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Semiclassical analysis of spectral singularities and their applications in optics
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Motivated by possible applications of spectral singularities in optics, we develop a semiclassical method of
computing spectral singularities. We use this method to examine the spectral singularities of a planar slab gain
medium whose gain coefficient varies due to the exponential decay of the intensity of the pumping beam inside
the medium. For both singly and doublypumped samples, we obtain universal upper bounds on the decay constant
beyond which no lasing occurs. Furthermore, we show that the dependence of the wavelength of the spectral
singularities on the value of the decay constant is extremely mild. This is an indication of the stability of optical
spectral singularities.
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I. INTRODUCTION

We say that an n × n matrix A is diagonliazable if we can
expand every n-dimensional column vector as a linear combi-
nations of the eigenvectors of A. In this case we can construct
a basis consisting of these eigenvectors and diagonalize A by
transforming to this basis. We can use this terminology for
linear operators acting in infinite-dimensional Hilbert spaces
[1]. In quantum mechanics we make heavy use of the fact
that Hermitian operators are diagonalizable. Naturally, there
are non-Hermitian operators that do not have this property.
For non-Hermitian Schrödinger operators whose spectrum has
a continuous part, a source of non-diagonliazability of the
operator is the presence of what mathematicians call a spectral
singularity [2]. Spectral singularities have been extensively
studied by mathematicians since the 1950s [3] but remained
essentially unknown to physicists until recently [4].

During the past 10 years or so it was noticed that some non-
Hermitian operators can be used to serve as the Hamiltonian for
a unitary quantum system provided that one modifies the inner
product of the Hilbert space [5]. Spectral singularities emerge
as an obstruction for the implementation of this Hermitization
procedure for non-Hermitian scattering Hamiltonians. This
was initially noticed in the study of complex point interactions
[6,7]. In Ref. [4], we give the physical meaning of spectral
singularities by identifying them with the energies of certain
scattering states that behave exactly like resonances; they
correspond to zero-width resonances [8,9]. In [4] and [8]
we propose optical realizations of spectral singularities, and
in [10] we use a simple toy model to show that the optical
spectral singularities give rise to a lasing effect that takes
place exactly at the threshold gain. The calculations of spectral
singularities given in [4], [8], and [10] rely on the assumption
that the gain coefficient is constant throughout the gain region.
This allows for an essentially exact and analytic treatment of
the problem, but it is practically unattainable. In the present
article, we develop a systematic semiclassical treatment of
spectral singularities and examine its application for more
realistic optical systems whose gain coefficient varies in space.

*amostafazadeh@ku.edu.tr

A simple optical toy model that supports spectral singu-
larities is an infinite slab gain medium of thickness L that is
aligned along the x-y plane [10]. See Fig. 1.

It is easy to check that the following is an exact solution of
Maxwell’s equations

�E(z,t) = E e−iωtψ(z) êx, �B(z,t) = −iω−1E e−iωtψ ′(z) êy,

where E is a constant, êx and êy are the unit vectors
pointing along the positive x and y axes, ψ is a continuously
differentiable solution of the Schrödinger equation,

−ψ ′′(z) + v(z)ψ(z) = k2ψ(z), (1)

v is the potential defined by

v(z) :=
⎧⎨
⎩

k2[1 − n(z)2] for |z| � L
2 ,

0 for |z| > L
2 ,

(2)

k := ω/c is the wave number, and n(z) is the complex
refractive index of the gain medium.

If the gain medium is obtained by doping a host medium
of refraction index n0 and is modeled as a two-level atomic
system with lower- and upper-level population densities Nl

and Nu, resonance frequency ω0, and damping coefficient γ ,
we have

n2 = n2
0 − ω̂2

p

ω̂2 − 1 + iγ̂ ω̂
, (3)

where ω̂ := ω/ω0, γ̂ := γ /ω0, ω2
p := (Nl − Nu)e2/(meε0), e

is electron’s charge, and me is its mass. It is not difficult to
show that

ω̂2
p = 2γ̂ κ0

√
n2

0 + κ2
0 , κ0 := −λ0g0

4π
, (4)

where λ0 := 2πc/ω0 is the resonance wavelength, and g0 is
the effective gain coefficient1 at the resonance frequency [10].
For all known gain media, κ0 � n0. Therefore,

ω̂2
p ≈ 2γ̂ n0κ0 = − γ̂ n0λ0g0

2π
. (5)

1By effective gain coefficient we mean the gain coefficient minus
the loss coefficient.
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FIG. 1. (Color online) Cross section of an infinite planar slab gain
medium [hatched (blue) region] in the x-z plane. Arrows represent
pumping beams. Left- and right-hand plots represent single and
double-pumping, respectively.

