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Although originally developed for coherent paraxial scalar electromagnetic radiation in the visible-light regime,
phase retrieval using the transport-of-intensity equation has been successfully applied to a range of paraxial
radiation and matter-wave fields. Such applications include using electron wave fields to quantitatively image
magnetic skyrmions and spin ices, propagation-based phase-contrast imaging using cold neutrons and hard x-rays,
and visible-light refractive imaging of the projected column density of cold-atom clouds. Teague’s method for
phase retrieval using the transport-of-intensity equation, which renders the phase of a paraxial complex wave
indirectly measurable via the existence of a conserved current, has been applied to a broad variety of situations
which include all of the experiments described above. However, these applications have been undertaken without
a thorough analysis of the underlying validity of the method. Here we derive sufficient conditions for the
phase-retrieval solution provided by Teague’s method to coincide with the true phase of the paraxial radiation
or matter-wave field. We also present a sufficient condition guaranteeing that the discrepancy between the true
phase function and that reconstructed using Teague’s solution is small. These conditions demonstrate that, in
most practical cases, for phase-amplitude retrieval using the transport-of-intensity equation, the Teague solution
is very close to the exact solution. However, we also describe a counter example in the context of phase-amplitude
retrieval using hard x-rays, in which the relative root-mean-square difference between the exact solution and that
obtained using Teague’s method is 9%. These findings clarify the foundations of one of the most widely applied
methods for propagation-based phase retrieval of both paraxial matter and radiation wave fields and define a
region for its applicability.
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I. INTRODUCTION

One form of the “phase problem,” as posed by Wolfgang
Pauli in his famous Handbuch article, asks whether it is
possible to reconstruct a complex spatial wavefunction u given
both its modulus |u| and the modulus of its Fourier transform
(momentum-space representation) |F {u}| [1]. This motivates
the related and more general phase problem of the means for
determining a beamlike unbounded complex wave function
given measurements of probability density over one or more
two-dimensional (2D) planes [2]. Such measurements can be
obtained via an ensemble of identically prepared quantum
systems (e.g., in the context of electron diffraction using a
modern source [3]) or via a coherent optical system (e.g., in
the context of coherent visible-light optics [4] or coherent
x-ray optics [5]).

The latter phase problem is sketched in Fig. 1, which depicts
a coherent mono-energetic spatial wave field uin incident upon
an elastically scattering potential (“sample”) A. For the sake of
concreteness, uin might correspond to a coherent electron wave
field in which spin may be neglected. A transmission electron
microscope may be used to obtain a focal series of two images
B and C, over each plane of which the probability density
of the scattered-electron wave function is registered [2,3].
This probability-density map, hereafter termed “intensity,” is
measured through the individual collapse of a large number of
almost-identically-prepared electron wave functions emitted
by a tungsten source or field emission gun [3]. If we assume
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that the scattering potential is varying sufficiently slowly in
space, and that the incident field is a z-directed plane wave,
then the elastically scattered field will be paraxial (i.e., all
probability-current-density vectors, downstream of the object,
will make a small angle with respect to the optical axis z) [5].

This indicative high-energy potential scattering scenario
has direct analogs in the scattering of visible light or hard x-
rays by a slowly spatially varying refractive-index distribution
[6], scattering of coherent visible light by cold atoms [7] and
Bose-Einstein condensates [8], or in the scattering of neutrons
from macroscopic samples [9]. In all of the above cases,
“slowly varying” refers to the scatterer varying slowly over
length scales comparable to the wavelength of the incident
matter- or radiation-wave field [10].

The phase-reconstruction problem, mentioned in the first
paragraph, has ramifications for the problem of structure de-
termination using the data described in the second paragraph.
Specifically, one seeks to reconstruct information regarding
the scattering potential A (see Fig. 1) given measurements of
paraxial-wave-field moduli over planes B, C, etc. downstream
of the sample A. Often, one has a transparent or weakly
absorbing scatterer A, which implies that the phase but not
the magnitude of the wave field over plane B is significantly
affected by the sample [11]. Examples of such “phase objects”
are well known in the context of imaging using visible light
[4,7,8,12], electrons [3,13], neutrons [9], and hard x-rays [5].

We elaborate on three examples of this common situation
regarding “phase objects”:

(i) Electrons. Medium-resolution bright-field
transmission electron microscopy of thin noncrystalline
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FIG. 1. Generic propagation-based phase-retrieval scenario using
paraxial radiation- or matter-wave fields.

samples often yields an in-focus image with negligible
contrast [13]. Under the projection approximation, the phase
of the wave function over the nominally planar exit surface
B (see Fig. 1) is given by the famous Aharonov-Bohm
phase factor [14,15], with the probability density over this
plane being approximately constant.

(ii) X-rays. Materials with similar x-ray attenuation
coefficients (e.g., different types of soft biological
tissues) are often difficult to distinguish using conventional
absorption-based x-ray imaging or computed tomography
(CT). In such cases, a suitable form of phase-contrast imaging
(PCI) can be helpful [16–18]. For example, propagation-based
phase contrast [19,20], in which the act of free-space
propagation can convert transverse phase variations (over
plane B in Fig. 1) into transverse intensity variations (over
plane C), can help to significantly improve the contrast and
signal-to-noise ratio in x-ray images of samples consisting
predominantly of low-Z materials.

(iii) Neutrons. When performing propagation-based
phase contrast imaging using neutrons [9], one often has the
case where elements in the sample of interest (e.g. small
organic samples, lead samples, etc.) are transparent, or the
closely related case where distinct materials (e.g., titanium and
steel) have very similar absorptive properties, but impart dif-
ferent phase shifts on the neutron beam traversing the sample.

