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Quantum-interference-initiated superradiant and subradiant emission from entangled atoms
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We calculate the radiative characteristics of emission from a system of entangled atoms which can have a
relative distance larger than the emission wavelength. We develop a quantum multipath interference approach
which explains both super- and subradiance though the entangled states have zero dipole moment. We derive a
formula for the radiated intensity in terms of different interfering pathways. We further show how the interferences
lead to directional emission from atoms prepared in symmetric W states. As a byproduct of our work we show
how Dicke’s classic result can be understood in terms of interfering pathways. In contrast to the previous works
on ensembles of atoms, we focus on finite numbers of atoms prepared in well characterized states.
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I. INTRODUCTION

The phenomenal progress in the preparation of entangled
states of atoms, particularly in chains of trapped ions [1–5],
has enabled one to demonstrate many basic tasks required
for quantum computation [6,7]. It has been realized and
demonstrated that entangled states also provide one with
precision methods for doing quantum metrology [3,8–12].
However, it has been much less conceived that entangled
states give us a new paradigm for doing optical physics [13],
which traditionally is done using independent atoms though
with exceptions [14–20]. Since one has succeeded in preparing
well characterized entangled states albeit for a small number
of qubits, it is pertinent to ask how optical effects can depend
on both the nature of the entangled states as well as on the
number of atoms. In particular it is pertinent to ask how the
radiative properties of atoms in well characterized entangled
states differ from those of atoms prepared in separable states.
The simplest system to study is a system of two two-level atoms
prepared in an entangled state and this has been extensively
studied for its dynamical evolution [21–25].

In this paper we examine a system of N atoms prepared
in well characterized entangled states like W states where the
interatomic distance is larger than the emission wavelength.
We show how the nature of the initial W state dictates
its radiative characteristics leading to superradiant emission
of photons. It must be added that superradiance has been
studied extensively since its prediction by Dicke [14]. Much
of the literature deals with ensembles of atoms with inherent
complexities associated with ensembles. In contrast we deal
with a finite number of atoms prepared in well characterized
entangled states. This enables us to give a very clear physical
picture based on the interference of quantum paths. Note
that if the system has a finite dipole moment then we can
easily interpret superradiance as due to a large macroscopic
dipole moment. However, for atoms in W states there is
no macroscopic dipole moment and the standard argument
cannot be used for the occurrence of superradiance. We also
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note that most of the work on entangled states is driven by
quantum computation protocols. Thus the idea of doing optical
physics with entangled atoms should give a new impetus to the
generation of entangled states for large numbers of atoms or of
other quantum systems displaying a similar behavior [26,27].

The paper is organized as follows: In Sec. II we investigate
the enhancement in the emission of radiation scattered by
atoms which are initially prepared in generalized symmetric
W states. We next examine the physics behind such an
enhancement. We find that the enhancement can be explained
by an interference of multiple photon quantum paths. We
develop a framework which enables us to calculate the number
of quantum paths and the contribution of each quantum path.
In Sec. III we investigate the angular dependence of photons
emitted by the entangled system and give explicit results for
any number of atoms. Finally, in Sec. IV, we extend our
multipath quantum interference approach for radiation from
nonsymmetric generalized W states.

II. ENHANCED EMISSION FROM ARBITRARY
SYMMETRIC W STATES

In the following we assume a linear chain of N identi-
cal two-level atoms with upper level |e〉 and ground state
|g〉 localized at positions �R1, . . . , �RN , where for simplicity
we consider an equal spacing d between adjacent atoms
(cf. Fig. 1). We assume kd > 1 so that the dipole-dipole
interaction can be neglected, where k = 2π

λ
denotes the wave

number of the transitions |e〉 → |g〉. The initial state of the
chain of atoms is taken to be a symmetric W state. We can
construct W states by assuming, say, one atom is excited and
the rest of the atoms are in the ground state. This state would
then be of the form

|W 〉 = 1√
N

|e g · · · g〉 + |g e g · · · g〉 + · · · + |g · · · g e〉)
= |W1,N−1〉. (1)

The latter notation implies that one atom is excited and (N − 1)
atoms are in the ground state. We will see that the radiative
properties of the W state are quite different from the properties
of a separable state like |eg · · · g〉. The entanglement in the W
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FIG. 1. Scheme of the investigated system: N equidistant two-
level atoms are localized along a chain at positions �R1 to �RN . A
detector at position �r registers a photon, scattered by the atoms, in
the far field.

state endows it with characteristic radiative properties. We
can also consider more general W states |Wne,N−ne

〉, where ne

atoms are excited and N − ne = ng atoms are in the ground
state

|Wne,N−ne
〉 ≡

(
N

ne

)−1/2 ∑
k

Pk|Sne,N−ne
〉. (2)

Here, |Sne,N−ne
〉 is given below [cf. Eq. (3)] and {Pk} denotes

the complete set of all possible distinct permutations of the
qubits. For example, for ne = 2 and N − ne = 2 the state of
Eq. (2) would take the explicit form

|W2,2〉 = 1√
6

(|eegg〉 + |egeg〉 + |egge〉
+|geeg〉 + |gege〉 + |ggee〉) . (3)

