β2τ and power u2 = (γ /g)|ψ |2.
To verify the accuracy of Eq. (78) in numerical simulations

we should define some visual criterion for breakup of the
pulses. We note that different parameters σ in Eq. (78) yield
different critical distances for breakup of the pulses. For an
example, we may define the critical distance zc for breakup
of the pulse as the propagation length for which a side peak
arises near the pulse with the same maximum power as in
the main pulse. Such a case is demonstrated in Fig. 4 for

FIG. 4. (Color online) Numerical and analytical (renormalization
parameter n = 3) pulse profiles for dimensionless distance ξ =
14.09 and V0 = 3.922 × 10−2; (a) κ = 3.018 × 10−2 and (b) κ =
−3.018 × 10−2.

the distance ξ = ξc = 14.09. Our simulations show that this
definition for critical length yields σ = 1.4 and hence we
find that εc = ε(zc) = ±0.148 for positive and negative β3,
respectively, because σ = 432|εc|3. This means that for this
definition of the critical length, the pulse breaks up slightly
before the two real roots of the polynomial Q(z,T ) are
equal.

Using the above criterion for the breakup of the pulse
it is easy to recognize the critical distances in numerical
simulations. This criterion is demonstrated in Fig. 4 with
dimensionless time ζ = √

g/β2τ and power u2 = (γ /g)|ψ |2.
We present the comparison of the numerical results and
analytical prediction for critical distances [with σ = 2.01 and
σ = 1.4 in Eq. (78)] in the next section.

VII. CRITERION FOR ASYMPTOTICAL EVOLUTION
AND NUMERICAL SIMULATIONS

It is useful to define in the case g = const. for numerical
simulations the dimensionless variables ξ = gz and ζ = τ/τg ,
where τg = √

β2/g. In this case Eq. (1) has the dimensionless
form:

iuξ = 1

2
uζζ + iκ

6
uζζζ − |u|2u + i

2
u, (81)

where

u(ξ,ζ ) =
√

γ

g
ψ(z,τ ), κ = β3

β2

√
g

β2
. (82)

Equation (78) for the critical distance can also be written in
dimensionless form as

ξc ≡ gzc = ln

(
σ

V0|κ|3
)

, (83)

whereV0 = ∫ +∞
−∞ |u(0,ζ )|2dζ = γE0/

√
gβ2 is the dimension-

less input pulse energy.
The numerical simulations show that for a given initial

pulse the asymptotical regime is described by the theory with
high accuracy for long distances ξ � 1. From this condition
it follows that the inequality ξc � ξa must be satisfied for
some fixed dimensionless parameter ξa (ξa � 1) because ξ �
ξc. Thus, using Eq. (77) we find that an asymptotical quasi-
similariton pulse evolution regime is described by this theory
when

|ε0| = |β3|
6β2

2

(
1

2
γβ2gE0

)1/3

� |εc|e−ξa/3, (84)

with the proper value for the parameter ξa . The parameter ξa in
this equation defines the accuracy of the asymptotical theory.

We also may introduce the dimensionless parameter δ of
the theory [27]:

δ = V0|κ|3 = γgE0|β3|3
β5

2

. (85)

Because δ = 432|ε0|3, the condition given by Eq. (84) is
equivalent to the condition δ � σe−ξa . As an example, using

023823-9



KRUGLOV, AGUERGARAY, AND HARVEY PHYSICAL REVIEW A 84, 023823 (2011)

FIG. 5. (Color online) Pulse power profile and chirp of the numerical and analytical (nonrenormalized) solutions for propagating distances
z = 0.7zc [(a) and (b)], z = 0.8zc [(c) and (d)], z = 0.9zc [(e) and (f)], and z = 0.99zc [(g) and (h)] with V0 = 3.922 × 10−2 and κ =
3.018 × 10−2.

ξa � 10 we have the condition δ � 0.9 × 10−4 which is
equivalent to the condition |ε0| � 0.6 × 10−2, providing high
accuracy for the analytical solution.

A. Numerical simulations

In the numerical simulations we use Eq. (81) with a
Gaussian initial pulse: u(0,ζ ) = π−1/4

√
V0 exp(−ζ 2/2). Let

FIG. 6. (Color online) Pulse power profile and chirp of the numerical and analytical (nonrenormalized) solutions for propagating distances
z = 0.7zc [(a) and (b)], z = 0.8zc [(c) and (d)], z = 0.9zc [(e) and (f)], and z = 0.99zc [(g) and (h)] with V0 = 3.922 × 10−2 and κ =
−3.018 × 10−2.
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us use the fiber amplifier parameters as an example (β2 =
0.13 ps2 m−1, β3 = ±10−3 ps3 m−1, γ = 2 × 10−3 W−1 m−1,
g = 2 m−1) and the input energy of the pulse (E0 = 10 pJ).
In this case we find ε0 = ±1.356 × 10−3 and the condition
|ε0| � 0.6 × 10−2 is satisfied. We note that in this case the
dimensionless energy of the initial pulse isV0 = 3.922 × 10−2

and the absolute value of the parameter κ = ±3.018 × 10−2

is small. The dimensionless parameter of the theory given by
Eq. (85) in this case is δ = 1.078 × 10−6.