To obtain quantitative information from phase-contrast
images, as may be required, for example, in x-ray [21–28],
neutron, or electron CT [15,29–32], it is usually necessary to
perform an image processing operation known as “phase re-
trieval.” Phase retrieval uses one or more images collected with
a position-sensitive detector to produce a quantitative map of
projected phase shifts in transverse sections of the beam trans-
mitted through a sample [5]. Image acquisition parameters that
are varied between the multiple images used for phase retrieval
may include the sample-to-detector and/or source-to-sample
distance, and the energy or the spectrum of the illuminating
field [19]. In each case a special algorithm is required to
convert the intensity distributions in the collected images into
quantitative maps of the corresponding phase distribution.

One commonly used phase-retrieval method, generic to all
of the previously cited modalities using radiation and matter-
wave fields, is based on the transport-of-intensity equation
(TIE). The TIE was proposed for electromagnetic radiation
by Teague in 1983 [33] and later generalized to a wider
class of both linear and nonlinear paraxial fields [34]. To
solve this equation, Teague introduced an auxiliary function
that transforms the TIE into a classical two-dimensional
Poisson equation [33], which can easily be solved (e.g.,

by using a Fourier-transform-based method [35] or other
approaches [36]). The Fourier-transform method [35] has
enjoyed widespread use, with successful experimental appli-
cations to phase retrieval using visible light [4], neutrons [9],
x-rays [19,20], and electrons [3,37–39], and it has been
proposed for experimental applications to Bose-Einstein
condensates [34,40] and atom lasers [34]. However, these
and related studies have been undertaken without a detailed
analysis of the validity of phase retrieval using Teague’s
method, usually producing phase maps that are in good
agreement with a priori known properties of the sample or as
verified by alternative analytical techniques. It is timely that
the foundations upon which the method is based be thoroughly
examined. Such an examination is the core topic of the present
paper.

Sec. II develops the TIE for a broad general class of
parabolic field equations which includes all of the physi-
cal scenarios discussed above [2,34] before outlining how
Teague’s auxiliary function [33] is used in the previously
mentioned popular modern procedure for phase retrieval based
on this equation [35]. Sec. III then demonstrates the role of the
Helmholtz decomposition theorem in analyzing the validity of
Teague’s auxiliary-function solution to the TIE. This domain
of validity is rigorously examined in Sec. IV. A core result
is the development of a necessary and sufficient condition for
the correctness of phase retrieval based on Teague’s auxiliary
function, implying the existence of a typically small error
term in such phase-amplitude reconstructions. Sec. V gives
an example of a phase-amplitude distribution that cannot
be reconstructed via Teague’s approach. We conclude with
Sec. VI, which summarizes and discusses the main findings
of the paper. Our work clarifies a long-unanswered question
regarding the foundations of a widely applied phase-amplitude
retrieval method [33,35]. We anticipate it will stimulate further
research into phase-amplitude retrieval using the TIE.

II. TEAGUE’S SOLUTION FOR THE
TRANSPORT-OF-INTENSITY EQUATION

Consider the following class of nonlinear (2+1)-
dimensional field equations governing the spatial evolution
of a stationary-state wave function u [34]:

[2ik∂z + ∇2 + g (|u|)]u (x,y,z) = 0. (1)

Here, k = 2π/λ, λ is the wavelength or de Broglie
wavelength, ∂z = ∂/∂z denotes partial differentiation with
respect to distance along the nominal optical axis z (see
Fig. 1), ∇2 = ∂2

x + ∂2
y is the two-dimensional Laplacian in the

plane perpendicular to z, and g is an arbitrary real function
of a real variable. Note that Eq. (1) describes a paraxial
wave field, which implies that all directions of propagation
corresponding to non-negligible plane-wave components in
the angular-spectrum decomposition make small angles with
the positive z axis [5]. In particular, this allows one to neglect
the second derivative of the function u (x,y,z) with respect to z.
We consider only such paraxial wave fields in the present paper.

Special cases of Eq. (1) include: (i) the paraxial form of the
free-space time-independent Schrödinger equation for paraxial
monoenergetic electron beams in which the effects of spin
may be neglected [41], (ii) the parabolic equation for paraxial
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monochromatic scalar electromagnetic waves such as coherent
visible light or coherent hard x-rays [42], (iii) the (2+1)-
dimensional Gross-Pitaevskii equation governing the complex
order-parameter field of scalar Bose-Einstein condensates
(here, z denotes a temporal rather than a spatial variable,
and u is no longer a stationary-state wave function) [34],
(iv) the nonlinear paraxial equation governing the propagation
of intense electromagnetic fields in a nonlinear medium [43],
and (v) the (2+1)-dimensional Schrödinger equation, with z
again being a temporal rather than a spatial variable.

Following Madelung [44], we seek a “hydrodynamic-like”
formulation of Eq. (1) by making the substitution

u = I 1/2 exp (iϕ) , (2)

where

I = |u|2 (3)

denotes the intensity and

ϕ = arg u (4)

denotes the phase. Separating out the imaginary part yields
the following continuity equation expressing the existence of
a conserved current [33,34]:

−div [I (x,y,z0) ∇ϕ (x,y,z0)] = k∂zI (x,y,z0) . (5)

Note that the notation for two-dimensional vector fields
and related operators (such as div, ∇, etc.), as used in Eq. (5)
and elsewhere below, is outlined in Appendix A. Equation
(5) is termed the transport-of-intensity equation (TIE) in the
context of propagation-based phase retrieval [33]. We restrict
consideration to regimes in which the intensity is strictly
positive, I (x,y,z0) � C > 0, everywhere in some simply-
connected domain � with a sufficiently smooth boundary in
the plane z = z0. This implies that the phase ϕ = arg u is well
defined (single valued) and continuous over the domain �,
which excludes the existence of screw-type topological defects
such as phase vortices or domain-wall defects [45].