Further we introduce the separable states whose radiative
properties we will compare to the radiative properties of the
W states in the following, defined by

|Sne,N−ne
〉 ≡

ne∏
α=1

|eα〉
N∏

β=ne+1

|gβ〉. (4)

We now consider a detector placed at position �r in the far-field
region of the atoms to measure the intensity

I = 〈Ê(−)Ê(+)〉 (5)

emitted by the atomic chain. The positive frequency part of
the electric-field operator is given by [28]

Ê(+) ∼ −eikr

r

∑
j

�n × (�n × �pge)e−iϕj ŝ−
j , (6)

with the unit vector �n = �r
r

and �pge the dipole moment of
the transition |e〉 → |g〉. Furthermore, we denote with ŝ−

j =
|g〉j 〈e| the dipole operator and with ϕj the relative optical
phase accumulated by a photon emitted at �Rj and detected at
�r , where (cf. Fig. 1)

ϕj (�r) ≡ ϕj = k�n · �Rj = jkd sin θ. (7)

The negative frequency part of the electric-field operator is
obtained by Hermitian conjugation, i.e., Ê(−) = Ê(+)† . In the
following we will consider for reasons of clarity �pge to be along
the y direction and �n in the x-z plane, so that �pge · �n = 0. With

these assumptions and omitting all constant factors Eq. (6)
simplifies to

Ê(+) ∼
∑

j

e−iϕj ŝ−
j . (8)

The field is now dimensionless and hence all intensities
would be dimensionless. The actual values can be obtained by
multiplying the emission produced by a single excited atom.
Equation (8) leads to the following expression for the radiated
intensity at �r [cf., Eq. (5)]:

I(�r) =
∑
i,j

〈ŝ+
i ŝ−

j 〉ei(ϕi−ϕj )

=
∑

i

〈ŝ+
i ŝ−

i 〉 +
⎛
⎝∑

i 	=j

〈ŝ+
i 〉〈ŝ−

j 〉

+
∑
i 	=j

(〈ŝ+
i ŝ−

j 〉 − 〈ŝ+
i 〉〈ŝ−

j 〉)
⎞
⎠ ei(ϕi−ϕj ). (9)

Thus the characteristics of the intensity would depend on the
incoherent terms 〈ŝ+

i ŝ−
i 〉, the nonvanishing of the dipole mo-

ment 〈ŝ+
i 〉, and quantum correlations like 〈ŝ+

i ŝ−
j 〉 − 〈ŝ+

i 〉〈ŝ−
j 〉.

In case of the N -qubit separable state |Sne,N−ne
〉 the intensity

calculates to

I|Sne,N−ne 〉 =
ne∑

i,j=1

〈ŝ+
i ŝ−

j 〉ei(ϕi−ϕj ) =
ne∑

i=1

〈ŝ+
i ŝ−

i 〉 = ne. (10)

Here, we have explicitly used that for separable states we find

〈ŝ+
i ŝ−

j 〉 = 〈ŝ+
i 〉〈ŝ−

j 〉 = 0, for i 	= j, (11)

since 〈ŝ+
j 〉 = 0, i.e., the dipole moment 〈ŝ+

j 〉 as well as the
correlations 〈ŝ+

i ŝ−
j 〉 for i 	= j are zero. According to Eq. (10)

the intensity distribution of separable states is a constant
corresponding simply to the number of initially excited atoms,
i.e., I|Sne,N−ne 〉 = I|Sne,0〉 for any N . This can be explained as
every atom radiates incoherently. Note that in case of the
celebrated realization of Young’s double slit experiment using
independent atoms coherently excited by a cw laser [29] the
quantum correlations in Eq. (9) are zero. However, the dipole
moment 〈ŝ+

j 〉 is nonzero, whence Eq. (9) reduces to

I (�r) =
∑

i

〈ŝ+
i ŝ−

i 〉 +
∑
i 	=j

〈ŝ+
i 〉〈ŝ−

j 〉ei(ϕi−ϕj ), (12)

which leads to interferences in the mean radiated intensity.
Before we derive the intensity distribution of the general-

ized W states |Wne,N−ne
〉, and thus the enhancement in the

emission of radiation scattered by atoms which are initially
prepared in these states, we will illustrate our key ideas with
a simple example. Consider a system of three atoms prepared
in the W state:

|W1,2〉 = 1√
3

(|egg〉 + |geg〉 + |gge〉) . (13)

The intensity of this state calculates to

I|W1,2〉 =
3∑

i,j=1

〈ŝ+
i ŝ−

j 〉ei(ϕi−ϕj )
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=
3∑

i=1

〈ŝ+
i ŝ−

i 〉 +
3∑

i,j = 1
i 	= j

〈ŝ+
i ŝ−

j 〉ei(ϕi−ϕj ), (14)

with the dipole moment 〈ŝ+
j 〉 being again zero. The first sum

〈ŝ+
i ŝ−

i 〉 in Eq. (14) corresponds to the intensity of the separable
state |S1,2〉 [cf. Eq. (10)], if we keep in mind the normalization
factor of the state |W1,2〉. Let us investigate the second sum,
i.e., the quantum correlations 〈ŝ+

i ŝ−
j 〉 of the W state (i 	= j ).

