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Repulsion and total reflection with mismatched three-wave interaction of noncollinear
optical beams in quadratic media
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The phenomenon of the total reflection of a weak signal beam from a high-power reference beam due to
noncollinear mismatched parametric interaction in a quadratic medium is demonstrated. In a planar geometry
the conditions of the signal beam reflection from the optical inhomogeneity induced by the reference beam are
found. The analytical expression for the critical value of the signal beam tilt is obtained, and it is shown that total
reflection occurs if the initial tilt is less than the critical value. The influence of the walk-off and the reference
beam focusing on interaction dynamics are discussed. It is shown that in a bulk medium the beam reflection turns
into scattering by an induced inhomogeneity. If reflection conditions are fulfilled, the cylindrical reference beam
acts as a convex mirror and lunate distortions of the reflected beam profile occur.

DOI: 10.1103/PhysRevA.84.023821 PACS number(s): 42.25.Gy, 42.65.Jx, 42.65.Ky, 42.25.Fx

I. INTRODUCTION

Light-by-light control in nonlinear media is of particular
interest in nonlinear optics and photonics nowadays [1–7].
In this paper we investigate the effect of repulsion and
total reflection of optical beams in a mismatched quadratic
nonlinear medium. Such a phenomenon is as follows: A
phase mismatch transforms the three-wave interaction into
a cascading mechanism of parametric interaction [8–10]
when a high-power reference beam creates the effective
inhomogeneity of the refractive index for the weak signal
wave. The tilted signal beam propagating through an induced
inhomogeneity undergoes refraction, so the signal beam
trajectory becomes curved and total reflection of signal beam
from the reference beam can occur. The elaborated theory
of beam-beam interaction shows that the nonlinearly induced
reflection emerges if the cascading cubiclike nonlinearity is
defocusing and the signal beam tilt is less than a critical value.
At the parametric reflection, the pump beam also experiences
repulsion and is slightly deflected in the opposite direction.
This phenomenon is the spatial analog to nonlinear reflection
of pulses colliding in nonlinear dispersive media [11,12].

It is important to note that if total reflection conditions are
satisfied the reference beam becomes opaque for the signal
wave and acts as a mirror. Therefore after reflection from the
cylindrical reference beam a narrow signal beam diverges;
additionally, a wide beam surrounds the reference beam and
forms typical diffraction patterns.

Beam reflection also can be realized in the solitonic regime.
Parametric solitons exist due to three-wave interactions in
quadratic media [13–15]. They can repulse and attract each
other depending on the phase difference [16–20], but such
a method requires beam trapping into solitons and a careful
control of phase matching that is not always convenient and
achievable.

Also, in this case a reflected wave keeps its frequency, in
contrast to the cases described in [21,22] where reflection is
accompanied by the efficient frequency conversion.
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It should be mentioned that we have previously studied
similar effects in media with a defocusing photorefractive and
thermal nonlinearity [23,24]. However, quadratic nonlinear
media have the advantages of ultrafast nonlinear response and
of the absence of reference beam defocusing.

In this work, we found the basic laws of repulsion and
total reflection of the beams in quadratic mismatched media
by numerical simulation and by the ray optics approach.

II. THEORY OF THE NONCOLLINEAR MISMATCHED
THREE-WAVE PARAMETRIC INTERACTION

Consider the dynamics of a three-wave interaction of a
high-power reference beam at frequency ω1, a weak signal
beam at frequency ω2, and a sum wave at frequency ω3 =
ω2 + ω1. The interaction of wave beams with small divergence
and propagating at small angles to the selected axis is
well described by introducing the slowly varying amplitudes
Aj as Ej (z,t) = 1/2{Aj (z,t) exp[i(ωj t − �kj �r)] + c.c.}. The
slowness of change in amplitude means that the amplitude
or envelope of the wave beam varies little at a distance of a
wavelength. Using a standard approach [1–3] one can obtain
from Maxwell’s equations with the quadratic nonlinearity the
following system of equations for the complex amplitudes:

∂A1

∂z
+ iD1�⊥A1 = −iγ1A3A

∗
2 exp(ik̂z),

∂A2

∂z
+ iD2�⊥A2 = −iγ2A3A

∗
1 exp(ik̂z), (1)

∂A3

∂z
+ iD3�⊥A3 = −iγ3A1A2 exp(−ik̂z).

