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Spontaneous radiation of a finite-size dipole emitter in hyperbolic media
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We study the radiative decay and Purcell effect for a finite-size dipole emitter placed in a homogeneous uniaxial
medium. We demonstrate that the radiative rate is strongly enhanced when the signs of the medium longitudinal
and transverse dielectric constants are opposite, and that the isofrequency contour corresponds to a hyperbolic
medium. We reveal that the Purcell enhancement factor remains finite even in the absence of losses and that it
depends on the emitter size.

DOI: 10.1103/PhysRevA.84.023807 PACS number(s): 42.50.−p, 74.25.Gz, 78.70.−g

I. INTRODUCTION

The Purcell effect is the enhancement of the spontaneous
emission for a source placed in a resonant cavity as compared
to that in vacuum [1]. Engineering of the radiative lifetime
is now extensively studied in a variety of different systems
including metallic particles [2–5], microcavities [6–8], and
metamaterials [9–13].

The huge Purcell factor for a point dipole embedded
in the so-called hyperbolic medium has been reported in
Ref. [14]. This system, namely, a uniaxial medium where the
transverse εxx = εyy ≡ ε⊥ and longitudinal εzz = ε‖ dielectric
constants have opposite signs, is characterized by hyperbolic
isofrequency contours in wave-vector space [15–17] (see
also insets in Fig. 1). Wave propagation and refraction in
the hyperbolic medium reveals its unusual optical properties
as compared to the uniaxial medium with the ellipsoidal
isofrequency surface [15,18–20]. The radiative decay rate of
the point dipole in such a medium diverges and it remains finite
only due to the inevitable losses [11–13].

In this work, we consider a finite-size light source such as a
quantum dot placed in a homogeneous uniaxial medium with
ε‖ε⊥ < 0. We demonstrate that, for the spatially distributed
source, the radiative rate does not diverge even for vanishing
losses but instead depends strongly on the source size.
The maximum enhancement of the Purcell factor can be
roughly estimated as (λ/a)3, where λ is the wavelength
of light in vacuum and a is the characteristic size of the
source.

Importantly, the hyperbolic medium employed in our cal-
culations presented below is not only a hypothetic theoretical
model. In the simplest case, it appears as an effective medium
in the theories describing the averaged characteristics of
the layered structure composed of alternating dielectric and
metallic layers [21–23] or a mesh created by metallic wires or
a plasmonic crystal of nanorods [24–27].

The paper is organized as follows: In Sec. II we introduce
our model and effective medium and outline the calculation
technique. The results of our calculations are summarized in
Sec. III, and Sec. IV concludes the paper. Some specific details
of calculations are given in the Appendix A.

II. MODEL AND EFFECTIVE MEDIUM

We consider a spherical light source (e.g., a quantum
dot) embedded into an anisotropic homogeneous medium
characterized by the dielectric tensor ε̂. The equation for the
electric field reads

rot rot E = q2
0 D, (1)

where q0 = ω/c with ω being the wave frequency and c being
the speed of light in vacuum. The displacement vector includes
the background contribution and resonant polarization of the
emitter P :

D = ε̂E + 4π P, (2)

and the nonzero components of the complex dielectric tensor
are

εxx = εyy = ε′
⊥ + iε′′

⊥, εzz = ε′
‖ + iε′′

‖ . (3)

We assume that the dielectric tensor describes the hyper-
bolic medium with ε′

‖ε
′
⊥ < 0. Importantly, such a medium

appears as an effective medium in the homogenization of
the artificial photonic structures—metamaterials. The simplest
example is the layered structure consisting of alternating
dielectric and metallic slabs [21–23]. Its effective parameters
are given by [28]