For example, the correlation 〈ŝ+
1 ŝ−

2 〉 calculates to

〈ŝ+
1 ŝ−

2 〉 = 1√
3

(〈egg| + 〈geg| + 〈gge|) ŝ+
1 ŝ−

2 |W1,2〉

= 1

3
〈ggg|ŝ−

2 (|egg〉 + |geg〉 + |gge〉)

= 1

3
〈ggg|ggg〉 = 1

3
. (15)

In contrast to the separable states [cf. Eq. (10)], the quantum
correlations of the W states are nonzero. Equation (14) thus
simplifies to

I|W1,2〉 = 1

3

⎛
⎜⎜⎜⎜⎝3 +

3∑
i,j = 1

i 	= j

ei(ϕi−ϕj )

⎞
⎟⎟⎟⎟⎠

= 1 + 2

3

3∑
i<j=1

cos(ϕi − ϕj ), (16)

i.e., the intensity I|W1,2〉 displays an angular dependency and
exhibits a maximum of

[I|W1,2〉]
Max = 3 (17)

at ϕ1 = ϕ2 = ϕ3, which is fulfilled for θ = 0, ± π [see
Eq. (7)]. The maximum intensity of the W state |W1,2〉 is higher
than the maximum intensity of the corresponding separable
state |S1,0〉 due to the fact that the quantum correlations 〈ŝ+

i ŝ−
j 〉

are nonzero in the case of the W state. However, this is so far
a rather mathematical justification and does not give much
physical insight in the processes causing the enhancement.
The question which we address in the next section thus is how
can we physically understand the enhancement in the emission
of radiation by the entangled state compared to the separable
state?

A. Quantum interference initiated superradiant
emission from entangled atoms

The best way to understand the superradiant behavior from
W states is to examine the transition amplitude for each
individual photon detection event. The net result would then
be obtained by coherently summing over all the paths via
which photons are emitted and recorded by the detector. In the
following we will demonstrate that the interference of various
quantum paths gives us a transparent physical picture of the
superradiant emission from W states.

Let us first investigate the different quantum paths of the
initially separable state |S2,0〉 = |ee〉 (cf. Fig. 2) which lead to

FIG. 2. (Color online) Possible quantum paths of the initially
separable state |S2,0〉. Black circles denote atoms in the excited state
and white circles denote atoms in the ground state. The middle row
depicts the different quantum paths. The lower row displays the final
states of the atoms and the phases accumulated by the photon along
the different quantum paths. See text for details.

a successful photon detection event. For a particular event the
detector cannot resolve from which of the two atoms the photon
was scattered due to the far-field condition. There are thus
two distinct possibilities: either the photon (black arrow) was
scattered by the first excited atom (black circle) transferring
it into the ground state (white circle), where a phase e−iϕ1

is accumulated by the photon, or the photon was emitted by
the second atom resulting in the accumulation of the phase
e−iϕ2 . Each quantum path leads to a different final state, so
in principle they are distinguishable, and we do not expect
interference terms to appear. Explicitly, from Eq. (10) and
Fig. 2, we obtain for the intensity distribution

I|S2,0〉 = ||e−iϕ1 |ge〉||2 + ||e−iϕ2 |eg〉||2 = 2, (18)

where the norm of the state vector |�〉 is denoted by |||�〉||2 =
〈�|�〉. Let us compare these results to the superposition of
quantum paths and the intensity distribution obtained in the
case of an initial W state |W2,1〉. From Eq. (2) this state reads

|W2,1〉 = 1√
3

(|eeg〉 + |ege〉 + |gee〉) . (19)

Figure 3 depicts the different quantum paths leading to a
successful measurement event. Let us exemplify the emerging
interference by considering only the first term in the coherent
sum of |W2,1〉. The state |eeg〉 basically leads to the same
quantum paths as the state |S2,0〉: Either the first atom emits the
photon leading to the final state |geg〉 and to an accumulation of
the phase e−iϕ1 or the second atom scatters the photon, so that
the final state is |egg〉 and the accumulated phase corresponds

+ + + ++

FIG. 3. (Color online) Possible quantum paths of the initial W

state |W2,1〉.
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to e−iϕ2 . However, different from the separable state |S2,0〉, we
have here a superposition of three different terms in the state
|W2,1〉 leading to six quantum paths in total.

These quantum paths can lead to a constant contribution to
the intensity as in the case of an initial separable state; however,
they are also capable to interfere, namely, with another
indistinguishable quantum path: Taking into account the
normalization factor 1√

3
we find the same constant contribution

to the intensity in the case of the W state |W2,1〉 (namely 6
3

due to the six quantum paths which do not interfere) and in the
case of the separable state |S2,0〉 (namely 2). However, photons
which were scattered from the atomic state |W2,1〉 can occupy
more than one quantum path leading to the same final state
(cf. e.g., the far left and far right quantum path in Fig. 3, both
leading to the final state |geg〉). Furthermore, for all quantum
paths the initial states are equal from the detectors’ point of
view—the detector is unable to identify from which atom the
photon was scattered due to the far-field assumption. Thus we
obtain interfering quantum paths exclusively for nonseparable
states which are leading to interference terms in the intensity
distribution.