In general the gain coefficient g0 is a function of z inside
the gain medium. For example, if we produce the gain by
pumping the medium from the left-hand side, the intensity of
the pumping beam decays exponentially as it penetrates the
medium, and we have

g0(z) = (g	 + α0) e
− L

2� e
− z

� − α0 for |z| < L
2 , (6)

where g	 := g0(−L/2) is the value of g0 where the pumping
beam enters the gain medium, and α0 is the absorption
(attenuation or loss) coefficient at the resonance frequency.
Note that the maximum gain coefficient g	 is attained upon
population inversion. Hence g	 � α0 [11]. If we pump the
gain medium from both sides (double-pumping), we find

g0(z) =
[

g	 + α0

cosh( L
2�

)

]
cosh

(z

�

)
− α0 for |z| < L

2 . (7)

It is useful to formulate the problem in terms of the dimen-
sionless coordinate variable:

X := z

L
+ 1

2
. (8)

Then the Schrödinger equation, (1), takes the form

−� ′′(X) + V(X)�(X) = K2�(X), (9)

where �(X) := ψ(LX − L
2 ),

V(X) :=
{

α + β G0(X) for 0 � X � 1,

0 otherwise,
(10)

α := K2
(
1 − n2

0

)
, β := n0γ̂ ω̂ K

1 − ω̂2 − iγ̂ ω̂
, (11)

K := Lk = 2πL ω̂

λ0
, G0(X) := Lg0(LX − L

2 ). (12)

We therefore consider the problem of finding the spectral
singularities of the potentials of the form

V(X) :=
{

z1 + z2 f (X) for 0 � X � 1,

0 otherwise,
(13)

where f : [0,1] → R is a piecewise twice-differentiable real-
valued function, and z1 and z2 are complex coupling constants
that can depend on K.

II. TRANSFER MATRIX AND SPECTRAL SINGULARITIES

The general solution of (9) has the form

�(X) =

⎧⎪⎨
⎪⎩

A−eiKX + B−e−iKX for X < 0,

A0�1(X; K) + B0�2(X; K) for 0 � X � 1,

A+eiKX + B+e−iKX for X > 1,

(14)

where A0,B0,A±,B± are complex coefficients, and �1(· ; K)
and �2(· ; K) are a pair of linearly independent solutions of (9)
in the interval [0,1]. Imposing the condition that � and � ′ are
continuous at X = 0 and X = 1, we can relate A+ and B+ to
A− and B− and determine the transfer matrix M of the system
that satisfies �C+ = M �C− with �C± := ( A±

B± ).
As discussed in [4] and [7], the spectral singularities are the

real values of K for which the M22 entry of the transfer matrix
vanishes. The latter has the form

M22 = eiKF (K)

2W
, (15)

where W := �1(X; K)�′
2(X; K) − �′

1(X; K)�2(X; K) is the
Wronskian of �1(· ; K) and �2(· ; K),

F (K) := iK[�−
1 (1; K)�+

2 (0; K) − �−
2 (1; K)�+

1 (0; K)], (16)

and

�±
j (X; K) := �j (X; K) ± (iK)−1�′

j (X; K), j = 1,2. (17)

Next we fix the choice of the solutions �1(· ; K) and �2(· ; K)
by demanding that they fulfill the initial conditions:2

�1(0,K) = 1, �′
1(0,K) = −iK, (18)

�2(0,K) = 1, �′
2(0,K) = 0. (19)

In view of (17) and (18), we have �+
1 (0; K) = 0 and �±

2 (0; K) =
1. These, together with (15) and (16), imply that the spectral
singularities of the potential, (13), are the real zeros of the
function

F (K) = iK �1(1; K) − �′
1(1; K). (20)

Equating the right-hand side of this equation to 0 and solving
for K give

K = −iG(1,K), (21)

where

G(X,K) := �′
1(X; K)

�1(X; K)
= ∂

∂X
ln[�1(X; K)]. (22)

Because we require K to be real, (21) is equivalent to

Re[G(1,K)] = 0, (23)

Im[G(1,K)] = K. (24)

These are the basic real equations that determine the spectral
singularities.