ε⊥ = aεa + bεb

a + b
,

1

ε‖
= 1

a + b

(
a

εa

+ b

εb

)
, (4)

where a,b and εa,εb are thicknesses and dielectric constants
of the constituting layers, respectively. By properly adjusting
the values of these parameters one can achieve the hyperbolic
medium regime when ε‖ε⊥ < 0. Another metamaterial that has
been realized is the structure created from a mesh of metallic
wires [24–27]. In this latter case one should also take into
account the effects of strong spatial dispersion [29,30] and the
excitation of plasmons [31–33]. We note, that the hyperbolic
regime can be also attained in a plasma subjected to a strong
static magnetic field [34–36].
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FIG. 1. (Color online) Purcell factor relative to vacuum as a
function of (a) ε′

‖ for ε′
⊥ = 1 and (b) ε′

⊥ for ε′
‖ = 1. Solid and

dashed lines correspond to the dipole oriented along the x and z

axes, respectively. The insets show schematically the isofrequency
surfaces in k space for ε′

⊥ε′
‖ < 0. The calculation was performed for

q0a = 0.1 and ε′′
‖ = ε′′

⊥ = 0.1.

We write the phenomenological material equation for the
polarization as [37,38]

P = d2�(r)

h̄(ω0 − ω)

∫
d3r ′�(r ′)E(r ′). (5)

Here, ω0 is the resonance frequency, d is the effective matrix
element of the dipole moment of the emitter, and the function
�(r) characterizes the spatial distribution of the emitter
polarization. In what follows, we use �(r) in the simple
Gaussian form

�(r) =
√

2 exp[−r2/(2a2)]

4π3/2a3
, (6)

so that
∫

d3r�(r) = 1. Equation (5) is similar to the material
relation for the excitonic polarization of the semiconductor
quantum dot; see Refs. [37–41]. In this case �(r) is the
excitonic envelope function and the factor d2 is proportional
to the longitudinal-transverse splitting ωLT [39].

The radiative lifetime τ is related to the complex eigen-
frequency ω of the homogenous system of Eqs. (1)–(5) as
[38,40,41]

1

τ
= −2 Im ω. (7)

To find τ we apply the Fourier transform

E(r) =
∫

d3k

(2π )3
Eke

ik·r , (8)

and obtain [
q2

0 ε̂Ek − k2 Ek + k(k · Ek)
]

= −4πq2
0d2�k

h̄(ω0 − ω)

∫
d3k′

(2π )3
Ek′�k′,

(9)

where

�k =
∫

d3re−ik·r�(r) = e−k2a2/2. (10)

In the derivation of Eq. (9), we took into account that the
function �k depends only on the absolute value of the vector
k. Equation (9) can be rewritten as

Ek = −4πq2
0d2

ω0 − ω
�kĜk�, (11)

where we introduced the Green function in the k space

Ĝk = (M̂k)−1, Mk,αβ = q2
0εαβ − k2δαβ + kαkβ, (12)

and defined a new variable � = ∫
Ek�kd

3k/(2π )3. Multiply-
ing both parts of Eq. (9) by �k and integrating over k, we
obtain the matrix equation for the complex eigenfrequencies
ω:

(ω − ω0)� = R̂�, R̂ = 4πq2
0d2

h̄

∫
d3k

(2π )3
�2

kĜk. (13)

We note that the matrix R̂ on the right-hand side of Eq. (13)
generally depends on the frequency ω. However, we are
interested in the weak-coupling regime, when the interaction
of the emitter with light can be treated as a perturbation [42],
and we set R̂(ω) = R̂(ω0) in Eq. (13). Taking into account that
the matrix R̂ is diagonal due to the symmetry of the problem,
we obtain the spontaneous emission times

1

τα

= −8πd2q2
0

h̄

∫
d3k

(2π )3
Im Gk,αα�2

k, α = x,y,z. (14)

The times τx = τy and τz describe the decay of the source,
initially polarized in the plane xy and along the z axis,
respectively. To find the decay rates, one should substitute
the explicit expressions for the Green function,

Gk,zz = 1

ε‖

1 − k2
z /

(
q2

0ε⊥
)

q2
0 − k2

⊥/ε‖ − k2
‖/ε⊥

,

Gk,xx = 1

k2
⊥ε⊥

{
k2
y

q2
0 − k2/ε⊥

+ k2
x

[
1 − k2

⊥/
(
q2

0ε‖
)]

q2
0 − k2

⊥/ε‖ − k2
‖/ε⊥

}
, (15)

into Eq. (14).