Teague [33] was the first to suggest the use of the TIE for
retrieval of the phase ϕ in �, if the distributions of intensity
and its z derivative are known there. While Teague only
considered the linear case where g = 0 in Eq. (1), Paganin &
Nugent [34] pointed out that identical considerations apply to
nonlinear fields with arbitrary real g—note that, in this context,
the TIE is independent of g because the local conservation
expressed by this equation is unchanged by the presence of
any nondissipative nonlinearity.

Phase-amplitude retrieval using the TIE usually requires
measurement of the intensity over at least two different planes,
z = z0 and z = z0 + �, orthogonal to the optical axis [33].
Without loss of generality we can always assume that z0 = 0.
Therefore, in the rest of the paper we omit z0 = 0 from the list
of arguments of all functions, and only indicate dependence
on the first two arguments; namely, x and y. This possibility
for phase retrieval, namely, the determination of phase from
intensity measurements without the aid of an interferometer,
is of particular importance in the context of strongly nonlinear
fields for which interferometric phase measurement is in
general problematic on account of the interaction between
object and reference waves [34].

To obtain a unique solution for the phase ϕ in � using the
TIE Eq. (5), it is necessary to impose some suitable boundary
conditions (e.g., Dirichlet, Neumann, or periodic boundary
conditions) on the phase function (see, e.g., [46]). (In the case
of Neumann and periodic boundary conditions the solution will
be unique only up to an arbitrary and physically meaningless
additive constant.)

Teague suggested solving Eq. (5) via the introduction of an
auxiliary function ψ , which satisfies

∇ψ (x,y) = I (x,y) ∇ϕ (x,y) . (6)

Given that the right-hand side (rhs) of the above expression
is proportional to the transverse component of the probability
current density [44,47] (or current density [5] for classical
fields), the above approximation amounts to the statement that
2D paraxial current densities [associated with fields obeying
Eq. (1)] are well approximated as conservative vector fields
derivable from the scalar potential ψ .

If the scalar potential ψ exists then, by substituting Eq. (6)
into Eq. (5), we see that it satisfies the Poisson equation

−∇2ψ (x,y) = k∂zI (x,y) . (7)

After finding ψ from Eq. (7), a solution ϕ̃ of Eq. (5) can be
determined by solving another Poisson equation:

∇2ϕ̃ (x,y) = div[I−1 (x,y) ∇ψ (x,y)], (8)

which can be obtained by dividing both sides of Eq. (6) by I
and taking the divergence. Therefore, this method allows one
to solve Eq. (5) via two Poisson equations. One advantage of
the Poisson Eqs. (7) and (8) compared to Eq. (5) is that the two
former equations are amenable to a numerical solution using
a fast Fourier transform (FFT). Note that we have introduced
a new symbol ϕ̃ in Eq. (8) to distinguish the phase solution of
Eq.(5) obtained by this “Teague’s method.”

This technique was proposed in Ref. [35] and further
applied to a variety of matter- and radiation-wave fields in
several other publications [2–5,9,15,29,30,37–39,48–50] (see
also [36,51] and references therein for other solution methods
for Eq. (5) in the context of phase retrieval). In this paper,
we thoroughly examine the validity of “Teague’s assumption”
[i.e., the existence of the auxiliary function ψ required
in Eq. (6)].

One can actually ask a more general question: regardless
of the validity of “Teague’s assumption” [Eq. (6)], what are
the sufficient conditions under which the “Teague solution”
ϕ̃, obtained by means of “Teague’s method” [represented by
Eqs. (7) and (8)] coincides exactly with or is sufficiently close
to the true solution ϕ of the TIE [Eq. (5)]? Note that, unlike the
auxiliary function ψ required in Eq. (6), a solution to Eq. (7)
with appropriate boundary conditions is known to exist and
to be unique [46]. Therefore, Teague’s method will always
deliver a solution; but the question needs to be answered about
the closeness of this solution ϕ̃ to the true solution ϕ of the TIE
[Eq. (5)]. In the present paper, we consider both the validity of
“Teague’s assumption” and the properties of the phase solution
obtained by “Teague’s method” in general.

It has been noted by E. C. G. Sudarshan [52] that Eq. (6)
represents a good approximation in most realistic cases. A
different approach to the justification of the validity of Eq. (6)

023808-3



SCHMALZ, GUREYEV, PAGANIN, AND PAVLOV PHYSICAL REVIEW A 84, 023808 (2011)

based on the Helmholtz theorem [46] was given in Ref. [35].
The Helmholtz theorem is also the main tool that we use below
for a detailed analysis of the problem.

III. HELMHOLTZ THEOREM IN 2D AND THE TIE

Let us consider a special 2D case of the Helmholtz
theorem. This states that, for any continuous vector field
A (x,y) = (Ax (x,y) ,Ay (x,y)) also having continuous partial
derivatives and defined in a simply connected bounded domain
� ⊂ R2 with a sufficiently smooth boundary ∂� and satisfying
the boundary condition A · n|∂� = 0, where n is the external
normal to ∂�, there exists a unique (up to an additive constant)
pair of scalar functions (ψ,η) in � such that

A (x,y) = ∇ψ (x,y) + rotη (x,y) in �, and

∇ψ · n|∂� = 0 and η (x,y)|∂� = const. (9)

The proof of the above special case of the Helmholtz
theorem is given in Appendix B for completeness (note that,
although the formulation and proof of the Helmholtz theorem
in three dimensions can be found in many textbooks, such
as [46], it seems much more difficult to find a corresponding
formulation and proof in the literature for the 2D case).