2This is an acceptable choice, because it gives W = iK �= 0.
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III. SEMICLASSICAL SPECTRAL SINGULARITIES

In order to apply the above procedure of determining
spectral singularities of the potentials of the form (13), we need
an explicit expression for the solution �1 of the Schrödinger
equation, (9). It is well known that except for the few exactly
solvable special cases, there is no exact and explicit method
of constructing such a solution. In this section we employ the
method of semiclassical (WKB) approximation to determine
�1 and employ the method of Sec. II.

The semiclassical solutions of (9) are given by the well-
known expression

�±(X; K) := R(X; K) exp

[
±i

∫ X

0

√
K2 − V(X) dX

]
, (25)

where

R(X; K) := [K2 − V(X)]−1/4. (26)

These solutions are reliable provided that we can neglect
R′′(X; K)/R(X; K) for all X ∈ [0,1], i.e.,∣∣∣∣4[K2 − V(X)]V′′(X) + 5V′(X)2

16[K2 − V(X)]3

∣∣∣∣ � 1. (27)

Here and in what follows we assume that V is a piecewise
twice-differentiable function and (27) is imposed on the
intervals in which V is twice-differentiable.

Because �1( · ; K) is a solution of (9), it must be a linear
combination of �±(· ; K); there are complex numbers A and
B such that

�1(X; K) = A�+(X; K) + B �−(X; K). (28)

We can determine the coefficients A and B by imposing the
initial conditions (18). This gives

A = 1

2R0

[
1 − KR2

0 + i

4
R6

0V′(0)

]
, (29)

B = 1

2R0

[
1 + KR2

0 − i

4
R6

0V′(0)

]
, (30)

where RX := R(X; K) = [K2 − V(X)]−1/4.
Next, we substitute (28) in (20), equate the resulting

expression to 0, and use (29) and (30) to derive the following
relation for the spectral singularities.

exp

{
2i

∫ 1

0

√
K2 − V(X) dX

}

=
[
1 + KR2

0 − i
4 V′(0)R6

0

] [
1 + KR2

1 + i
4 V′(1)R6

1

]
[
1 − KR2

0 + i
4 V′(0)R6

0

] [
1 − KR2

1 − i
4 V′(1)R6

1

] .
(31)

For the cases where V(0) = V(1) and V′(0) = −V′(1), Eq. (31)
reduces to

exp

{
2i

∫ 1

0

√
K2 − V(X) dX

}
=
[

1 + KR2
0 − i

4 V′(0)R6
0

1 − KR2
0 + i

4 V′(0)R6
0

]2

.

(32)

A simple example is the complex barrier potential V (X), which
has a constant value z := K2(1 − n2) throughout the interval

[0,1]. For this potential, the semiclassical approximation is
exact, and (32) takes the simple form

e2iK n =
(

n + 1

n − 1

)2

. (33)

This coincides with the exact result given in [10].
In the remainder of this article we explore the application

of our general results for the potentials of the form (13). First,
we introduce the following pair of variables:

r :=
√

1 − z1

K2
, s := z2

K2 − z1
. (34)

Using (13) and (34), we can express (31) as

exp

{
2irK

∫ 1

0

√
1 − s f (X)dX

}
= E (K,r,s), (35)

where

E (K,r,s) :=
[

1 + r p0(s) − K−1q0(s)

1 − r p0(s) − K−1q0(s)

]

×
[

1 + r p1(s) + K−1q1(s)

1 − r p1(s) + K−1q1(s)

]
, (36)

pX(s) :=
√

1 − sf (X), qX(s) := is f ′(X)

4[1 − sf (X)]
. (37)

Next, we take the logarithm of both sides of (35). In view of
the multivaluedness of “ln ,” we can write (35) in the following
equivalent form:

K = 2πm + arg[E (K,r,s)] − i ln |E (K,r,s)|
2r
∫ 1

0

√
1 − s f (X)dX

, (38)

where m = 0, ± 1, ± 2, . . . , and “arg[z]” stands for the
principal argument of z. The integer m, which, in this way,
enters into the calculation of spectral singularities, serves as
a mode number. This provides a general explanation for the
emergence of a mode number in the study of the spectral
singularity-related resonance effect.3

