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Suppression of Kelvon-induced decay of quantized vortices in oblate Bose-Einstein condensates
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We study the Kelvin mode excitations on a vortex line in a three-dimensional trapped Bose-Einstein condensate
at finite temperature. Our stochastic Gross-Pitaevskii simulations show that the activation of these modes can be
suppressed by tightening the confinement along the direction of the vortex line, leading to a strong suppression in
the vortex decay rate as the system enters a regime of two-dimensional vortex dynamics. As the system approaches
the condensation transition temperature, we find that the vortex decay rate is strongly sensitive to dimensionality
and temperature, observing a large enhancement for quasi-two-dimensional traps. Three-dimensional simulations
of the recent vortex dipole decay experiment of Neely et al. [Phys. Rev. Lett. 104, 160401 (2010)] confirm
two-dimensional vortex dynamics and predict a dipole lifetime consistent with experimental observations and
suppression of Kelvon-induced vortex decay in highly oblate condensates.
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I. INTRODUCTION

Quantum vortices in Bose-Einstein condensates (BECs) are
topologically stable excitations of the superfluid matter wave
field that carry angular momentum [1]. Unless the system
is rotating sufficiently fast, vortices are thermodynamically
unstable [2]. At finite temperatures the thermal cloud can
provide a source of dissipation and noise and hence allow
vortex decay. However, there is currently little understanding
of the decay mechanism and its time scale. The dynamics of
vortices in such systems is therefore of interest as a robust
test of nonequilibrium field theory. A number of different
methods have been developed to describe the dynamics of
vortices in finite-temperature systems. Single-vortex decay has
been simulated using the Zaremba-Nikuni-Griffin formalism
[3] and the classical field method [4] and within a Gross-
Pitaevskii theory with phenomenological damping [5]. The
nature of the thermal instability has also been studied within
a variational approach [6] to the stochastic Gross-Pitaevskii
equation [7].

Classical vortices can support long-wavelength helical
traveling waves known as Kelvin waves [8]. Superfluid Kelvin
waves, or Kelvons [9], have long be studied in helium [10]
and more recently have become a topic of interest in BECs.
The Kelvon excitation mechanism has been theoretically
investigated [11], along with the microscopic dynamics of
coherently excited Kelvin waves [12], with results consistent
with the experimental evidence for Kelvons [13]. Similar
bending waves have also been shown to play an important
role in the instability of vortex rings in trapped BECs [14].

While the coherent excitation of Kelvin modes in a BEC is
well understood, their role in the finite-temperature system is
largely unexplored. Here we show that the thermal activation
of Kelvin waves is a dominant factor in the decay of a vortex
for a finite-temperature three-dimensional (3D) BEC. The
underlying reason is that Kelvin waves cause the vortex to
wobble and emit acoustic radiation, thus allowing the vortex
to more effectively dissipate energy and hence decay by
moving out to the boundary of the BEC. As Kelvin waves
are fundamentally 3D excitations of the vortex line, they may
be suppressed by flattening the system (see Fig. 1).

Indeed, beyond a certain oblateness we find that the
Kelvon-mode contribution is essentially frozen out and the
vortex decay rate reduces to a geometrically invariant value,
characterizing a regime of two-dimensional vortex (2DV)
dynamics. We also find that for tighter traps and higher
temperatures the matter wave itself crosses over to being quasi-
2D, and we find a dynamical signature of the phase-fluctuating
condensate: an anomalous increase in the rate of vortex decay.

As a further application of these concepts, we model a
recent experiment [15] studying vortex dipoles in the 2DV
regime, confirming the 2DV behavior in finite-temperature dy-
namics. The decay characteristics are found to be qualitatively
very different from 3D dipole decay, which exhibits vortex
ring and loop formation, accelerating the damping process.

Our theoretical framework for studying this system is the
stochastic projected Gross-Pitaevskii equation (SPGPE) [16],
which is a grand-canonical c-field method [17] (also see
[18,19] for related theories). This formalism has been used
to study vortex lattice formation from a rotating thermal cloud
[20], a quantitative model of spontaneous vortex formation in
experiments [20,21], and the decay of a single vortex [22] (also
see [23]).