Let us explicitly calculate the intensity of the state |W2,1〉
to quantitatively investigate the validity of our quantum path
interpretation. It reads [cf. Eq. (9) and Fig. 3]

I|W2,1〉 = 1
3 ||(e−iϕ1 + e−iϕ2 )|gge〉||2
+ 1

3 ||(e−iϕ1 + e−iϕ3 )|geg〉||2
+ 1

3 ||(e−iϕ2 + e−iϕ3 )|egg〉||2. (20)

In this section we want to focus on the maximum of the
intensity distribution. From Eq. (20) it follows that

[I|W2,1〉]
Max = 6

3 + 6
3

≡ [I|S2,0〉]
Max + (interference terms), (21)

in agreement with the foregoing discussion. In the following
we want to demonstrate that the enhanced maximal emission
of radiation scattered by W states can be explained purely by
additional constructive interference terms created by indistin-
guishable quantum paths. To this end we cast the foregoing
argument into a formula for the maximum of the intensity of
a W state:

[I|W 〉]Max = [I|S〉]Max + (Ppair
no. ) (|f 〉no.) (N ). (22)

Hereby (Ppair
no. ) abbreviates the number of interfering quantum

path pairs leading to the same final state. Multiplied by the
number of final states (|f 〉no.), we thus arrive at the total
number of interfering quantum path pairs, i.e., interference
terms, contributing to the intensity maximum of the signal.
Together with the squared normalization constant (N ) of the
corresponding W state the expression (Ppair

no. ) · (|f 〉no.) · (N )
equals, for θ = 0, ± π , the constructive contribution of the
interference terms to the maximal intensity.

Let us apply Eq. (22) to rederive the maximum of the
intensity I|W2,1〉. In Eq. (18) we already calculated the maximum
intensity of the corresponding separable state to be 2. The
number of interfering quantum path pairs leading to the same
final state can be easily obtained by counting (see Fig. 3):
we could either pick out the two pairs (1,6) and (6,1) or the

pairs (2,4) and (4,2) or the two pairs (3,5) and (5,3), i.e.,
(Ppair

no. ) = 2. Note that the pairs (i,j ) are equal to interfering
quantum paths ei(ϕi−ϕj ) for i 	= j giving rise to interference
terms. The number of different final states is (|f 〉no.) = 3 and
the squared normalization of the state |W2,1〉 is (N ) = 1

3 . Thus
we obtain for the maximum intensity [cf. Eq. (20)]

[I|W2,1〉]
Max = 2 + 2 · 3 · 1

3 = 4, (23)

in accordance with Eq. (21).
Now we adopt the foregoing reasoning to an initial

generalized symmetric W state |Wne,N−ne
〉 with ne excited

atoms and N − ne atoms in the ground state [cf. Eq. (2)].
The general formula for the maximum intensity of the W

state |Wne,N−ne
〉 ≡ |W	〉 can be derived using combinatorial

considerations and the maximum of the intensity of the
separable state I|Sne,N−ne 〉 as given in Eq. (10). It reads

[I|W	〉]
Max = ne + [(

Ppair
no.

)
(|f 〉no.)(N )

]
|W	〉

= ne + ng(ng + 1)

(
N

ne − 1

)(
N

ne

)−1

= ne(ng + 1). (24)

Let us investigate the different terms of Eq. (24) in more detail.
As stated before, (N ) is the squared normalization constant of
the generalized symmetric W state [cf. Eq. (2)]. The number
of final states (|f 〉no.) can be derived by taking into account
that after the detection of a photon there are ne − 1 excited
atoms left which are able to occupy N different position in
the chain of N atoms, which leads to ( N

ne − 1 ). The crucial term

(Ppair
no. ) needs more explanation: ne different single quantum

paths lead to a detection event for every term of the initial
W state [cf., e.g., Eq. (20)]. If we now multiply these single
quantum paths by the number of terms of the initial W state
[given by ( N

ne
)] we arrive at the total number of single quantum

paths. The number of single quantum paths leading to the same
final states—abbreviated by (Psingle

no. )—is then obtained if we
divide the total number of single quantum paths by the number
of final states:

(
P single

no.

) =
ne

(
N

ne

)
(

N

ne−1

) = ng + 1. (25)

These ng + 1 single quantum paths which lead to the same
final state now interfere among each other producing in total
(Ppair

no. ) = ng(ng + 1) interfering quantum path pairs. Clearly
(Ppair

no. ), i.e., the enhancement of the intensity, is zero if ng = 0.
Table I displays the results of Eq. (24) for ne = 1, . . . ,N − 1.

Furthermore, a three-dimensional (3D) plot of the max-
imum intensity of the generalized W state |Wne,N−ne

〉 as a
function of ne and N [cf. Eq. (24)] is shown in Fig. 4, where
the maximum intensity of the state |WN/2,N/2〉 is highlighted
by the solid line.