The above 2D Helmholtz theorem implies, in particular,
that for any pair of suitably well-behaved functions (I,ϕ) [it
is sufficient to require that I (x,y) � C > 0 everywhere in �

and has continuous first derivatives, while ϕ has continuous
second derivatives in �], where the function ϕ also satisfies,
for example, the uniform Neumann boundary conditions
∇ϕ · n|∂� = 0, we can find a pair of unique (up to additive
constants) functions (ψ,η) such that

I (x,y) ∇ϕ (x,y) = ∇ψ (x,y) + rotη (x,y) , (10)

and the functions (ψ,η) satisfy the same boundary condi-
tions as in Eq. (9). Then ∇ϕ(x,y) = I−1(x,y)∇ψ (x,y) +
I−1 (x,y) rotη (x,y) and thus

∇2ϕ(x,y) = div[I−1(x,y)∇ψ(x,y)]

+∇I−1(x,y) × ∇η(x,y), (11)

where we used the identity div[I−1rotη] = ∇I−1 · rotη =
∇I−1 × ∇η.

Assuming suitable boundary conditions (e.g., Dirichlet,
Neumann, or periodic boundary conditions) for the phase
function in Eq. (11) that guarantee the existence of the inverse
Laplacian operator in a suitable functional space over �, we
can also obtain

ϕ (x,y) = ∇−2div[I−1 (x,y) ∇ψ (x,y)]

+∇−2[∇I−1 (x,y) × ∇η (x,y)]. (12)

Note that, because in the case of (uniform) Neumann or
periodic boundary conditions the uniqueness of the solution
to the boundary-value problem for the Poisson equation is
guaranteed up to an arbitrary additive constant (see, e.g.,
[46,53]), the inverse Laplacian can be uniquely defined; for
example, on the subset of all phase functions with zero average
value over �. Such a restriction is consistent with the definition
of the phase function ϕ (x,y) which is itself physically defined
only up to an arbitrary additive constant.

In view of Eq. (12), “Teague’s solution” ϕ̃ (x,y) =
∇−2div[I−1 (x,y) ∇ψ (x,y)] where ψ (x,y) is a solution of
Eq. (7), represents a good approximation to the true solution
ϕ(x,y) of the TIE if and only if the error term

ε (x,y) = ϕ (x,y) − ∇−2div[I−1 (x,y) ∇ψ (x,y)]

= ∇−2[∇I−1 (x,y) × ∇η (x,y)], (13)

is either exactly zero or is at least sufficiently smaller in an
appropriate sense (e.g., much smaller) with respect to some
suitable functional norm than the exact solution ϕ.

It will also be useful for our analysis in subsequent sections
of this paper to have explicit equations for the functions ψ and
η found on the rhs of Eq. (10). By taking the divergence of
Eq. (10) and using Eq. (A1), it is easy to see that

∇2ψ (x,y) = div [I (x,y) ∇ϕ (x,y)] ,

∇ψ · n|∂� = 0. (14)

The function ψ can be found from Eq. (14) uniquely up to
an arbitrary additive constant.

In order to find the function η (x,y), take the curl of both
sides of Eq. (10). Using Eqs. (A2) and (A3) and the identity
curl (I∇ϕ) = ∇I × ∇ϕ, we obtain

−∇2η (x,y) = ∇I (x,y) × ∇ϕ (x,y) ,

η|∂� = const. (15)

Equation (15) allows one to obtain the function η uniquely
for each constant chosen in the boundary conditions.

In the next section we will obtain some general conditions
for the validity of Teague’s method; including, conditions
guaranteeing that “Teague’s error term” ε (x,y) defined in
Eq. (13) is either exactly zero or is sufficiently small.

IV. GENERAL CONDITIONS FOR THE VALIDITY OF
TEAGUE’S ASSUMPTION

Let us show that, for an arbitrary pair of suitably well-
behaved functions (I,ϕ) in � [as defined before Eq. (10)
above], there exists a function ψ such that ∇ψ (x,y) =
I (x,y) ∇ϕ (x,y) if and only if

∇I (x,y) × ∇ϕ (x,y) ≡ 0. (16)

That is, the function ψ exists if and only if (i) the vector fields
∇ϕ and ∇I are parallel everywhere in �, or (ii) ∇I is zero
everywhere in �, corresponding to a uniformly illuminated
nonabsorbing object, or (iii) ∇ϕ is zero, corresponding to the
physically trivial case of transversely uniform wavefronts.

Before proceeding, we note that, for many nonabsorbing
objects of interest in the context of TIE phase retrieval, we
intuitively expect ∇ϕ and ∇I to be close to parallel everywhere
in �. Loosely speaking, the physical reason for this is that a
given increase in optical thickness (i.e., in |ϕ|) is typically
associated with an increase in the actual thickness or density
of a sample, and an increase in the actual thickness or density
of a sample is typically associated with an increase in the
absorption of the sample. Thus, while for a truly arbitrary
object one would expect ∇ϕ and ∇I to be uncorrelated
and therefore not necessarily parallel everywhere in �, for
a “typical” object, ∇ϕ and ∇I will be correlated. To motivate
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the existence of this correlation, we need only note that the
phase and amplitude shifts due to each component material
will be nonindependent, implying in general a nonzero degree
of correlation between the net phase and intensity excursions
at each point on the nominally planar exit surface of a sample.
Furthermore, to the extent that increases in optical thickness
are accompanied by increases in absorptive thickness, one
would normally expect ∇ϕ and ∇I to be “close to parallel.”