Next, we recall that K takes real values. Therefore the right-
hand side of (38) must be real. This allows us to write (38) as
the following pair of real equations:

{2πm + arg[E (K,r,s)]}ρ(r,s)

+ ln |E (K,r,s)|σ (r,s) = K, (39)

{2πm + arg[E (K,r,s)]}σ (r,s)

− ln |E (K,r,s)|ρ(r,s) = 0, (40)

where

ρ(r,s) := Re

[(
2r

∫ 1

0

√
1 − s f (X)dX

)−1
]

, (41)

σ (r,s) := Im

[(
2r

∫ 1

0

√
1 − s f (X)dX

)−1
]

. (42)

3In previous studies of the subject the emergence of such a mode
number could only be linked to the properties of the specific functions
entering the calculations [4,8].
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In view of (40), we can express (39) as

K =
[
σ (r,s) + ρ(r,s)2

σ (r,s)

]
ln |E (K,r,s)|. (43)

As we see below, for the typical optical applications, |s| �
1 � |K| and |r| ≈ n0. This observation has three important
consequences. First, it implies that m takes rather large positive
values. Second, it confirms the validity of the semiclassical
approximation (27). Third, it suggests that we can perform
a reliable perturbative calculation of spectral singularities by
choosing s and K−1 as perturbation parameters.4

IV. DOUBLE-PUMPING OF AN INFINITE
SLAB GAIN MEDIUM

As pointed out in Sec. I, double-pumping of an infinite slab
gain medium corresponds to a complex potential of the form
(13) with

z1 = K2
[
n2

0(ĝ	t − 1) + 1
]
, (44)

z2 = n2
0K

2(ĝ	 + 1)t , (45)

f (X) = cosh
[
ν
(

X − 1
2

)]
cosh

(
ν
2

) − 1, (46)

where we have used (7) and (10)–(12) and introduced

ĝ	 := g	

α0
� 1, t := γ̂ λ0α0

2πn0(1 − ω2 − iγ̂ ω̂)
, ν := L

�
.

(47)

Clearly, ν = 0 corresponds to the case where the gain
coefficient is uniform throughout the medium. Using (44)-(46)
in (37), (36), and (34), we find

E (K,r,s) =

⎡
⎢⎣ r + 1 + iν tanh

(
ν
2

)
s

4K

r − 1 − iν tanh
(

ν
2

)
s

4K

⎤
⎥⎦

2

, (48)

r = n0

√
1 − ĝ	t, s = (1 + ĝ	)t

1 − ĝ	t
. (49)

Now consider a typical semiconductor gain medium [11]
with

n0 = 3.4, λ0 = 1500 nm, γ̂ = 0.02, α0 = 200 cm−1,

(50)

L ≈ 300 μm, g	 ≈ 50 cm−1, ν ≈ 0.1. (51)

Then we find that at resonance frequency, K = K0 :=
2πL/λ0 > 1250, |s| ≈ |t| < 1.8 × 10−3, and |r − n0| <

6.0 × 10−4. These numerical bounds suggest that K−1, s,
and t are suitable perturbation parameters for an accurate
perturbative calculation of spectral singularities.5 The same
is also true in the vicinity of the resonance frequency, ω̂ ≈ 1,

4In a first-order perturbative calculation, in which we ignore the
quadratic and higher order terms in K−1 and s, K−1q0, and K−1q1

drop from the right-hand side of (36), E becomes K-independent,
and Eqs. (39) and (40) decouple.

5Note that K = ω̂K0.

and for other typical gain media where λ0/L � 1 and λ0g	 �
λ0α0 � 1. Furthermore, we can check that for this sample
the left-hand side of (27) is of the order of 10−8. Therefore,
semiclassical approximation provides an extremely accurate
solution of the problem.

Having related the parameters of the problem to the relevant
physical data, we wish to investigate the consequences of
imposing (40) and (43), which ensure the emergence of a
spectral singularity. Because of the complicated nature of
these equations, this can only be done numerically. It turns
out, however, that an approximate perturbative treatment can
play a vital role in elucidating the physical content of these
equations.

A. Perturbation theory and a universal bound on lasing

In this section we perform a perturbative treatment of spec-
tral singularities that involves using K−1 and t as perturbation
parameters. This is a particularly appropriate choice, because
as we stated above, |K−1| ≈ |t| ≈ 10−3.