Here Dj = (2kj )−1 is the diffraction coefficient (j = 1, 2, 3),
kj = |�kj | = nj0ωj/c is the corresponding wave number, nj0

is the linear refractive index at the frequency ωj , γj is the
quadratic nonlinearity coefficient, k̂ = k1z + k2z − k3z is the
wave-vector mismatch, and kjz is the z component of
the wave vector �kj . The equations (1) contain oscillating
factors arising from the wave mismatch. This factor can be
removed by including it in the amplitude of any beam. We
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normalize the sum-frequency beam: A3 = Ā3 exp(ik̂z), and
rewrite Eq. (1) in the form

∂A1

∂z
+ iD1�⊥A1 = −iγ1Ā3A

∗
2,

∂A2

∂z
+ iD2�⊥A2 = −iγ2Ā3A

∗
1, (1a)

∂Ā3

∂z
+ iD3�⊥Ā3 = ik̂Ā3 − iγ3A1A2.

Let the high-power reference beam propagate along
the z axis and have the input envelope A1(z = 0) =
E1 exp(−x2/a2

1); the Gaussian signal beam is tilted at a small
angle θ2 � 1, A2(z = 0) = E2 exp(−(x − x0)2/a2

2 + ik2θ2x),
and has the smaller amplitude E2 � E1. The sum-frequency
wave is absent at the entrance, and therefore its initial
amplitude is zero: Ā3(z = 0) = 0.

Due to the parametric generation [see the third equation in
Eq. (1a)], the sum beam copies the transverse momentum of
the signal beam: k2 sin(θ2) = k3 sin(θ3) or, taking into account
that θ2 � 1, k2θ2 = k3θ3.

Thus we obtain the following expression for the wave-
vector mismatch:

k̂ = k1 + k2 cos θ2 − k3 cos θ3 ≈ (k1 + k2 − k3)

−(k3 − k2)k2θ
2
2

/
(2k3) = k̂m − (k1 − k̂m)k2θ

2
2

/
(2k3),

(2)

where k̂m = k1 + k2 − k3 is the wave-vector mismatch in
collinear geometry due to dispersion. Note that only the first
term of the mismatch is included in the Eqs. (1) directly, while
the second part arises from the inclination of the signal beam
at the entrance to the medium. Let us assume that k̂m = 0; this
condition may be satisfied with the interaction of ordinary and
extraordinary waves [25,26] or in periodically polled media
[27–29]. Using this condition, one gets k̂ ≈ −k1k2θ

2
2 /(2k3).

The theory is specified further to cascading interaction at
significant values of the effective mismatch [8–10]. In that
case the efficiency of sum-frequency generation becomes low.
If the widths of the beams are significant and the considered
distances are smaller than the diffractive length (z < k1a

2
1/2,

z < k2a
2
2/2), the diffractive effects are weak also. So, the

equation for the sum frequency contains the large parameter
k̂ in comparison with the terms in the left-hand side of
the equation, and one can simplify it using the asymptotic
method [30]. Expanding the amplitude Ā3 into a power series
of 1/k̂ and substituting this expansion to the third equation
of Eqs. (1a) one can obtain the simple algebraical equation in
the form k̂Ā3 = γ3A1A2. Here we use only the first term of
the expansion. Thus, the obtained expression shows that the
sum-frequency wave is generated locally with small amplitude
Ā3 ≈ (γ3/k̂)A1A2. Such an approach is widely used for
analysis of mismatched parametric processes [9,10]. Further,
its validity will be confirmed by the results of our numerical
simulations of Eq. (1).

So, substituting this expression to the equation for the signal
wave, we obtain the following equation:

∂A2

∂z
+ iD2�⊥A2 = −ik2nnlA2, (3)

nnl = (γ2γ3/(k2k̂))|A1(x,y,z)|2. (4)

Equation (3) describes beam propagation in the medium
with parametrically induced inhomogeneity. The sign of the
induced inhomogeneity is defined by the sign of the effective
wave-vector mismatch, and its profile repeats the reference
beam intensity distribution.

Thus in the cascade model of three-wave interaction the
behavior of a signal wave is described by only one equation,
Eq. (3), which greatly facilitates the analysis of beam interplay.

III. RAY THEORY OF SIGNAL BEAM REFLECTION

The paraxial Eq. (3) describes the propagation of a light
beam in the weakly inhomogeneous medium. In such media
the beam is deflected from its original direction. The curved
trajectory of the signal beam can be found by solving the wave
Eq. (3). Along with numerical simulation it is very useful to
apply the analytical methods of constructing the trajectory,
such as geometrical optics of inhomogeneous media [31].