Let us next define an enhancement parameter ε which
describes the ratio of the maximum intensity of a W state
and the maximum intensity of a separable state with the
same number ne of initially excited atoms. With Eqs. (10)
and (24) it calculates to ε = ng + 1, which is clearly greater
than 1 for ng > 0, i.e., every W state radiates stronger than
the corresponding separable state. This behavior seems quite
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TABLE I. Maximum intensity for the W states |Wne,N−ne
〉 with

ne = 1, . . . ,N − 1. See text for details.

counterintuitive: the addition of an unexcited atom to the fully
excited N − 1 qubit compound increases the emission of the
system by a factor of 2 [14], however, just as long as there is in
principle no information available about what particular atom
is unexcited.

Note that the highest enhancement ε is achieved with the
W state |W1,N−1〉 (cf. Table II). In fact, the enhancement
ε is of the order of N for all generalized symmetric W

states. However, the maximum intensity for an even number
of atoms, namely N/2(N/2 + 1), is obtained with the initial
atomic states |WN/2,N/2〉 (cf., the solid line in Fig. 4) or
|WN/2+1,N/2−1〉. For an odd number of atoms the N -qubit
state |W(N+1)/2,(N−1)/2〉 even exhibits an intensity maximum
of (N+1

2 )2.

B. Quantum multipath interference and Dicke superradiance

We now establish the connection between our work and that
of Dicke [14]. Dicke used the addition of angular momentum
algebra to introduce the collective states |S,m,ν〉 for which
the collective spin operators Ŝ2 and their z component Ŝz

2
4

6
8

10

2
4

6
8

10

0

10

20

30

FIG. 4. (Color online) Point plot of the maximum of I|Wne,N−ne 〉 as
a function of ne and N = ne + ng (the surface serves only to guide
the eye). [I|WN/2,N/2〉]Max, given in units of the intensity produced by a
one-atom system, is highlighted by the solid line.

TABLE II. Maximal intensity [I|W 〉]Max and enhancement param-
eter ε of the states |Wne,N−ne

〉 with ne = 1, . . . ,N − 1.

have eigenvalues h̄2s(s + 1) and h̄m, respectively, and ν

is a degeneracy parameter [30]. For S = N/2, where N

corresponds to the number of two-level atoms in the system, the
state is fully symmetric and nondegenerate. These states are in
fact identical to the generalized symmetric W states |Wne,N−ne

〉
introduced above, where in our notation m = 1

2 (ne − ng) =
ne − N

2 . Dicke assumed that the size of the system is much
smaller than a wavelength and showed that in this case the
radiation rate from the state |N/2,m〉 is

I ∝
(

N

2
+ m

) (
N

2
− m + 1

)
. (26)

For m = 0 the radiation rate is clearly of the order of N2.
In the previous section we have found a similar result for
the symmetric W states, in particular for the state |WN/2,N/2〉
corresponding in Dicke’s notation to the state |S = N/2,m =
0,ν = 0〉. However, we specifically do not consider the limit
of small systems as then the dipole-dipole interaction between
the atoms is to be accounted for and this completely changes
the radiation properties [31]. We rather consider the case
where the system size is larger than a wavelength to avoid
the difficulties due to the dipole-dipole interaction.

Usually an enhanced radiation rate is related to a large
dipole moment. Contrary to this, the Dicke states have zero
dipole moment, but show a superradiant behavior. So far,
a clear physical understanding of this remarkable result is
missing. Our physical picture based on quantum multipath
interference is able to explain the superradiant behavior: The
entanglement in the W states leads to constructive interference
between different indistinguishable pathways, which then is
responsible for the superradiant emission. We can explicitly
write down all the interfering pathways for any number of
atoms and for any initial state. We stress that the situation that
we discuss is different from the way earlier experiments have
been performed. In common experiments on superradiance
[32] a gas of atoms is initially prepared in the Dicke state
|N/2,N/2〉 (the fully excited separable state |SN,0〉 in our
notation) in order to investigate the variation of the systems’
radiation over a long time scale as the state evolves to the
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ground state. In contrast, we are investigating the short-time
behavior of the radiation emitted by well prepared initial W

states.

III. DIRECTIONALITY IN THE EMISSION FROM
ARBITRARY SYMMETRIC W STATES

So far we have focused our discussion on establishing a
physical explanation for the maxima of the intensity radiated
by generalized symmetric W states. However, besides studying
the maximal enhancement of radiation, we now want to
investigate the angular dependence of the scattered intensity to
better characterize the radiation emitted by those states. Using
Eq. (9) the intensity distribution of a generalized symmetric
W state calculates to (cf. the Appendix)

I|Wne,N−ne 〉(θ ) = ne(ne − 1)

N − 1
+ ne(N − ne)

N (N − 1)

sin2( ϕN

2 )

sin2( ϕ1

2 )
. (27)

With δϕN = Nkd cos θδθ [cf. Eq. (7)] the width of the
interference term in Eq. (27) is given by

δθ = 2π

Nkd
. (28)

The width of the distribution thus depends on the wavelength λ,
the distance d between adjacent atoms, and on the total number
of atoms N—in contrast to the maximum of the emitted
intensity, which depends on the product of unexcited atoms
ng and excited atoms ne [cf. Eq. (24)].