III. RESULTS AND DISCUSSION

The huge Purcell factor in a hyperbolic medium is attained
due to the peculiar density of states [14]. To illustrate this
effect let us analyze the general structure of Eqs. (14) and
(15). As follows from Eq. (15), the axial dipole couples
both with transverse electric (TE, ordinary) and transverse
magnetic (TM, extraordinary) waves, while the orthogonal
dipole couples only with TM waves. Mode dispersion can be
determined from the poles of the Green functions and, for the
TM waves, it reads

ω2
TM

c2
= k2

⊥
ε‖

+ k2
‖

ε⊥
. (16)

In the case of vanishing losses, ε′′
‖ → 0, ε′′

⊥ → 0 the con-
tributions to the imaginary part of the Green functions that
determine the radiative decay rate (14) are determined only
by the poles at the eigenmodes. In particular, the TM-mode
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contribution to the rate can be presented in the form

1

τTM
α

= 2π

h̄

∫
d3k

(2π )3
fα(k)�2

kδ(h̄ω0 − h̄ωTM(k)), (17)

where the factor fα(k) is proportional to the residue of the
integrand of (14) at the pole ω = ωTM(k). Equation (17) is
just the Fermi golden rule [43]; it shows that the decay rate
of the emitter with eigenfrequency ω0 is determined by its
interaction with all the modes of the surrounding medium
having the same frequency. In the hyperbolic medium, the
number of such modes is infinite; that is, the density of TM
modes,

ρTM(ω) =
∫

d3k

(2π )3
δ(h̄ω0 − h̄ωTM(k)), (18)

diverges. Indeed, for ε‖ε⊥ < 0 the integral (18) yields the
infinite area of the hyperboloid (16); see also insets in Figs. 1(a)
and 1(b). However, the radiative rate still remains finite
because the interaction with high-k modes is suppressed by
the factor �2

k , assuring the convergence of integrals (14) and
(17). The maximum wave vector of the mode contributing
to the decay rate is on the order of the inverse size of
the emitter; kmax = 1/a. Thus, although the specific choice of
the function �k does not qualitatively influence our results, the
nonlocal character of the material relation (5), arising from
the finite spatial extent of the source, is essential to obtain
finite results for the decay rate. We note that the cutoff at
wave vector k ∼ 1/a is known and exploited, for instance, in
the nonrelativistic theory of the Lamb shift [44]. The realistic
metamaterial such as the wire medium is characterized by
the lattice constant a0. If the emitter size is smaller than the
spacing between the wires (i.e., a < a0), our approach is not
applicable, and the cutoff is provided at kmax ∼ 1/a0. It was
shown in Ref. [45] that the enhancement of the density of
transverse electromagnetic (TEM) modes in the wire medium
as compared to the TM modes in vacuum is on the order of
1/(q0a0)2. This value provides the estimation of the Purcell
factor for the wire medium.

Thus, the diverging density of TM modes in the hyperbolic
medium leads to the large (but finite) radiative decay rates. Let
us now proceed to the quantitative analysis of the Purcell factor.
The integral in Eq. (14) can readily be calculated numerically.
For the case where the source size smaller than its wavelength,
one can also obtain explicit analytical expressions (see the
appendix for more details):

1

τz

= q3
0d2

h̄

{
Im

arctan
√

ε − 1 − √
ε − 1√

πε⊥(ε − 1)3/2(q0a)3

+ Im
(ε − 2) arctan

√
ε − 1 + √

ε − 1√
π (ε − 1)3/2q0a

+ 4

3
Re

√
ε⊥

}
,

1

τx

= 1

τy

= q3
0d2

h̄

{
Im

√
ε − 1 − ε arctan

√
ε − 1

2
√

πε⊥(ε − 1)3/2(q0a)3

+ Im
ε2 arctan

√
ε − 1 − ε

√
ε − 1

2
√

π (ε − 1)3/2q0a
+ Re

ε‖ + 3ε⊥
3
√

ε⊥

}
,

(19)

where

ε = ε‖/ε⊥.