The flow of energy long the path is directed normal to the
wave surface. Therefore, the complex amplitude of the signal
beam can be represented by the amplitude profile of B2 and
the phase front S2 in the form A2 = B2 exp[−ik2S2(x,y,z)].
Let us substitute this expression into Eq. (3), and according to
the method of geometrical optics let λ → 0 or k → ∞. This
means that a transverse size of the induced inhomogeneity
equal to the pump beam width is much larger than the signal
wavelength. As a result, we obtain the eikonal equation:

∂S2

∂z
+ 1

2

[(
∂S2

∂x

)2

+
(

∂S2

∂y

)2
]

= nnl(x,y,z). (5)

Applying to Eq. (5) the method of characteristics [32], we
find the equations for the trajectory of the signal beam in the
following form:

d2x

dz2
= ∂nnl(x,y,z)

∂x
,

d2y

dz2
= ∂nnl(x,y,z)

∂y
. (6)

Next, we consider specific examples of the interaction
between the signal and pump beams by numerical simulation
of quasioptical equations (1) for slowly varying envelopes and
the analytical solution of ray equations (6).

IV. BEAM REFLECTION IN PLANAR GEOMETRY

In one-dimensional geometry the trajectory equations (6)
can be rewritten as

d2x

dz2
= ∂nnl(x,z)

∂x
. (7)

Equation (7) is rather difficult for theoretical analysis, since
A1 = E1(x,z), k̂ = k̂(z) and, consequently, nnl = nnl(x,z). If
the reference beam width is large enough, then the diffractive
spreading of the reference beam can be neglected; in addition,
reference beam intensity is much larger than signal beam
intensity, thus the depletion of the reference beam can be
also neglected. Thereby the reference beam remains practically
undistorted during the interaction and one can set A1 = E1(x).
Also, to simplify theoretical analysis one can assume that
k̂ = k̂(z = 0) = const [see Eq. (2)]. The applicability of such
simplifications was confirmed by the results of the numerical
simulations of Eq. (1). Thus, under such approximation we
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can consider nnl = nnl(x), and the solution of Eq. (4) can be
written as

z = z0 ±
√

2
∫

x0

x
dτ√

nnl(τ ) − nnl(x0) + θ2
2

/
2
. (8)

The plus and minus signs correspond to the different parts
of the trajectory: before and after the interaction. The trajectory
is parallel to the z axis at turning point zr where dx/dz = 0
so that −[nnl(x) − nnl(x0)] = θ 2

2 /2. Using this expression and
assuming that the initial distance between beams is rather large
so that nnl(x0) = 0, the conditions of total internal reflection
are found to be the following:

nnl < 0, θ2 < θcr. (9)

The first condition requires that induced inhomogeneity must
be negative (defocusing cascaded nonlinearity) and, conse-
quently, k̂ < 0. If in a collinear geometry the process is phase
matched (k̂m = 0) this condition is satisfied automatically [see
Eq. (2)]. The second condition shows that total reflection takes
place if the initial tilt angle is less than a critical value. Using
Eqs. (2) and (4) one can obtain the expression for the critical
tilt angle:

θcr = [2 max(nnl)]
1/2 = (

4γ2γ3k3k
−1
1 k−2

2

)1/4
E

1/2
1 max. (10)

Here E1 max is the reference beam peak amplitude.
Thus, the elaborated ray theory predicts the effect of

beam reflection that is not obvious from Eq. (1). Note that
formula (10) works well if the beams are not distorted
due to the diffraction. This means that the intersection of
beams should occur prior to the diffraction length: x0/θ2 <

k1a
2
1/2. The latter condition limits the minimal value of the

signal beam tilt: θ2 > 2x0/(k1a
2
1).

V. NUMERICAL SIMULATION OF THREE-BEAM
INTERACTION

The theoretical results presented here are confirmed by
the data from the numerical simulation of Eq. (1) for slowly
varying envelopes (see Fig. 1). For numerical analysis the
split-step method was used.

We performed numerical simulations and found that the
effect of the signal beam reflection from the reference beam
that was predicted by the theory based on cascading and ray
optics approximations occurs if the signal beam tilt is less
than the critical value. We compared theoretical and numerical
dependencies of the critical angle on peak amplitude. It
was found that the dependencies obtained numerically and
analytically by means of Eq. (10) are virtually identical to
each other after the introduction of a numerical factor of the
order of 1:

θcr,num = C θcr. (11)

This correction factor appears because of the approxima-
tions that were used to obtain Eq. (10). This implicitly takes
into account the influence of weak diffraction effects, the
change in energy and the orientation of the wave vectors of the
weak beams and other adverse factors.
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FIG. 1. Intensity distribution on the plane (x, z) for the three-wave
interaction in the case k3 : k2 : k1 = 3 : 2 : 1 (results of numerical
simulation of wave equations): (a) Signal beam propagation through
the reference beam when the tilt is larger than the critical value,
θ2 > θcr; (b) total reflection of the signal beam from the reference
beam when the initial tilt is smaller, θ2 < θcr. All quantities are plotted
in arbitrary units.