Using these parameters of the fiber amplifier, we present
in Fig. 5 (β3 > 0) and Fig. 6 (β3 < 0) the temporal profile
and chirp of the pulses for analytical solution given by
Eqs. (37)–(41) (dotted curves) and numerical solution (solid
curves) for different propagating distances. The chirp of the
analytic solution matches well the chirp of the numerical pulse
for a wide range of distances. A small mismatch in the profile of
the pulses can be observed for both a positive and a negative
β3 for distances close to zc.

The agreement between the numerical and analytical
solution can be improved for both the chirp and the temporal
profile of the pulses using the renormalized analytical solution
given by Eqs. (43)–(48). The good matching of the curves in
Figs. 7 and 8 is obtained using the renormalization parameter
n = 3. This parameter can be found both analytically by a
variational procedure or numerically.

The power profile and the chirp of the pulses for the
above parameters of the fiber amplifier and input energy
(κ = 3.018 × 10−2 and V0 = 3.922 × 10−2) are shown in
Fig. 7 for analytical (dotted curves) and numerical (solid

curves) solutions for propagating distances z = 0.7zc, z =
0.8zc, z = 0.9zc, and z = 0.99zc, respectively. In the case
of negative TOD (κ = −3.018 × 10−2) and the same input
energy the power profile and the chirp of the pulses of fiber
amplifier are shown in Fig. 8.

We also illustrate in Fig. 9 the accuracy of the critical length
calculated by Eq. (78) or Eq. (83) at which the pulse breaks up.
An error about 2.4% can be observed between the numerical
(triangles) and analytical (solid) curves with κ = 0.03018 and
σ = 2.01 when the condition |ε0| � 0.13 × 10−2 is satisfied.
Such an error can be explained by the fact that we have used
in numerical simulations the criterion of breakup of the pulses
as it was defined in Sec. VI (this criterion is demonstrated in
Fig. 4 as well). It is evident that different criterions of breakup
of the pulses lead to different critical distances. Hence, to make
consistent the particular criterion of breakup of the pulses with
the critical length given by Eq. (78) or Eq. (83) one should
choose an appropriate parameter σ in these equations. We note
that the parameter σ = 2.01 was found from the condition that
two roots of the polynomial Q(z,T ) given by Eq. (28) are equal.
The numerical simulations in Fig. 9 show that this parameter
should be adjusted (for the criterion defined in Sec. VI).

Much better precision for critical length zc with error
�0.2% can be obtained using the numerical parameter σ = 1.4
in Eq. (78) and Eq. (83), which corresponds to the criterion
for breakup of the pulses defined in Sec. VI (equal height
of the side peak and main peak). The dependence of the
dimensionless critical length ξc = gzc on the dimensionless

FIG. 7. (Color online) Pulse power profile and chirp of the numerical and analytical renormalized (n = 3) solutions for propagating
distances z = 0.7zc [(a) and (b)], z = 0.80zc [(c) and (d)], z = 0.90zc [(e) and (f)], and z = 0.99zc [(g) and (h)] with V0 = 3.922 × 10−2 and
κ = 3.018 × 10−2.
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FIG. 8. (Color online) Pulse power profile and chirp of the numerical and analytical renormalized (n = 3) solutions for propagating
distances z = 0.7zc [(a) and (b)], z = 0.80zc [(c) and (d)], z = 0.90zc [(e) and (f)], and z = 0.99zc [(g) and (h)] with V0 = 3.922 × 10−2 and
κ = −3.018 × 10−2.

input pulse energy V0 with the parameter σ = 1.4 is shown in
Fig. 9 (broken curve).

For the numerical parameter σ = 1.4 one can find that
εc = ±0.148 (σ = 432|εc|3). Hence, we have the next bound
for small dimensionless parameter ε(z): |ε(z)| � 0.148. The
numerical simulations have been performed using a standard
split-step Fourier method [31] to Eq. (81) with a step size
�ξ = 10−4.

FIG. 9. (Color online) Numerical and analytical (for σ = 2.01
and σ = 1.4) dependence of the dimensionless critical length ξc =
gzc on the dimensionless input pulse energy V0.

VIII. CONCLUSIONS

In this paper we have developed an analytical theory
for propagating pulses in normal-dispersion fiber ampli-
fiers with TOD, and for a dispersion-decreasing fiber with
TOD. The analytical solution of the generalized nonlinear
Schrödinger equation developed here is based on asymptotical
methods, first-order perturbation theory, and a renormaliza-
tion procedure. We have also formulated a renormalization
procedure for the solution which yields the exact energy
with distance of the pulse and takes into account higher
orders of small parameter in the perturbation theory for the
effective width of the pulse. We have also found the critical
length zc at which the TOD generates pulse breakup in the
case g = const..