Equations (19) present the central result of this work. They
are valid for arbitrary complex values of ε‖ and ε⊥ provided
that q0a

√|ε‖| 	 1 and q0a
√|ε⊥| 	 1. The experimentally

observed decay kinetics of the emitter will be determined by
the excitation conditions. For the case where the direction of
the dipole moment is fixed and makes an angle θ with the
symmetry axis z, the decay will be biexponential, with the
initial slope given by

1

τ (θ )
= cos2 θ

τz

+ sin2 θ

τx

. (20)

In the isotropic medium, where ε⊥ = ε‖ = κ , all the rates (19)
reduce to

1

τ
= 4q3

0d2

3h̄
Re

√
κ − d2

3h̄
√

πa3
Re

1

κ
. (21)

In a transparent medium (κ ′′ = 0) the first term in Eq. (21)
reduces to the textbook result for the spontaneous emission
rate [43]. The second term describes the energy losses due to
the heating of the medium [46,47] similarly as for a dipole
placed in a pore in metal [5]. This term controls the decay rate,
when the real part of the dielectric constant is negative.

In the anisotropic medium with vanishing losses (i.e., ε′′
‖ =

ε′′
⊥ → 0), Eqs. (19) reduce to

1

τα

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W (0)
α , ε′

⊥ > 0, ε′
‖ > 0

W (0)
α + W (1)

α

q0a
+ W (3)

α

(q0a)3
, ε′

⊥ > 0, ε′
‖ < 0

−W (1)
α

q0a
+ W (3)

α

(q0a)3
, ε′

⊥ < 0, ε′
‖ > 0

0, ε′
⊥ < 0, ε′

‖ < 0,

(22)

where α = x,y,z,

W (0)
z = 4q3

0d2
√

ε′
⊥

3h̄
, W (0)

x = 4q3
0d2(ε′

‖ + 3ε′
⊥)

3h̄
√

ε′
⊥

,

W (1)
z = −

√
π |ε′

⊥|q3
0d2(2|ε′

⊥| + |ε′
‖|)

2h̄(|ε′
‖| + |ε′

⊥|)3/2
,

W (1)
x =

√
πq3

0d2|ε′
‖|2

4h̄
√

ε′
⊥(|ε′

‖| + |ε′
⊥|)3/2

,

W (3)
z =

√
π |ε′

⊥|q3
0d2

2h̄(|ε′
‖|+|ε′

⊥|)3/2
, W (3)

x =
√

πq3
0d2|ε′

‖|
4h̄

√|ε′
⊥|(|ε′

‖|+|ε′
⊥|)3/2

,

(23)

and Wy ≡ Wx .
Equation (22) clearly demonstrates nonanalytical behavior

with ε‖ and ε⊥. When both constants are positive, we deal
with traditional uniaxial dielectrics, and transition rates do not
depend on the dipole size. For ε‖ < 0 and ε⊥ < 0 all radiative
rates vanish since the waves in such media are evanescent
and do not carry energy away from the source. The most
interesting regime occurs when longitudinal and transverse
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FIG. 2. (Color online) (a) Purcell factor as a function of ε′
‖ for

ε′′
⊥ = ε′′

‖ = 0.01 (dashed curve), ε′′
⊥ = ε′′

‖ = 0.1 (dotted curve), ε′′
⊥ =

ε′′
‖ = 0.5 (solid curve), and q0a=1. (b) Same as in (a) but for q0a = 0.2

(dashed curve), q0a = 0.1 (dotted curve), q0a = 0.05 (solid curve),
and ε′′

⊥ = ε′′
‖ = 0.1. The dipole is oriented along the z axis.