Returning to the main thread of the argument, we note that
if ψ exists, then

0 = curl [∇ψ (x,y)] = curl [I (x,y) ∇ϕ (x,y)]

= ∂xI (x,y) ∂yϕ (x,y) − ∂yI (x,y) ∂xϕ (x,y) . (17)

On the other hand, if ∇I (x,y) × ∇ϕ (x,y) ≡ 0, then using
the Helmholtz decomposition [Eq. (10)], we obtain

0 = ∇I × ∇ϕ = curl [I (x,y) ∇ϕ (x,y)]

= curl [rotη (x,y)] = −∇2η (x,y) , (18)

and assuming that η (x,y) satisfies Dirichlet boundary con-
ditions η|∂� = const., we learn that η (x,y) is a constant
as a consequence of the uniqueness of solution to the
Dirichlet problem for the Laplace equation [46,53]. Therefore,
rotη (x,y) ≡ 0 and ∇ψ (x,y) = I (x,y) ∇ϕ (x,y).

“Teague’s assumption” [i.e., the existence of a potential
function ψ such that ∇ψ (x,y) = I (x,y) ∇ϕ (x,y)] implies
that

ϕ̃ (x,y) = ∇−2div[I−1 (x,y) ∇ψ (x,y)]

= ∇−2div [∇ϕ (x,y)] = ϕ (x,y) . (19)

According to Eq. (13) this also implies that ε (x,y) = 0 (i.e.,
the Teague solution is exact in this case). Therefore, Eq. (16)
represents a sufficient condition not only for the validity of
Teague’s assumption, Eq. (6), but also for the exact accuracy
of Teague’s solution, ϕ̃ = ϕ.

Note, however, that the condition expressed by Eq. (16) may
not be necessary for the exactness of Teague’s solution. Indeed,
by virtue of Eq. (13), the exactness of Teague’s solution,
ε (x,y) = 0, only implies that ∇I × ∇η = 0 (e.g., that vectors
∇η and ∇I are parallel everywhere in �). Equation (16), on the
other hand, is equivalent [by means of Eq. (15)] to a stronger
condition; namely, that η (x,y) is a constant in �.

Let us consider the physical meaning of the condition
expressed by Eq. (16). The vectors ∇ϕ (x,y) and ∇I (x,y) are
parallel at all points in � if and only if the vectors ∇ϕ (x,y)
and ∇ ln [I (x,y)] = I−1 (x,y) ∇I (x,y) are parallel at these
points. The latter means that ∇ϕ (x,y) = c (x,y) ∇ ln [I (x,y)]
for some scalar function c (x,y). Note that this is similar,
but not equivalent, to the definition of monomorphous (or
homogeneous) objects [54,55], for which one has ∇ϕ (x,y) =
(γ /2) ∇ ln [I (x,y)] in the projection approximation [5,56],
where γ is a constant. Therefore, the class of objects for
which the “Teague assumption” [i.e., that a function ψ exists
such that ∇ψ (x,y) = I (x,y) ∇ϕ (x,y)] holds may be broader
than the class of all monomorphous objects. It is well known
that the class of all monomorphous objects contains the
subclass of all objects for which ϕ(x,y) = (γ /2) ln I (x,y)
with some constant γ . This relationship between the phase and
intensity holds, for example, in quantitative x-ray imaging of

objects consisting of a single material [54] with a complex re-
fractive index n = 1 − δ + iβ or in the visible-light refractive
imaging of the projected column density of cold atom clouds
[7]. Indeed, for such objects one obtains, assuming that the
projection approximation [5,56] is valid and the incident plane
wave is exp (ikz), that ϕ (x,y) = −kδT (x,y) and ln I (x,y) =
−2kβT (x,y), where T (x,y) is the transverse distribution of
the projected thickness of the object. One can see that, for such
objects, ϕ (x,y) = [δ/(2β)] ln [I (x,y)] (i.e., γ ≡ δ/β). In the
case of transmitted x-ray waves with energies between approx-
imately 60 and 500 keV, the equality ϕ (x,y) = (γ /2) ln I (x,y)
holds not only for objects that consist predominantly of a
single material, but also for any objects consisting of chemical
elements with atomic number Z < 10 [57]. The physical origin
of this last-mentioned result is that samples composed of
sufficiently light elements and illuminated at sufficiently high
x-ray energy are well approximated over sufficiently large
length scales by a continuous “single-material” distribution of
almost-free electrons [58]. Similar considerations apply to the
other forms of radiation- and matter-wave fields considered
in this paper. We see that, for all of these classes of objects,
Teague’s assumption is valid exactly.