In the general case for fiber amplifiers with TOD and
varying gain function we have proved in the first-order
perturbation theory that the critical distance zc does not depend
on the sign of TOD.

It has been shown that there is a limitation on the input value
ε0 of the distance dependent small dimensionless parameter
ε(z). We have found a criterion which ensure the accuracy
of the asymptotic solutions. This criterion is confirmed
numerically showing that the analytical description of the
pulses and the critical length formulas developed here for fiber
amplifiers and dispersion-decreasing fibers with third-order
dispersion are very accurate. This theory should prove valuable
in the design of high-power optical fiber amplifiers and lasers
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where the performance can be seriously affected by third-order
dispersion in the gain medium.

APPENDIX: GENERAL RENORMALIZATION
PROCEDURE

The renormalization procedure in general case (g 	= const.)
is also based on the exchange E(z) → E(z)/ηk(z) and w(z) →
w

(n)
k (z) in Eqs. (64), (65) and (68), where w

(n)
k (z) is a new

effective width:

w
(n)
k (z) = w(z)

ηk(z)n
. (A1)

Here w(z) is the width of the parabolic pulse satisfying to
Eq. (63) and the functions ηk(z) (k = 1,2) are given by

ηk(z) = 3

4
[Tk+1(z) − Tk(z)] − 3ε1(z)

8

[
T 2

k+1(z) − T 2
k (z)

]
− 1

4

[
T 3

k+1(z) − T 3
k (z)

] + 3ε2(z)

16

[
T 4

k+1(z) − T 4
k (z)

]
,

(A2)

where k = 1 for β3 > 0 and k = 2 for β3 < 0, respectively.
The functions Tk(z) are the roots of the polynomial:

Q̂(z,T ) = 1 − ε1(z)T − T 2 + ε2(z)T 3, (A3)

with T = τ/w
(n)
k (z). The critical distance zc for amplifiers with

TOD and distributed gain g(z) follows from the condition that
two roots of the polynomial Q̂(z,T ) are equal: T2(zc) = T3(zc)
or T1(zc) = T2(zc) for positive and negative β3, respectively.
All roots Tk(z) (k = 1,2,3) are real in the region z � zc and
we assume that the roots are ordered T1(z) < T2(z) < T3(z)
for z < zc.

Thus the exchange E(z) → E(z)/ηk(z) and w(z) →
w

(n)
k (z) in Eqs. (64) and (65) yields the renormalized amplitude

of the pulse in this general case as

UR(z,τ ) =
(

3E(z)

4ηk(z)w(n)
k (z)

)1/2 √
Q̂R(z,τ )ÎR(z,τ ), (A4)

where the polynomial Q̂R(z,τ ) is

Q̂R(z,τ ) = 1 − ε1(z)

(
τ

w
(n)
k (z)

)
−

(
τ

w
(n)
k (z)

)2

+ ε2(z)

(
τ

w
(n)
k (z)

)3

. (A5)

Here ε1(z) and ε1(z) are two small dimensionless distance-
dependent parameters given by Eqs. (66) and (67).

The exchange w(z) → w
(n)
k (z) in Eq. (65) also yields a new

rectangular function ÎR(z,τ ) in Eq. (A4). This new rectangular
function ÎR(z,τ ) is given by Eq. (46), where w

(n)
k (z) is defined

by Eqs. (A1) and (A2) and Tk(z) are the roots of the polynomial
in Eq. (A3).

Using new functions Q̂R(z,τ ) and ÎR(z,τ ) in Eq. (A4)
we may calculate the energy of the pulse for renormalized
solution:

E(z) =
∫ +∞

−∞
|ψ(z,τ )|2dτ = E0 exp[G(z)]. (A6)

This equation demonstrates that the energy of the pulse with
distance for the renormalized solution is described by an exact
equation. However, this renormalization procedure yields a
small correction to the solution because for all distances z � zc

the parameters of the theory ε1(z) and ε2(z) are small and the
functions ηk(z) (k = 1,2) are close to 1. Note that the presented
renormalization procedure can be interpreted as a perturbation
procedure for the effective width with all orders of constant
parameter ε (ε ∼ β3) of the perturbation theory.

In conclusion, we consider the functions η1(z) and η2(z)
for two different cases which differ only with the parameter
β3: (1) β3 = β+

3 > 0 and (2) β3 = β−
3 < 0, where β−

3 = −β+
3 .

The ordered roots of the polynomial in Eq. (A3) for these two
cases are connected as: T −

1 (z) = −T +
3 (z), T −

2 (z) = −T +
2 (z),

T −
3 (z) = −T +

1 (z), where the indexes ± indicate two different
cases, (1) and (2), respectively. Using this result and Eq. (A2),
we can prove that η1(z) = η2(z) and hence w

(n)
1 (z) = w

(n)
2 (z),

where the functions η1(z), w(n)
1 (z) and η2(z), w(n)

2 (z) are defined
by Eqs. (A1) and (A2) for cases (1) and (2), respectively.
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