dielectric constants are of opposite sign (ε‖ε⊥ < 0). In this
case the emission rates are governed by the terms ∝ 1/a3 and
∝ 1/a in (22). This result can be understood from the fact that
the integrals (14) and (17) are determined by the largest wave
vectors, being on the order of kmax ∝ 1/a. The same result
can be visualized by the real-space emission pattern of the
dipole,

Eβ(r) ∝
∫

d3k

(2π )3
eik·r�kGk,βα. (24)

The maximum wave vectors kmax ∼ 1/a, contributing to
Eq. (24), correspond to the field changing on the spatial scale
of the source size a. Thus, in the regime when ε‖ε⊥ < 0 the
radiative emission is determined by the local field effects; see
also [17]. The detailed analysis of this peculiar field pattern
(24) will be presented elsewhere.

The results of numerical calculation of the transition rates
based on Eqs. (14) and (15) are summarized in Figs. 1 to 3.
The rates are normalized to their values at ε⊥ = ε‖ = 1, which
yields the Purcell factor with respect to vacuum. Figure 1
shows the Purcell factor for the different dipole orientations as
a function of (a) ε′

‖ and (b) ε⊥. In agreement with Eqs. (19),
the rates drastically increase when the real part of one of the
dielectric constants becomes negative. Interestingly, the largest
enhancement in Fig. 1(a) is achieved when ε′

‖ is negative but
small (i.e., when ε′

‖ < 0 and |ε′
‖| 	 1). In agreement with this

result, the leading terms in Eqs. (22) for the transition rate
are proportional to

√
ε′
⊥/(a3|ε′

‖|3/2) for |ε′
‖| � 1. In addition,

this justifies the fact that the observed enhancement is the
local field effect because, for large values of |ε′

‖|, the local
field is screened and so the effect is suppressed. A similar
analysis applies for the dependence of the transition rates
on ε′

⊥; see Fig. 1(b). We notice that the analytical results
(19) describe all the curves in Fig. 1 with a precision better
than 5%.

Figure 2 shows how the Purcell-factor dependence on ε‖
changes (a) with losses and (b) with source size a. From
Fig. 2(a) we conclude that the losses smear the nonanalytic

FIG. 3. (Color online) Frequency dependence of the Purcell
factor in the medium with ε⊥ = 1 and ε‖ given by Eq. (25). (a)
Functions ε′

‖(ω) (solid curve) and ε′′
‖ (ω) (dotted curve). (b) Purcell

factor for the dipoles oriented along x (solid curve) and along z

(dotted curve). Calculation was performed for q0a = 0.1, ε
(0)
‖ = 1,

and �/�0 = 0.03.

behavior of Purcell factor when ε′
‖ crosses zero and reduce

the maximum value of the Purcell factor. On the other hand,
in the regime when ε′

‖ > 0, ε′
⊥ > 0, the losses lead to the

growth of the decay rate. This is similar to the isotropic case,
Eq. (21), and is related to the heating of the medium by the
emitted field. Figure 2(b) shows that the Purcell factor is very
sensitive to the dipole size. It is quickly suppressed when the
size increases, in agreement with the 1/a3 and 1/a terms in
Eqs. (19).

Figure 3 illustrates the frequency dependence of the Purcell
factor in the medium where

ε‖(ω) = ε
(0)
‖ + �0

ω0 − ω − i�
, (25)

and ε⊥ = 1. Comparing Figs. 3(a) with 3(b), we observe that
the largest enhancement is achieved in the spectral region
where ε′

‖(ω) is negative, but small, which agrees with our
analysis of Fig. 1. As a result, the positions of the maxima
of the curves in Fig. 3(b) are blue shifted from the resonance
energy ω0.