Let us introduce the visibility of the intensity distribution

V = IMax − IMin

IMax + IMin
. (29)

From Eq. (27) we find

V = 1

1 + 2(ne−1)
Nng

. (30)

For ne = 1 the visibility is 1. Furthermore, for a given number
of excited atoms ne and an increasing number of unexcited
atoms ng sharing a common W state V → 1. This behavior
can be understood from Eq. (22) as the offset of the intensity
distribution only depends on ne.

Let us investigate the case ne = 1 in more detail. Equa-
tion (27) becomes in this case proportional to the intensity
distribution of a diffraction grating,

I|W1,N−1〉(θ ) = 1

N

sin2( ϕN

2 )

sin2( ϕ1

2 )
. (31)

Figure 5 displays I|W1,N−1〉 for different numbers of atoms
N = ne + ng . The figure clearly shows that with a higher
number of unexcited atoms ng = N − 1 the radiation of the
state |W1,N−1〉 is increasingly peaked in the directions θ = 0
[see Eq. (24)]. Furthermore, we can identify certain directions
where the intensity vanishes completely (leading to a visibility
of 1) and large areas where the intensity is almost zero. In
comparison to the superradiant peak at θ = 0 these areas are
subradiant. Thus we obtain also with symmetric generalized W

states a subradiant behavior in certain directions, which is quite
counterintuitive as this phenomenon is in general exclusively
ascribed to antisymmetric states, i.e., to Dicke states |S,m〉
with S 	= N/2.

3 π
4

π
2

π
4

0 π
4

π
2

3 π
4
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8

θ

I
W

1,
N

1

FIG. 5. (Color online) Intensity distribution I|W1,N−1〉(θ ) of the
state |W1,N−1〉 as a function of the detector position θ (cf. Fig. 1)
for different numbers of atoms N (N = 2 dotted, N = 4 striped,
N = 8 solid) and with kd = 3

2 π . I|W1,N−1〉 is given in units of the
intensity produced by a one-atom system. A strong directionality in
the emission of radiation by the symmetric W states can be seen.

Let us discuss a second example, namely the intensity
distribution of an initial atomic state |Wne,N−ne

〉 for a fixed
number of atoms N and varying number of excited atoms ne

(see Fig. 6). For N = 10, ne = 5, and ng = 5, i.e., the initial
state |WN/2,N/2〉 (solid line), we find at θ = 0 the maximum
of all graphs as expected [cf. Eq. (24)]. Furthermore, it can
be seen that the width of the distributions is independent of
ne and equal for all graphs since it just depends on the total
number of atoms N sharing the W state [cf. Eq. (28)]. Finally,
as expected, the visibility is decreasing with increasing number
of excited atoms ne [cf. Eq. (30)].

We want to conclude this section by discussing a variation
of the interatomic spacing d. In the upper part of Fig. 7 a
contour plot of the intensity distribution I|W1,4〉 of the state
|W1,4〉 is shown as a function of the observation angle θ and
the interatomic spacing kd (cf. the striped line in Fig. 5). The
superradiant maximum can be clearly seen at θ = 0. However,

π
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4
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,1
0

FIG. 6. (Color online) Intensity distribution of the state
|Wne,10−ne

〉 for N = 10 and different numbers of excited atoms ne

(ne = 3 striped, ne = 5 solid, ne = 7 dotted); kd = 3
2 π and I|Wne,10−ne 〉

is given in units of the intensity produced by a one-atom system.
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FIG. 7. (Color online) Contour plots of the intensity distribution
I|W1,4〉 of the state |W1,4〉 dependent on the observation angle θ and
the interatomic spacing kd in units of π . The numbers 1 and 3 on the
left-hand side in each plot indicate the two contours I|W1,4〉 = 1 and
I|W1,4〉 = 3, i.e., dark areas correspond to a low intensity, bright areas
to a high intensity. I|W1,4〉 is given in units of the intensity produced
by a one-atom system.

there are also periodically appearing sub- and superradiant
areas at θ ≈ π

2 , which lead to an increasing number of fringes
with increasing kd. Under experimental conditions typical
distances between the atoms are of the order of 10λ [1],
which leads to kd ≈ 20π . A corresponding contourplot of
the intensity distribution I|W1,4〉 is plotted from kd = 20π

to kd = 25π in the lower part of Fig. 7. As expected, the
fringe spacing decreases with increasing atom separation—
however, the particularities of the angular dependence remain
unchanged, even if we consider larger distances between the
atoms.

Finally we note that in the limit of large N , the function
sin2( ϕN

2 )

sin2( ϕ1
2 )

[cf. Eq. (27)] becomes sharply peaked at ϕ1 = 0 or

θ = 0. For a periodic system, where the assumption of large
N is implicit, a similar result is obtained in [33]. Further, for an
ensemble of atoms angular distributions have been extensively
studied [15,17,32].