First, we examine the results of the first-order perturbation
theory where we ignore quadratic and higher order terms in
K−1and t. In particular, because s is proportional to t, we ignore
terms involving s/K in (48). This gives

E (K,r,s) ≈
(

n0 + 1

n0 − 1

)2[
1 + 2n0ĝ	Re(t)

n2
0 − 1

]

× exp

(
2in0ĝ	Im(t)

n2
0 − 1

)
. (52)

Note that in this case E (K,r,s) does not depend on K. As a
result, (40) and (43) decouple; (40) determines the location
of the spectral singularities, and (43) gives the corresponding
value of K.

Next, we use (41), (42), (46), and (49) to compute ρ and σ .
Again ignoring quadratic and higher order terms in t, we find

ρ ≈ 1 + η Re(t)

2n0
, σ ≈ η Im(t)

2n0
, (53)

where

η := (1 + ĝ	) tanh
(

ν
2

)
ν

− 1

2
. (54)

It proves useful to examine the case ω̂ = 1 separately. In this
case,

t = iλ0α0

2πn0
, ρ ≈ 1

2n0
, σ ≈ λ0α0η

4πn2
0

, (55)

E (K,r,s) ≈
(

n0 + 1

n0 − 1

)2

exp

[
iλ0g	

π
(
n2

0 − 1
)
]

. (56)

Now we are in a position to impose (40) and (43). These,
respectively, give

η ≈
(

2n0

λ0α0m

)
ln

(
n0 + 1

n0 − 1

)
, (57)

K0 ≈ πm

n0
. (58)
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We can use the latter relation to obtain the mode number for
the spectral singularity at resonance wavelength. The result is

m ≈ 2n0L

λ0
= 1360, (59)

where we have used K0 = 2πL/λ0 ≈ 1256.637 and the
numerical values (50) and (51).6

Note that because K0 > 0, (58) implies that η > 0. In light
of (54), this is equivalent to (ĝ	 + 1)−1 � 2

ν
tanh( ν

2 ). Moreover,
we know that ĝ	 � 1 and 2

ν
tanh( ν

2 ) � 1. Combining these
inequalities, we find

1

2
� 1

1 + ĝ	

�
2 tanh

(
ν
2

)
ν

� 1. (60)

In particular, 4 tanh( ν
2 ) − ν � 0. This puts an upper bound

on the value of the damping constant ν, namely, ν � 3.83.
Equivalently, the total damping factor satisfies

1 − e−ν � 0.978. (61)

It is remarkable that this bound is independent of other physical
parameters of the system. Note also that because producing
a spectral singularity at the resonance frequency requires
a smaller gain than a spectral singularity with a different
frequency, this bound applies more generally for ω̂ ≈ 1. More
importantly, in view of the fact that spectral singularities
saturate the laser threshold condition [10], (61) is actually
a universal bound on the possibility of lasing in any doubly
pumped gain medium.

Next, we insert (54) and (59) in (57) and solve for g	 =
ĝ	α0. This yields

g	 ≈ ν

tanh
(

ν
2

) [ 1

L
ln

(
n0 + 1

n0 − 1

)
+ α0

2

]
− α0. (62)

Figure 2 shows a plot of the right-hand side of (62), which
turns out to be an increasing function of ν for ν � 0.7

In view of the fact that g	 cannot exceed α0, (62) implies
ν � νmax where νmax satisfies

2 tanh

(
νmax

2

)
−
[

1

α0L
ln

(
n0 + 1

n0 − 1

)
+ 1

2

]
νmax = 0. (63)

Solving this equation numerically we find the following
improved bounds:

ν � νmax ≈ 3.01714112,

1 − e−ν � 1 − e−νmax ≈ 0.9510590651.

(64)

The latter relation means that in order to realize a spectral
singularity at the resonance frequency, the intensity of each of
the pumping beams should not drop to less than e−νmax ≈ 4.9%
of its value in vacuum as it traverses the gain medium. This
corresponds to a 95.1% loss, which is much larger than in
typical lasing media.8

6In principle, there is no reason for this calculation to yield an
integer value for m. Indeed it gives m ≈ 1359.999 999 999 9998!

7This is actually to be expected, because it means that for larger
values of the decay constant ν, we need larger gain coefficients to
maintain the same spectral singularity.

8Typically the loss is less than 10%.