Good correlation between theoretical and numerical results
confirms adequacy of our model [Eqs. (3) and (4)] and the
developed ray theory. Note that applied approximations allow
predicting of the effect of beam reflection and accurately
estimating the value of the critical angle despite the fact
that the approximation k̂ = const and also the cascading
approximation Ā3 ≈ (γ3/k̂)A1A2 are not valid in the vicinity
of the turning point z = zr , where the signal beam becomes
parallel to the z axis. In this point the process becomes
phase matched, k̂ = 0, and efficient sum-frequency generation
occurs [see Fig. 2(a)]. However, numerical results demonstrate
that the generated sum-frequency wave is located in the small
area near the turn point z = zr [see Figs. 1(b) and 2(a)], and
the reflected signal conserves its initial power. In Fig. 2(a),
beam power is defined as Pj = ∫ ∞

−∞ |Aj (x)|2dx.
Analysis of Eq. (1) reveals that the interacting beams obey

the law of conservation of the transverse momentum:

I2 = Im
∫ 3∑

n=1

1

γn

A∗
n

∂An

∂x
dx =

3∑
n=1

I2n = I20. (12)

This relation can be rewritten for oblique beams
An = |An| exp(iknθnzx) in the form I2 = (k1/γ1)P1θ1z +
(k2/γ2)P2θ2z + (k3/γ3)P3θ3z, I20 = (k2/γ2)P2(z = 0)θ2 as at
the entrance θ1 = 0 and P3(z = 0) = 0. As it was confirmed
numerically [see Figs. 1(b), 2(a), and 2(b)], after the collision
one has P3 = 0, θ2z = −θ2, P1 = P1(z = 0), P2 = P2(z = 0),
and, consequently, I2 = (k1/γ1)P1θ1z − (k2/γ2)P2θ2. Thus,
the reference beam slants after the interaction, and taking
into account that k1/γ1 ≈ k2/γ2, one has θ1z = 2(P2/P1)θ2.
Since the signal beam power is much smaller than
the reference beam power (in our calculations P2/P1 ∼
10−4) the reference beam is deflected by a very small
angle.

So, varying the signal beam tilt angle or the reference beam
peak intensity only, one can control the signal beam trajectory
to switch from propagation through the reference beam to the
reflection from the reference beam and vice versa (see Fig. 3).
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FIG. 2. The distance dependencies of (a) signal (solid line) and sum-frequency (dashed line) beam powers and (b) total transverse impulse
and its components in parametric reflection.

VI. SIGNAL BEAM REFLECTION FROM THE FOCUSED
REFERENCE BEAM

It is obvious that the value of the critical tilt can be increased
by increasing the reference beam peak value. This can be
done by appropriate focusing of the reference beam. The
intersection region of the beams is located at the distance
lint ≈ x0/θ2, while the reference beam waist is at a distance
of lw = R1/(1 + R2

1/l2
dif), where ldif = k 1a

2
1/2 is a diffraction

length, and R1 is the initial radius of curvature of the reference
beam wave front. By equating these two lengths we obtain the
expression for the optimal curvature radius:

R1 = ldif(m +
√

m2 − 1); m = θ2ldif/2x0. (13)

In a planar geometry the maximum amplitude in the waist
increases by a factor of 4

√
1 + (ldif/R1)2 which allows an

increase in the range of admissible tilt angles.
Let us consider some features of the process. To obtain

efficient reflection in the case of strong focusing it is necessary
to decrease the signal beam width. This is explained by the
fact that the stronger the beam focusing, the smaller the waist
length and the reflection region length. During the reflection
of a broad signal beam, a part of the beam falls to the region of

the reference wave with small amplitude and is not reflected.
Indeed the signal beam interacts with the reference beam at
the length �z1 ≈ 2a2/θ2 and the waist length at the level N =
E1/E1 max is �z2 ≈ 2ldif

√
N−4 − 1/[1 + (ldif/R1)2]. Then,

the condition �z2 > �z1 should be satisfied for effective
reflection. Another feature of the signal beam reflection from
the focused reference beam is the distortion of the reflected
beam profile [compare Figs. 4 and Fig. 1(b)]. If the reference
beam is not focused and its cross section does not change,
the reflection resembles a reflection from a plane surface
parallel to the reference beam axis. Upon focusing, the beam
waist is formed and the longitudinal curvature of a parametric
mirror appears which changes the profile of the reflected signal
wave.