IV. RADIATION FROM ANTISYMMETRIC W
STATES—COMPETITION OF DESTRUCTIVE AND

CONSTRUCTIVE INTERFERENCE

In this section we want to apply our approach of using
quantum interferences for the derivation of the enhanced

+ + +++ +

FIG. 8. (Color online) Quantum paths of the antisymmetric state
|W−

2,1〉. Black circles denote atoms in the excited state and white
circles denote atoms in the ground state. The middle row depicts the
different quantum paths. The lower row displays the final states of
the atoms and the phases accumulated by the photon due to different
quantum paths. Quantum paths leading to constructive interference
are denoted by solid arrows and quantum paths leading to destructive
interference are depicted by dashed arrows. See text for details.

intensity generated by entangled states also to antisymmetric
W states, i.e., Dicke states |S,m,ν〉 with S 	= N/2. As there is
no analytical expression for these states we cannot present a
general formula for the different contributions (Ppair

no. ), (|f 〉no.)
and (N ) like in Eq. (24). However, we can show that our
physical framework also gives good predictions in the case
of antisymmetric states by investigating an explicit example:
let us consider the chain of atoms to be initially in the
antisymmetric state,

|W−
2,1〉 = 1√

6
(|ege〉 + |eeg〉 − 2|gee〉) . (32)

From Eq. (9), the intensity distribution of this state calculates
to

I|W−
2,1〉 = 1

6 ||(eiϕ1 − 2eiϕ2 )|gge〉||2

+ 1
6 ||(eiϕ1 − 2eiϕ3 )|geg〉||2

+ 1
6 ||(eiϕ2 + eiϕ3 )|egg〉||2

= 1
6 {12 − 4[cos(ϕ1 − ϕ2) + cos(ϕ1 − ϕ3)]

+ 2 cos(ϕ2 − ϕ3)}. (33)

Since we want to investigate the subradiant behavior of this
state, we are now looking for the minimum of Eq. (33). It is
found to be

[I|W−
2,1〉]

Min = 1, (34)

at the detector positions θ = 0, ± π . By examining Eq. (33)
and by studying the corresponding quantum paths contributing
to I|W−

2,1〉 (see Fig. 8), it can be seen that we again find

the same offset in case of the antisymmetric W state |W−
2,1〉

(namely 12
6 ) as in the case of the separable state |S2,0〉 or the

corresponding symmetric W state |W2,1〉 (cf. Sec. II). However,
different from the symmetric states, where all quantum paths
led to constructive interference at θ = 0, ± π , we now have
two different types of interfering quantum paths: due to the
different signs of the prefactors in Eq. (33) some paths are
leading to constructive interference, other quantum paths to
destructive interference (denoted by solid and dashed lines in
Fig. 8).

Incorporating this particularity we now show that the
reduced emission of radiation of antisymmetric W states can
again be explained by the interference of indistinguishable
quantum paths. For this purpose we conjecture in analogy to
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Eq. (22) that the radiation from an asymmetric W state can be
expressed as

[I|W−〉]Min = [I|S〉]Max + {[(
Ppair

no.

)
C

] · [(|f 〉no.)C]

− [(
Ppair

no.

)
D

] · [(|f 〉no.)D]
} · (N ), (35)

where [(Ppair
no. )C] abbreviates the number of constructive inter-

fering quantum path pairs leading to one of the possible final
states. Further, [(Ppair

no. )D] denotes the number of destructive
interference terms leading to one final state. Multiplied by
[(|f 〉no.)C] or by [(|f 〉no.)D], which denotes the number of
corresponding final states, we thus arrive at the contribution of
constructive and destructive interfering quantum path pairs
to the intensity of the signal. Again, (N ) is the squared
normalization constant of the corresponding antisymmetric
W state.

Let us apply Eq. (35) to the example discussed above to
obtain the minimum of the intensity I|W−

2,1〉. The maximum
intensity of the corresponding separable state is I|S2,0〉 = 2
[cf. Eq. (18)]. The number of constructive and destructive
interfering quantum path pairs leading to their corresponding
final states can be again obtained by counting (see Fig. 8):
we count in the case of constructive interference (only solid
arrows) the two pairs (2,4) and (4,2), i.e., [(Ppair

no. )C] = 2 and
[(|f 〉no.)C] = 1. The destructive interfering quantum path pairs
(solid and dashed arrows) would be (1,5), (5,1), (1,7), and
(7,1) or the pairs (3,6), (6,3), (3,8), and (8,3), i.e., [(Ppair

no. )D] =
4 and [(|f 〉no.)D] = 2. With the squared normalization (N ) =
1
6 of the state |W−

2,1〉 we thus again obtain for the minimum
intensity [cf. Eq. (34)]

[I|W−
2,1〉]

Min = 2 + (2 · 1 − 4 · 2) · 1
6 = 1. (36)

Let us conclude this section by comparing the angular intensity
distribution of the state |W−

2,1〉, the state |W2,1〉, and the state
|W̃−

2,1〉, where the latter is given by

|W̃2,1〉 = 1√
2
|e〉 ⊗ (|ge〉 − |eg〉). (37)

The state |W̃−
2,1〉 shows the same intensity minimum as the

antisymmetric state |W−
2,1〉: In Dicke notation the S and the

m parameter of the two states are equal, namely S = 1/2 and
m = 1/2, leading to a minimum intensity of [14]

I ∝ (S + m)(S − m + 1) = 1. (38)