ν

FIG. 2. (Color online) A plot of the gain coefficient g	 necessary
for creating a spectral singularity at the resonance wavelength as a
function of the damping constant ν for the doubly pumped sample
considered in Sec. IV [solid (blue) curve] and singly pumped sample
considered in Sec. V [dashed (red) curve]. The horizontal dashed
(gray) line marks the upper bound on g	.

Another implication of (62) is that in the absence of
damping (ν = 0), the minimum gain coefficient necessary for
creating a spectral singularity (at the resonance frequency) is
given by

g	 = 2

L
ln

(
n0 + 1

n0 − 1

)
≈ 40.409 05 cm−1. (65)

This is in complete agreement with the results of [10].
Next, we recall from [10] that the presence of a spectral

singularity is extremely sensitive to the values of the param-
eters of the system. This suggests that the above first-order
perturbative results may not provide a sufficiently accurate
description of the spectral singularities; we need to carry out
at least a second-order perturbative calculation in which we
also account for the quadratic terms in t and K−1. Here we
summarize the resulting expressions:

|E (K,r,s)| ≈
(

n0 + 1

n0 − 1

)2 [
1 + C1Re(t) + C2Re(t)2

+ C3Im(t)2 + C4ν tanh
(

ν
2

)
Im(t)

K

]
, (66)

arg[E (K,r,s)] ≈ C1Im(t) − 2 C3Re(t)Im(t)

−C4ν tanh
(

ν
2

)
Re(t)

K
, (67)

ρ ≈ 1

2n0
[1 + ηRe(t) + 3 ξ Re(t)2 − 3 ξ Im(t)2], (68)

σ ≈ 1

2n0
[η Im(t) + 6 ξ Re(t)Im(t)] , (69)

where

C1 := 2noĝ	

n2
0 − 1

, C2 :=
(
3n2

0 + 4n0 − 1
)
n0ĝ

2
	

2
(
n2

0 − 1
)2 ,

C3 := −n0
(
3n2

0 − 1
)
ĝ2

	

2
(
n2

0 − 1
)2 , C4 := −n0(1 + ĝ	)

n2
0 − 1

,

ξ := 1

8

{
1 + (1 + ĝ	)

[
1 + ĝ	 + (ĝ	 − 3)

(
sinh ν

ν

)]
cosh ν + 1

}
.
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Inserting (66)–(69) in (40), noting that 2πm is of the same
order of magnitude as K, and keeping the three lowest order
terms in the pertubative expansion, we obtain

πm η Im(t) − ln

(
n0 + 1

n0 − 1

)
+ 6πm ξ Re(t)Im(t)

−
[

n0ĝ	

n2
0 − 1

+ η ln

(
n0 + 1

n0 − 1

)]
Re(t) ≈ 0. (70)

Doing the same for (39) gives

K ≈ 1

n0

{
πm[1 + η Re(t) + 3 ξ Re(t)2 − 3 ξ Im(t)2]

+
[

n0ĝ	

n2
0 − 1

+ η ln

(
n0 + 1

n0 − 1

)]
Im(t)

}
. (71)

If we examine the spectral singularity at the resonance
frequency, we find that (70) reduces to (57), while (71) yields
the following improvement of (58):

K0 ≈ πm

n0
+ λ0α0

2πn2
0

[(
η − 3ξ

η

)
ln

(
n0 + 1

n0 − 1

)
+ n0ĝ	

n2
0 − 1

]
.

(72)

B. Numerical results

Here we report the results of a numerical treatment of
Eqs. (39) and (40). This involves fixing the values of n0, λ0, γ̂ ,
and α0 as given by (50), setting L = 300 nm, and determining
λ and g	 for various choices of the decay constant ν. Here is a
summary of our findings.

(1) The numerical results agree with the results of second-
order perturbative calculations to at least nine significant
figures.

(2) It turns out that increasing ν starting from its minimum
value ν = 0 (unform gain coefficient) has an extremely small
effect on the wavelength of the spectral singularities. We find
spectral singularities with almost the same wavelengths but, as
expected, with larger values of the gain coefficient g	. Table I
lists the values of m, λ, and g	 for different ν.

(3) For ν � ν1 ≈ 0.225 199 75 there are precisely 55 spec-
tral singularities, corresponding to mode numbers m =
1333,1334, . . . ,1387. The values of the wavelength λ and
gain coefficient g	 for these spectral singularities are depicted
in Fig. 3. As expected, the spectral singularity with the
least amount of gain is the one generated at the resonance
wavelength.