VII. SIGNAL BEAM REFLECTION IN THE MEDIUM
WITH BIREFRINGENCE

In the more general case of an anisotropic medium, while
analyzing the signal beam trajectories birefringence effects
should be taken into account [31] and the initial tilt angle θ2 in
Eq. (8) should be replaced by the effective tilt θ2 + β2, where
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FIG. 3. Reflection coefficient Rof the signal beam vs (a) the normalized peak amplitude of the reference beam; (b) the normalized signal
beam tilt.
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FIG. 4. Intensity distribution on the plane (x, z) for the parametric
interaction of the signal beam and focused reference beam (results of
numerical simulation of wave equations): (a) Total reflection of the
narrow signal beam; (b) partial reflection of the wide signal beam.
All quantities are plotted in arbitrary units.

β2 is the walk-off angle at the signal frequency. So, the signal
beam trajectory Eq. (8) should be rewritten as

z = z0 ±
√

2
∫ x

x0

dτ√
nnl(x) − nnl(x0) + (θ2 + β2)2/2

. (14)

It is obvious from the analysis of Eq. (14) that reflection
occurs if

0 < (θ2 + β2)2 < max{−2[nnl(x) − nnl(x0)]}. (15)

To satisfy this condition the induced inhomogeneity should
be negative and, consequently, k̂ < 0. Also, the signal beam
must propagate towards the reference beam and, consequently,
the effective tilt must be positive, θ2 + β2 > 0.

It should be noted that, in an anisotropic medium, an
effective wave-vector mismatch depends on the signal beam
propagation direction. If a spatial walk-off is absent for the

reference beam, the expression for the effective mismatch
[Eq. (2)] becomes

k̂ = k̂m − k2(k1 − k̂m)θ2
2 /2k3 + (β3 − β2)k2θ2, (16)

where β3 is the walk-off angle at the sum frequency. In contrast
to an isotropic medium (β2 = β3 = 0) when an effective
mismatch is always negative if k̂m = 0, here at some tilt angles
k̂ can be positive even if k̂m = 0, and at these angles reflection
is impossible for any values of the reference beam peak
intensity.

So, using Eqs. (15) and (16) we can present the reflection
conditions taking into account a spatial walk-off in the form

0 < F (θ2) < 1, θ2 + β2 > 0, (17)

where F (θ2) = k2(θ2 + β2)2[−k̂m + k2k1θ
2
2 /2k3 +

k2(β2 − β3)θ2]/(2γ2γ3E
2
1 max) is a characteristic function.

The inequality F (θ2) > 0 corresponds to the condition
nnl < 0, and the inequality F (θ2) < 1 defines the range of
tilt angles which are less than a critical value. So, analysis
of characteristic function F (θ2) allows determination of tilt
angles at which reflection is possible [see Fig. 5(a)].

VIII. BEAM REFLECTION IN THREE-DIMENSIONAL
SPACE

In a bulk medium the beam interaction dynamics is
more complicated. If the reference beam and the induced
inhomogeneity have a cylindrical shape, A1 = E1(r), nnl =
nnl(r), trajectory Eqs. (6) can be rewritten using cylindrical
coordinates:

d2r

dz2
= a2θ2

2

r3
+ ∂nnl(r,z)

∂r
,

dϕ

dz
= aθ2/r

2, (18)

where r and ϕ are the polar coordinates, centered on the axis
of the reference beam. a = r0 sin(ϕ2) is the aiming parameter,
ϕ2 is the angle at the initial point r = r0 between the initial
propagation direction and the direction to the inhomogeneity
maximum—the reference beam center.
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FIG. 5. The description of beam-beam interaction in cascaded quadratic media. (a) Characteristic function F vs signal wave tilt θ2 at
different values of walk-off angles in the case k3 : k2 : k1 = 3 : 2 : 1. Range of the tilt angles where reflection can occur is defined by the
conditions 0 < F (θ2) < 1 and θ2 + β2 > 0. (b) Signal beam trajectories in the transverse cross section for different values of aiming parameter
a, that is normalized to the reference beam width. Line “a” corresponds to a = 0.01, “b” to a = 0.1, “c” to a = 0.5, “d” to a = 2.0, “e” to
a = 1.0.
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FIG. 6. Reference and signal beam intensity distribution before reflection (left column) and after reflection (right column) for different
ratios of beam widths: (top row) a1/a2 = 4; (middle row) a1/a2 = 1; (bottom row) a1/a2 = 0.2. All quantities are plotted in arbitrary units.