However, the angular intensity distribution of the state |W̃−
2,1〉

differs from the one of the state |W−
2,1〉 [cf., Eq. (33)] and

calculates to

I|W̃−
2,1〉 = 1

2 ||(e−iϕ1 (|gge〉 − |geg〉)||2

+ 1
2 ||(e−iϕ3 − e−iϕ2 )|egg〉||2

= 2 − cos(ϕ2 − ϕ3). (39)

Figure 9 shows that the antisymmetric states |W−
2,1〉 (striped)

and |W̃−
2,1〉 (solid) have global and identical minima in the

θ = 0 directions, ± π , but differ for θ 	= 0, ± π . In contrast,
the corresponding symmetric state (dotted) has global maxima
at θ = 0, ± π , but—what is not intuitive—is subradiant over
larger areas than the corresponding antisymmetric states. This
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FIG. 9. (Color online) Intensity of the initial anti-symmetric
state |W−

2,1〉 (striped), the anti-symmetric state |W̃−
2,1〉 (solid) and the

symmetric W -state |W2,1〉 (dotted) as a function of the observation
angle θ ; kd = 3

2 π and I is given in units of the intensity produced by
a one-atom system.

result suggests that one cannot decide whether a system of en-
tangled atoms will show super- or subradiant emission by just
considering the initial state—the behavior is rather dependent
on the particular direction of observation. Furthermore, the
antisymmetric states |W̃−

2,1〉 and |W−
2,1〉 have the same intensity

minima [cf., Eq. (38)]. Thus they are indistinguishable if one
were to concentrate on the rate of emission θ = 0, ± π , alone.
However, the state |W̃−

2,1〉 shows a more subradiant behavior
for θ 	= 0, ± π , making a distinction between those two states
possible if the angular dependency is taken into account.

We want to note that we have derived the quantum paths
and intensity distributions for all antisymmetric states up to
N = 3 suggesting that our quantum path approach used in this
section remains valid also for a broader class of states.

V. CONCLUSION

In conclusion we studied enhanced spontaneous emission
from entangled atoms for generalized symmetric W states.
We traced back the enhancement to interferences of photon
quantum paths and introduced a framework which enables to
precisely identify each specific quantum path leading to the
enhanced radiation. Our physical framework is valid for states
of zero dipole moment, where a classical antenna interpretation
for the enhanced radiation is not applicable. Furthermore, we
investigated the angular distribution of the emission of photons
by entangled atoms and showed strong focusing of light
emitted by entangled atoms. We extended our investigation to
nonsymmetric generalized W states and gave examples which
support our interpretation in terms of interference even if we
consider a broader class of states. Finally, we showed that also
symmetric W states can emit in a subradiant manner. This
underlines the importance of considering position dependent
detection to fully describe the radiation properties of entangled
atoms. While we have concentrated here on the mean intensity
of the emitted radiation it would be worthwhile to investigate
other quantum signatures of entangled states in the emitted
radiation.
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APPENDIX: DERIVATION OF THE ANGULAR
DEPENDENT DISTRIBUTION OF INTENSITY FOR

INITIAL GENERALIZED W STATES

In this Appendix we want to derive Eq. (27) from first prin-
ciples. Starting with Eq. (9) the angular dependent intensity
from generalized symmetric W states reads

I|Wne,N−ne 〉 =
∑
i,j

〈ŝ+
i ŝ−

j 〉ei(ϕi−ϕj )

=
∑

i

〈ŝ+
i ŝ−

i 〉 +
∑
i 	=j

〈ŝ+
i ŝ−

j 〉ei(ϕi−ϕj )

= Nα + β

⎛
⎝∑

i,j

ei(ϕi−ϕj ) − N

⎞
⎠

= Nα + β

∣∣∣∣∣
∣∣∣∣∣
∑

i

eiϕi

∣∣∣∣∣
∣∣∣∣∣
2

− βN

= Nα + β
sin2( ϕN

2 )

sin2( ϕ

2 )
− βN, (A1)

where we used the fact that due to the symmetry of the W

states the matrix elements 〈ŝ+
i ŝ−

i 〉 and 〈ŝ+
i ŝ−

j 〉 are independent
of i,j and given by constants which we denote by α and β,
respectively. For α we obtain

〈ŝ+
i ŝ−

i 〉 ≡ α = 1

2
+ 〈

ŝz
i

〉

→ Nα = N

2
+ 〈ŝz〉 = N

2
+ m = ne, (A2)

as m = ne − N/2 (cf. Sec. II B). Now we have to determine
the constant β. The sum over all matrix elements 〈s+

i s−
j 〉 of

the collective states |N/2,m〉, corresponding to the symmetric
W states |Wne,N−ne

〉, calculates to [14]

∑
i,j

〈s+
i s−

j 〉 = N

2

(
N

2
+ 1

)
− m2 + m

= ne(N − ne − 1) (A3)

and must be identical to the maximum intensity from gen-
eralized symmetric W states ]cf. Eq. (A1)]. Thus it follows
that

ne(N − ne − 1) ≡ ne + β N (N − 1)

→ β = ne(N − ne)

N (N − 1)
, (A4)

as the maximum of
sin2( ϕN

2 )
sin2( ϕ

2 ) = N2. Now, if we put α and
β into Eq. (A1), we arrive at the angular dependent in-
tensity from generalized symmetric W states introduced
in Eq. (27).
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