(4) Figure 3 provides a clear demonstration of how one
can use spectral singularities to generate a tunable laser [10].
By controlling the intensity of the pumping beam we can
adjust g	 to produce lasing at any of the 55 wavelengths
shown in Fig. 2. These turn out to be almost equally spaced
in the range 1471.2–1529.9 nm, with an average spacing of
1.07 nm.

(5) As one increases ν beyond ν1 ≈ 0.225 199 75 the
number of spectral singularities starts to decrease. This is
because in this case in order to create the spectral singularity
with mode number m = 1335 or 1387, the system requires a
larger gain coefficient g	 than α0 = 200 cm−1. This is not
possible, for α0 is the largest value that g	 can take. As

TABLE I. Values of wavelength λ and gain coefficient g	 for
spectral singularities of the doubly pumped sample considered in
Sec. IV with m = 1335, 1350, 1360, and 1380 for different damping
coefficients ν.

m = 1335 m = 1360

ν λ(nm) g	 (cm−1) ν λ(nm) g	 cm−1

0.0 1527.685 989 1 175.591 10 0.0 1499.999 983 3 40.409 05
0.1 1527.685 988 8 175.904 13 0.1 1499.999 983 1 40.609 36
0.2 1527.685 988 1 176.842 58 0.2 1499.999 982 6 41.209 88
0.3 1527.685 986 8 178.404 59 0.3 1499.999 981 9 42.209 42
0.5 1527.685 982 7 183.385 65 0.5 1499.999 979 4 45.396 83

m = 1350 m = 1380

ν λ(nm) g	 (cm−1) ν λ(nm) g	 (cm−1)

0.0 1510.953 961 3 61.803 07 0.0 1478.558 453 2 124.176 55
0.1 1510.953 961 2 62.021 23 0.1 1478.558 453 0 124.446 60
0.2 1510.953 960 7 62.675 27 0.2 1478.558 452 4 125.256 20
0.3 1510.953 959 8 63.763 87 0.3 1478.558 451 4 126.603 73
0.5 1510.953 957 0 67.235 30 0.5 1478.558 448 2 130.900 84

one increases ν further the number of spectral singularities
keeps dropping. For ν > νmax ≈ 3.017 142 79 the last spectral
singularity (namely, the one at the resonance wavelength)
cannot be maintained either. This observation is in good
agreement with the bound, ν � 3.017 141 12, that we found
using the first-order perturbative calculations.

V. SINGLE PUMPING OF AN INFINITE SLAB
GAIN MEDIUM

Consider pumping of the semiconductor slab gain medium
studied in the preceding section from the left-hand side (see
Fig. 1). In this case, the gain coefficient g0 and the parameters
z1, z2, r, and s are given by (6), (44), (45), and (49), respectively,
while the function f , which describes the space dependence
of the gain coefficient, takes the form

f (X) = e−νX − 1. (73)

λ

FIG. 3. (Color online) Location of the spectral singularities of
the doubly pumped sample considered in Sec. IV in the g	-λ plane
for ν � 0.225 199 75. The 55 data points correspond to decreasing
values of the mode number m from 1387 to 1333. The dashed line
marks the resonance wavelength λ = λ0 = 1500 nm.
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This in turn implies

E (K,r,s) =
(

r + 1 + iν s

4K

r − 1 − iν s

4K

)

×
(

r
√

1 + (1 − e−ν)s + 1 − iν s

4K[1+(1−e−ν )s]

r
√

1 + (1 − e−ν)s − 1 + iν s

4K[1+(1−e−ν )s]

)
,

(74)

where we have used (36) and (37).
Performing a first-order perturbative calculation of ρ and σ

yields (53), with η given by

η := (1 − e−ν)(1 + ĝ	)

2ν
− 1

2
. (75)

In particular, at resonance frequency ω̂ = 1, we find that (55)
still holds but (56) is slightly modified:

E (K,r,s) ≈
(

n0 + 1

n0 − 1

)2

exp

[
iλ0g	ζ

π
(
n2

0 − 1
)
]