We have found sufficient conditions for “Teague’s error
term” ε (x,y) to be zero. Now, we describe another type of
sufficient condition guaranteeing that the error term is small.
Define a “normalized” L2 norm for square-integrable functions
in � as

‖f ‖2 =
√∫∫

�
|f (x,y)|2dxdy√∫∫

�
dxdy

. (20)

As the inverse Laplacian is a continuous operator in suitable
functional subspaces of L2 (�), then ‖∇−2f ‖2 � L2

� ‖f ‖2
(see, e.g., [53]) where L� is a positive constant with the
dimensionality of length; L� is proportional to the diameter of
� (L� = D/π , where D is the domain diameter, in the case of
a convex domain � in R2; see, e.g., [59,60]). It follows from
Eq. (13) that

‖ε (x,y)‖2 � L2
�‖∇I−1 (x,y) × ∇η‖2. (21)

For “reasonable” functions f from L2 (�) (satisfying Dirich-
let or other suitable boundary conditions) one can verify by
integrating by parts that ‖∇f ‖2

2 � ‖f ‖2 ‖∇2f ‖2. Now we
can use Eq. (15) and the continuity of the inverse Laplacian to
obtain: ‖∇η‖2 � ‖η‖1/2

2 ‖∇2η‖1/2
2 � L� ‖∇I × ∇ϕ‖2. Com-

bining this with Eq. (21) we finally obtain

‖ε (x,y)‖2 � L3
� ‖∇ϕ‖2 ‖∇ ln I‖2

2 . (22)

Note that the conditions of validity of the TIE generally
require that

|∇ϕ||∇I/I | � k/R, (23)

see, for example, Ref. [10].Therefore, under the TIE validity
conditions, Eq. (22) can be rewritten as

‖ε (x,y)‖2 � (
kL3

�

/
R

) ‖∇ ln I‖2 . (24)

The rhs of Eq. (24) is a product of two factors: Nmax
F ≡

kL2
�/R; that is, the (largest) Fresnel number [42] associated

with domain �, and var2 (I ) ≡ L� ‖∇ ln I‖2 that can be
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interpreted as a measure of total variation of intensity across
the domain. As the validity conditions of the TIE require
that Nmax

F � 1 (see, e.g., [61]), then var2 (I ) ≡ L� ‖∇ ln I‖2
typically has to be very small to guarantee that Teague’s
solution is accurate. Recalling that Teague’s solution is
accurate when ‖ε (x,y)‖2 � ‖ϕ‖2, we finally obtain from
Eq. (24) that a sufficient condition for the accuracy of Teague’s
solution is

Nmax
F var2 (I ) � ‖ϕ‖2 . (25)

It follows from Eq. (25) that, when the variation of
absorption in the sample is very weak, then the Teague
solution is accurate. The opposite may not be true. Indeed,
note that the estimate in Eq. (25) does not take into account
some geometric factors affecting the accuracy of the Teague
solution. In particular, it does not take into account the
condition ∇I (x,y) × ∇ϕ (x,y) ≡ 0 considered above, which
in fact guarantees that the Teague error term ε (x,y) is equal to
zero, even when the variation of absorption is large. Therefore,
we should emphasize that Eq. (25) is sufficient, but not
necessary, for the Teague solution to be accurate.

V. TIE SOLUTIONS THAT CANNOT BE OBTAINED USING
TEAGUE’S ASSUMPTION

When searching for a “counter example” to Teague’s
method for solving the TIE [i.e., for a pair of functions (I,ϕ)]
such that the exact solution ϕ of the TIE equation [Eq. (5)] is
significantly different from “Teague’s solution”

ϕ̃ (x,y) = ∇−2div[I−1 (x,y) ∇ψ (x,y)], (26)

where ψ is a solution of Eq. (7), it is necessary, but not
sufficient, to ensure that I (x,y) ∇ϕ (x,y) is not a complete
potential [or, according to Sec. IV, that vectors ∇ϕ (x,y) and
∇I (x,y) are not parallel to each other at all points]. We
also want to find an example where the error term ε (x,y) =
ϕ (x,y) − ϕ̃ (x,y), is not just nonzero but is sufficiently large
in an appropriate sense; for example, comparable in norm
to the exact solution ϕ or, equivalently, comparable to the
“Teague solution” ϕ̃. Considering Eq. (13), we may try
to find a case where ∇I−1 × ∇η is comparable in norm
to div[I−1 (x,y) ∇ψ (x,y)]. As one can see from Eq. (11),
this will be the case when ∇2ϕ (x,y) is very small, but
∇I−1 (x,y) × ∇η (x,y) is not.

Consider the following example:

� = (−10,10) × (−10,10)(μm2), (27)

I (x,y) = exp(−a0x
2 − b0y

2) (28)

and

ϕ (x,y) = a0x
2 − b0y

2 − a1x
8 + b1y

8, (29)

where
a0 = b0 = 10−2 μm−2 and a1 = b1 = 0.25 × 10−8 μm−8

[Figs. 2(a) and 2(b)]. This phase function satisfies uniform
Neumann boundary conditions. Physically, such a beam could
be generated for the case of x-ray radiation with wavelength
λ = 0.1 nm by taking a thin single-material transparent screen
(i.e., a phase object made from polypropylene (C3H6) with

δ = 1.39 × 10−6 and β = 7.48 × 10−10 [62]) with a saddle-
like profile of projected thickness T (x,y), and normally
illuminating it with a focused Gaussian beam [42] such that
the waist of the illuminating beam coincides with the entrance
surface of the object. Note that the phase

ϕ (x,y) = −2π

λ
δT (x,y) + const., (30)

is defined up to a constant [5]. The maximal projected thickness
Tmax for our object required to produce the appropriate phase
shift is about 17 μm. Then the maximal attenuation caused by
this object is very small:

exp

(
−4π

λ
βTmax

)
≈ 0.99, (31)

which corresponds to the case of a phase object. The
disturbance, at the exit surface of the screen, would have the
unusual (from the perspective of phase-amplitude imaging)
property that intensity and phase would be independent of one
another insofar as the former is entirely due to the illuminating
beam and the latter is entirely due to the illuminated object.