Thus, signal beam trajectory depends on both the initial
tilt θ2 and the aiming parameter a. The propagation dynamics
of beam cross sections resembles the potential scattering of
particles. If the aiming parameter is equal to zero, a = 0,
interaction can be called “central” [see Eq. (18)]. Trajectory

equations for such interactions are the same as for planar
geometry. In such a case, parametric reflection occurs for
tilt angles less than the critical value, θ2 < θcr. If an initial
signal wave vector is not exactly directed to the reference axis
“noncentral” interaction takes place. In such case the result
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depends on the magnitude of the aiming parameter a. If this
parameter is small enough, the signal beam is reflected back.
If the deviation increases the reflection angle decreases. In this
case, the aiming parameter is great, the interaction is weak,
and the signal propagation direction coincides with the initial
direction [see Fig. 5(b)].

One more feature of the considered process is presented: If
reflection conditions are satisfied the reference beam becomes
nontransparent for the signal wave and acts as a mirror. In the
case of a two-dimensional cylindrical reference beam, since
the inhomogeneity profile repeats the reference beam intensity
distribution [see Eq. (4)] the induced mirror possesses a
considerable curvature. Thus, the interaction process looks like
a reflection from the convex mirror. If the signal beam width
is comparable with the reference beam width, the reflected
signal beam becomes divergent. To minimize such divergence
one can use focused signal beams.

If the signal beam is much wider than the reference beam,
the signal beam rounds the induced inhomogeneity and the
interaction process looks like the diffraction of the signal wave
at a reflective wire located in the medium [33] (see Fig. 6).

IX. CONCLUSION

In summary, the effect of the total reflection of the weak sig-
nal beam from the high-power reference beam at noncollinear
mismatched parametric interaction is reported. By means of
ray optics approximation the signal beam trajectory equation is
obtained. In planar geometry the conditions of the signal beam
reflection from the inhomogeneity induced by the pump beam
are found. It is shown that reflection occurs if the initial tilt is
less than the critical value, for which the analytical expression
was obtained. The influence of the birefringence and the initial
reference beam focusing on interaction dynamics are analyzed.
It is shown that the beam reflection from a cylindrical beam
turns into scattering on induced inhomogeneity. If reflection
conditions are satisfied, the cylindrical reference beam acts as
a convex mirror.

ACKNOWLEDGMENTS

The work was supported, in part, by the Russian Foundation
for Basic Research (Projects No. 09-02-01028, No. 10-02-
90010, and No. 11-02-00681).

[1] Yu. S. Kivshar and G. Agraval, Optical Solitons: From Fibers to
Photonic Crystals (Academic Press, San Diego, 2003).

[2] Advanced Photonics with Second-order Optically Nonlinear
Processes, edited by A. D. Boardman, L. Pavlov, and S. Tanev
(Kluwer, Dordrecht, 1998).

[3] Soliton Driven Photonics, edited by A. D. Boardman and A. P.
Sukhorukov (Kluwer, Dordrecht, 2001).

[4] M. N. Islam, Opt. Lett. 14, 1257 (1989).
[5] T. Shi and S. Chi, Opt. Lett. 15, 1123 (1990).
[6] H. A. Haus and W. S. Wong, Rev. Mod. Phys. 68, 423

(1996).
[7] Yu. S. Kivshar and G. I. Stegeman, Opt. Photonic News 13, 59

(2002).
[8] L. A. Ostrovskii, Sov. Phys. JETP 5, 272 (1967).
[9] G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum

Electron. 28, 1691 (1996).
[10] G. I. Stegeman, Quant. Semiclassical Opt. 9, 139. (1997).
[11] V. E. Lobanov and A. P. Sukhorukov, Phys. Rev. A 82, 033809

(2010).
[12] A. N. Bugay, S. V. Sazonov, and A. P. Sukhorukov, Proc. SPIE

7993, 799308 (2011).
[13] A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, Phys.

Rep. 370, 63 (2002).
[14] G. Assanto and G. I. Stegeman, Opt. Express 10, 388 (2002).
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