, (76)

where ζ := 1
2 [1 + e−ν − ĝ−1

	 (1 − e−ν)]. Substituting (55) and
(76) in (40) and (43), we recover (57) and (58). Again, we can
use these equations and (75) to obtain the gain coefficient g	

as a function of ν. The result is

g	 ≈ 2ν

1 − e−ν

[
1

L
ln

(
n0 + 1

n0 − 1

)
+ α0

2

]
− α0. (77)

The right-hand side of this relation is also an increasing
function of ν. This, together with the fact that g	 cannot exceed
α0, puts an upper bound on the allowed values of ν. Requiring
the right-hand side of (77) not to be larger than α0 gives

1 − e−ν

ν
� 1

α0L
ln

(
n0 + 1

n0 − 1

)
+ 1

2
>

1

2
. (78)

If we enforce the weaker condition, (1 − e−ν)/ν > 1/2, we
find the following numerical bounds on the decay constant
and decay factor:

ν � 1.6, 1 − e−ν � 0.80. (79)

Because these are independent of the parameters of the system,
they apply generally for any singly pumped gain medium. If
we enforce the stronger condition, namely, the first inequality
in (78), we find

ν � νmax ≈ 1.122 089 74,

1 − e−ν � 1 − e−νmax ≈ 0.674 401 34.
(80)

These are in extremely good agreement with the (exact)
numerical treatment of spectral singularities, which gives

ν � νmax ≈ 1.122 090 07,

1 − e−ν � 1 − e−νmax ≈ 0.674 401 44.
(81)

A comparison of these relations with (64) shows that the
bounds for the doubly pumped sample are much weaker
than those for the singly pumped sample, as is to be
expected.

Another outcome of our numerical investigation is that
the wavelength of the spectral singularities are very close
to those obtained for the doubly pumped sample of Sec. IV.
However, to create them one needs higher gain coefficients,

particularly as ν increases (This is clearly displayed in Fig. 2
for the spectral singularity at the resonance frequency.) Again,
the maximum number of spectral singularities that one can
create is 55, and they correspond to mode numbers 1333–
1387. All of these can be created provided that ν � ν1 ≈
8.435 993 × 10−3. This corresponds to a damping of less than
1 − e−ν1 ≈ 8.400 509 85 × 10−3 < 0.85%.

VI. SUMMARY AND CONCLUSION

In realistic optical models that display spectral singu-
larities the gain coefficient is a function of space. This
motivates the study of the mathematical problem of finding
spectral singularities for potentials that vanish outside a
closed interval. In this article we have identified spectral
singularities with real zeros of a particular complex-valued
(so-called Jost) function, derived a semiclassical expres-
sion for this function, and used it to locate the spectral
singularities of a typical semiconductor gain medium that
is subject to either single or double-pumping. In both
cases, we performed highly reliable pertutbative calcula-
tions and compared them with the exact numerical re-
sults.

The approach pursued here is particularly effective, because
it turns out that, for the typical optical realizations of spectral
singularities, the semiclassical approximation provides an
excellent description. An important outcome of this approach
is the fact that the inclusion of the effects of the exponential
decay of the intensity of the pumping beams as they pass
through the gain medium does not alter the wavelengths
of the spectral singularities significantly. This seems to be
an indication of the stability of spectral singularities. The
mathematical origin of this behavior may be traced to the
fact that spectral singularities are zeros of complex analytic
functions.

An interesting but expected feature of the inclusion of
the decay of the pumping beams is that the gain coeffi-
cient g	 associated with a given spectral singularity is an
increasing function of the decay parameter ν. This, combined
with the observation that g	 is bounded from above by
the absorption coefficient α0, implies the existence of an
upper bound νmax on ν beyond which no spectral singularity
can be produced. This is actually a bound on any kind
of lasing, because spectral singularities saturate the lasing
threshold condition. Using first-order perturbation theory we
obtained a numerical value for νmax that is independent
of the physical parameters of the system. Therefore, νmax

is a universal upper bound on ν beyond which no lasing
occurs.

As one steadily increases ν starting from ν = 0, one
encounters a number of critical values νj with j = 1,2, . . .

at which the number of allowed spectral singularities drops
by one. This phenomenon may have interesting ramifications
for the application of spectral singularities in producing
tunable lasers. For the gain medium we considered, there is
a maximum of 55 spectral singularities. Double- and single
pumping of this sample give 0.22519975 and 0.00843993,
respectively, for the first critical value of ν, namely, ν1.
Clearly, νmax = ν55.
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