The above phase distribution can be retrieved in an exper-
iment; for example, by measuring the transmitted intensity
distribution I (x,y,z = 0) immediately after the screen and at
a distance of approximately 1 cm downstream the optical axis,
I (x,y,z = 1 cm), calculating the intensity derivative as

∂zI (x,y,z = 0) ∼= [I (x,y,z = 1 cm) − I (x,y,z = 0)]/�z,

(32)

and then solving the TIE [Eq. (5)] for the phase ϕ (x,y).
However, if one tries to reconstruct the phase distribution in
this case using “Teague’s method” represented by Eqs. (7) and
(8), the resultant phase distribution ϕ̃ (x,y) will be significantly
different from the exact distribution, as explained below.

It is easy to verify that, for the scenario described above,
the two vectors

∇I (x,y) = I (x,y) (−2a0x, − 2b0y) , (33)

and

∇ϕ (x,y) = (2a0x − 8a1x
7, − 2b0y + 8b1y

7), (34)

are not parallel at most points in � [see Eq. (16)]. Also, the
variation of intensity is not small in � (it is comparable to the
phase), which means that none of the sufficient conditions
for the smallness of the error term ε (x,y) formulated in
the previous section are valid in this example. Finally, the
Laplacian

∇2ϕ (x,y) = 56a1(y6 − x6) (35)

is small at most points in �. Therefore, this is indeed a good
candidate for a “counter example” (i.e., a case where Teague’s
solution ϕ̃ is significantly different from the exact solution ϕ

of the TIE). We could not solve the relevant equations [e.g.,
Eq. (14)] analytically, so we resorted to numerical solutions
using a well-tested software package for x-ray image analysis
and simulation: X-TRACT [63]. We first calculated the 2D dis-
tribution −div [I (x,y) ∇ϕ (x,y)] = k∂zI (x,y) for the above
phase and intensity by computing the corresponding differen-
tial expressions on a numerical grid with 2048 × 2048 square
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pixels within the domain � = (−10,10) × (−10,10) μm2 [see
Fig. 2(c)]. Then we numerically solved the Poisson equation
(using the Fourier transform method [35] as implemented
in X-TRACT [63]) to obtain the distribution of ψ (x,y) =
∇−2div[I (x,y) ∇ϕ (x,y)] in � [Fig. 2(d)]. Solving the second
Poisson equation according to “Teague’s method,” we obtained
the phase distribution ϕ̃ (x,y) = ∇−2div[I−1 (x,y) ∇ψ (x,y)]
[Fig. 2(e)]. Finally we calculated the difference

ε (x,y) = ϕ (x,y) − ϕ̃ (x,y) (36)

between the exact phase and the one obtained using “Teague’s
method” [Fig. 2(f)]. These numerical calculations showed that

‖ϕ (x,y) − ϕ̃ (x,y)‖2
∼= 0.09 ‖ϕ (x,y)‖2 . (37)

That is, the relative root-mean-square error is approximately
9%.

VI. CONCLUSIONS

Phase-amplitude retrieval based on the transport-of-
intensity equation has been applied to a wide variety of paraxial
radiation- and matter-wave fields that are either governed by
the nonlinear parabolic equation (1) or by its special case
where g = 0. All such fields, both linear and nonlinear, have a
spatial evolution of intensity which is governed by the
associated continuity equation [Eq. (5)], which is termed the
TIE in the context of phase retrieval [33]. The TIE has been
used for such phase retrieval using electrons, visible light,
hard x-rays, and neutrons. Notwithstanding these successes,

FIG. 2. Simulations corresponding to
the counter example in Sec. V (see main
text for details). (a) Phase distribution,
ϕ (x,y)=a0x

2−b0y
2−a1x

8+b1y
8 defined

in � = (−10,10) × (−10,10) μm2. The
value range of the phase is approximately
(−0.75, 0.75) radians. (b) Intensity
distribution I (x,y) = exp(−a0x

2 − b0y
2)

defined in �. The value range of the
intensity is approximately (0.14, 1.0)
arbitrary units. (c) Distribution of the
function −div[I (x,y) ∇ϕ (x,y)] in
�. The value range of this function
is approximately (−0.073, 0.073).
(d) Distribution of the function
ψ (x,y)=∇−2div[I (x,y) ∇ϕ (x,y)] in
�. The value range of this function is
approximately (−0.39, 0.39) radians.
(e) Distribution of the function
ϕ̃ (x,y) = ∇−2div[I−1 (x,y) ∇ψ (x,y)] in
�. The value range of this function is
approximately (−0.80, 0.80) radians.
(f) Distribution of error function
ε (x,y) = ϕ (x,y) − ϕ̃ (x,y) in �. The
value range of this function is approximately
(−0.054, 0.054) radians. Scale bar = 4 μm,
in Figs 2(a)−2(f).
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the validity of Teague’s assumption [33]—which amounts to
the assumption that the transverse component of the current
density is a two-dimensional potential field and which is key to
the most widely applied TIE-based phase-retrieval algorithm
[35]—has never been rigorously examined. We have clarified
this by obtaining sufficient conditions for the correctness of
the solution provided by Teague’s method.