IV. CONCLUSION

We have developed a theory of the Purcell effect for
spherical dipole emitters embedded in homogeneous uniaxial
media, taking into account the finite size of the emitter and
losses in the surrounding medium. We have obtained analytical
expressions for the decay rates in the case when the emitter
size is much smaller than the wavelength of radiation. We
have revealed that, when the real parts of the longitudinal
and transverse dielectric constants (ε′

‖ and ε′
⊥, respectively)

are of the opposite sign (i.e., for the hyperbolic media), the
radiative decay rate depends strongly on the emitter size, and it
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diverges when the size vanishes. This enhancement is related
to the divergent density of states in such media and to the
peculiar pattern of the local electromagnetic field. The largest
Purcell factor is achieved when ε′

‖ε
′
⊥ < 0 and the absolute

values of the dielectric constants are much smaller than unity,
since the screening of the local electric field in this case is
minimal. Our theory has been developed for a simple model
of a homogeneous hyperbolic medium. However, due to its
general character, it may also provide a qualitative insight into
the peculiarities of the spontaneous emission in other types of
metamaterials.
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APPENDIX: ANALYTICAL EXPRESSIONS FOR THE
DECAY RATES

In this appendix, we present the details of the derivation of
Eqs. (19) .

First, we substitute Eqs. (15) into Eq. (14) and introduce
the spherical coordinates (k,θ,ϕ) in the k space. Integration
over the azimuthal angle dϕ and over dk can be performed
analytically and yields

1

τ z
rad

= q3
0d2

h̄
Im

∫ π

0
dθ

{
−χ (θ ) sin θ cos2 θ

2
√

πε‖ε⊥(q0a)3
+ χ2(θ ) sin3 θ√

πε2
‖q0a

+ iχ5/2(θ ) sin3 θ

ε2
‖

e−(q0a)2χ(θ)[1 + erf(iq0a
√

χ (θ ))]

}
,

(A1)

1

τ x
rad

= 1

τ
y

rad

= q3
0d2

h̄
Im

∫ π

0
dθ

{
i sin θ

√
ε⊥

2
e−ε⊥(q0a)2

× [1 + erf(iq0a
√

ε⊥)] − χ (θ ) sin3 θ

4
√

πε‖ε⊥(q0a)3

+ sin θ (ε‖ − χ sin2 θ )

2
√

πε‖ε⊥q0a
+ iχ3/2(θ ) sin θ

2ε‖ε⊥
e−(q0a)2χ (θ)

× [1 + erf(iq0a
√

χ (θ ))][ε‖ − χ (θ ) sin2 θ ]

}
, (A2)

where

1

χ (θ )
= sin2 θ

ε⊥
+ cos2 θ

ε‖
, (A3)

and the error function is defined as

erf(x) = 2√
π

∫ x

0
e−t2

.

We consider the case when the source size is very small, so
that the condition

q0a|
√

χ (θ )| 	 1, q0a|√ε⊥| 	 1, q0a|√ε‖| 	 1 (A4)

is satisfied for all values of θ . If the real parts of the dielectric
constants have the same sign, the conditions (A4) are easily
satisfied for small q0a. However, if ε′

‖ε
′
⊥ < 0 the quantity

χ (θ ) may vanish. In this case, the first condition (A4) will
still be satisfied provided the imaginary parts of the dielectric
constants are sufficiently high. Under the conditions (A4) the
exponential functions in Eqs. (A1) can be replaced by unity,
and the error functions can be neglected.

After that simplification, the integration over θ can be
performed analytically, and it gives Eqs. (19). Our numerical
analysis shows that Eqs. (19) hold even when ε′′

⊥, ε′′
‖ vanish,

provided that the last two conditions (A4) remain valid.
In this case, the terms in Eqs. (A1) and (A2) proportional
to exp[−(q0a)2χ (θ )] are rapidly oscillating, so that their
contribution to the integrals becomes small.
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