We have also developed a sufficiency condition, which guar-
antees the smallness of the error term generated by Teague’s
assumption in the context of TIE phase retrieval. Not all wave
fields will fulfill this condition. To explicitly demonstrate
this latter finding, we developed a counter example which
shows that, although in most realistic cases Teague’s solution
provides a very good approximation for the exact solution to
the TIE (as demonstrated in many published papers studying
a variety of objects which range from biomedical samples
and cold atom clouds to magnetic skyrmions and spin ices
[2–5,19,37–39,48–50,64]), there are some situations where
the error can be relatively large. Therefore, care should be
taken when using Teague’s method for solution of the TIE. In
particular, it may be useful to verify if any of the conditions
for the validity of Teague’s method proven in Sec. IV of the
present paper is satisfied. This would guarantee the accuracy of
the Teague-based TIE solution. Alternatively, one may prefer
to solve the TIE, Eq. (5), by other methods that do not involve
the use of Teague’s assumption (see, e.g., [36]).
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APPENDIX A: NOTATION

In this paper we use the following notations for 2D linear
partial differential operators:

(a) For any differentiable function of two variables, f ≡
f (x,y), we use ∇ for a 2D gradient [i.e., ∇f = (∂xf,∂yf ) is
a 2D vector field]. Similarly, the divergence operator for any
2D vector function A (x,y) = (Ax(x,y),Ay(x,y)) is defined as
divA = ∂xAx + ∂yAy .

(b) For a scalar function η (x,y) we define a 2D vector
field rotη = (∂yη, − ∂xη). The most important property of this
operation is that

div (rotη) = ∂x∂yη − ∂y∂xη = 0. (A1)

Note also that rotη · ∇η = (
∂yη, − ∂xη

) · (
∂xη,∂yη

) ≡ 0,
where we used the usual “dot” notation to denote a scalar
product of two vectors.

(c) For any 2D vector function A (x,y) we define a scalar
function curlA = ∂xAy − ∂yAx . The most important property
of this operator is that

curl (∇f ) = ∂x∂yf − ∂y∂xf = 0. (A2)

Note that, unlike the case of R3, we need to introduce two
different variants, “rot” and “curl”, of the curl operation in R2

as above.

(d) We shall also use the notation A × B = AxBy − AyBx

(note that the rhs is a scalar function). Then curlA = ∇ × A.
Note that

curl (rotη) ≡ ∇ × rotη = −∂2
x η − ∂2

yη = −∇2η. (A3)

Note also that the 2D functions and operators defined above
in (a)–(d) are introduced for convenience. The conventional
three-dimensional (3D) representations would be more cum-
bersome in our case, as we will work with functions depending
on just two coordinates (x,y) at a fixed plane z = z0 in 3D
space as explained in the main text.

APPENDIX B: HELMHOLTZ THEOREM IN 2D

Here we prove a special case of the Helmholtz decomposi-
tion theorem in a bounded domain in R2. Given is a continuous
vector field

A (x,y) = (Ax (x,y) ,Ay (x,y)), (B1)

having continuous partial derivatives, defined in a simply-
connected bounded domain � ⊂ R2 with a piece-wise smooth
boundary ∂�. The vector field satisfies the boundary property

A · n|∂� = 0, (B2)

where n is the external normal to ∂�.
Let us prove that there exists a unique (up to additive

constants) pair of scalar functions (ψ,η) such that

A (x,y) = ∇ψ (x,y) + rotη (x,y) (B3)

in �, with the following boundary conditions:

∇ψ (x,y) · n|∂� = 0 and η (x,y)|∂� = const. (B4)

First construct an auxiliary vector field B (x,y), such
that curlB (x,y) = 0 and divB (x,y) = divA (x,y), with the
boundary property B (x,y) · n|∂� = 0. We can always find
[46,53] a unique (up to an additive constant) function ψ (x,y)
in � such that

∇2ψ (x,y) = divA,

∇ψ · n|∂� = 0. (B5)

Then we can take B (x,y) = ∇ψ (x,y), which obviously
has all the required properties.

Now consider the vector field

C (x,y) = A (x,y) − B (x,y) . (B6)

It is easy to see that

C · n|∂� = 0, (B7)

divC = div (A − ∇ψ) = divA − ∇2ψ = 0 (B8)

and

curlC = curl (A − ∇ψ) = curlA. (B9)

Because divC = 0, there exists a function η (x,y), such
that rotη (x,y) = C (x,y) (see, e.g., [65]). The boundary
property for such rotη is (by construction) rotη · n|∂� = 0,
which means that the vector rotη is perpendicular to the
normal n, or ∇η is perpendicular to the tangent of the
boundary of the domain. Consequently η does not change
its value along the boundary; that is, η is a constant on
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the boundary. Thus, we have shown that the vector field
A (x,y) can be represented in the form A (x,y) = B (x,y) +
C (x,y) = ∇ψ (x,y) + rotη (x,y), where ∇ψ (x,y) · n|∂� =
0, and η (x,y)|∂� = const.

If we have two different representations of the vector field
A (x,y) in the form

A (x,y) = ∇ψ (x,y) + rotη (x,y)

= ∇ψ1 (x,y) + rotη1 (x,y) , (B10)

where

∇ψ (x,y) · n|∂� = ∇ψ1 (x,y) · n|∂� = 0, (B11)

and

rotη (x,y) · n|∂� = rotη1 (x,y) · n|∂� = 0, (B12)

then
∇[ψ(x,y)−ψ1(x,y)]+rot [η (x,y)−η1 (x,y)]=0. Taking

div and curl of this identity, we obtain, respectively, that ψ̄ =
ψ − ψ1 and η̄ = η − η1 are harmonic functions in � satisfying
uniform Neumann boundary conditions, ∇ψ̄ (x,y) ·n|∂� = 0,
or Dirichlet conditions η̄ (x,y)|∂� = const., respectively, and
thus both these functions are constants [46,53], which proves
the required uniqueness of the Helmholtz decomposition up
to additive constants.
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