II. SYSTEM AND EQUATION OF MOTION

A. Physical system

We begin by describing the system of bosonic atoms in the
cold-collision regime with the second-quantized many-body
Hamiltonian

H =
∫

d3x �†(x)Hsp�(x) + g

2

∫
d3x �(x)†�(x)†�(x)�(x),

(1)

where the single-particle Hamiltonian is

Hsp = −h̄2∇2

2m
+ V (x), (2)

the cylindrically symmetric harmonic trap is

V (x) = m

2

[
ω2

r (x2 + y2) + ω2
zz

2
]
, (3)
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FIG. 1. (Color online) Schematic of vortex (solid line) bending
from the z axis (dashed line) in a trapped BEC for (a) a spherical trap
[in terms of trap frequencies defined in Eq. (3), � = ωz/ωr ∼ 1] and
(b) a highly oblate trap (� � 1).

and g = 4πh̄2a/m, with m being the atomic mass and a being
the s-wave scattering length. The field operators obey Bose
commutation relations:

[�(x),�†(y)] = δ(x − y). (4)

We define � ≡ ωz/ωr as the degree of trap oblateness, with
ωr = �−1/3ω̄, enforcing a constant geometric mean frequency
ω̄3 ≡ ω2

r ωz for arbitrary oblateness. This choice ensures the
ideal-gas transition temperature T 0

c is invariant under scaling
of � at fixed total atom number N .

B. SPGPE formalism

In this work we use the SPGPE formalism to describe the
process of vortex decay in a finite-temperature BEC. The
approach we follow in choosing parameters and preparing
initial states for the SPGPE is extensively detailed in Ref. [22];
hence we only briefly summarize it here.

The SPGPE is a c-field method where the system is
decomposed in terms of the single-particle modes of the
system satisfying Hspφn(x) = εnφ(x), where n represents all
quantum numbers required to specify the modes. The system
is divided into the coherent region C consisting of all states
with εn � εcut and the incoherent region I containing the
remaining high-energy modes [17]. This division is made using
a projection operator PC, which defines the C-region field
operator as

ψ(x) = PC�(x) ≡
∑

εn � εcut

φn(x)
∫

d3y φ∗
n(y)�(y). (5)

Equivalently, we have the expansion

ψ(x) =
∑

εn � εcut

anφn(x), (6)

where [an,a
†
m] = δn,m. The I region acts as a thermal reservoir

for the C region and is assumed to be in thermal equilibrium
at a temperature T and chemical potential μ. The C-region
dynamics are described by a stochastic differential equation
for the c-field corresponding to (6):

ψC(x) ≡
∑

εn � εcut

αnφn(x), (7)

where αn are ordinary c numbers. The equation of motion is
known as the simple-growth SPGPE [20]:

dψC = PC

{
− i

h̄
LCψCdt + γ

kBT
(μ − LC)ψCdt + dW

}
,

(8)

where LC is the Hamiltonian evolution operator for the
C region LCψC ≡ (Hsp + g|ψC|2)ψC and the complex
Gaussian noise dW satisfies 〈dW ∗(x,t)dW (x′,t)〉 = 2γ δ(x −
x′)dt,〈dW (x,t)dW (x′,t)〉 = 0. For a full derivation of the
SPGPE we refer the reader to [16].

The first term of the SPGPE (8) describes Gross-Pitaevskii
evolution over the C region, while the second and third
terms account for scattering of two I-region atoms, resulting
in growth of the C region and the corresponding time-
reversed process. The growth rate γ can be calculated in
near-equilibrium systems [20] and is independent of position
over a large region of the trap with the value

γ = 4m(akBT )2

πh̄3

∞∑
j=1

eβμ(j+1)

e2βεcutj


[
eβμ

eβεcut
,1,j

]2

, (9)

where β = 1/kBT and  is the Lerch transcendent.
To obtain initial states for evolution according to (8), we

follow the procedure used in [22], which we briefly summarize.
We generate (nonvortex) finite-temperature equilibrium states
by evolving the SPGPE with an appropriate choice of T , μ,
and εcut [24]. The values of T , μ, and εcut then determine γ

[Eq. (9)], and hence all SPGPE parameters are obtained in a
physically consistent manner prior to simulation. To create the
vortex initial state we imprint a phase ψC(x) → ψC(x)ei�(x)

onto the equilibrium state, where �(x) is the azimuthal angle
in the radial plane [25]. This creates a straight singly charged
vortex line along the z axis of the trap. This procedure generates
a nonequilibrium state because the reservoir parameters in (8)
are for a nonrotating reservoir.

III. SINGLE-VORTEX DECAY

In our simulations we use initial vortex states prepared for
a system containing 5 × 105 87Rb atoms in a trap of (fixed)
geometric mean trap frequency ω̄ = 2π × 19.7 s−1 (for which
T 0

c = 69.7 nK) and a range of geometries from spherical to
highly oblate. For each parameter set we calculate vortex decay
properties by evolving 10–30 trajectories of the SPGPE [26].
In each trajectory a distinct sample of the thermal c field is
imprinted with a single vortex, and the c field is then evolved
according to the SPGPE for the same reservoir parameters
generating the initial state.

Figure 2 shows density isosurfaces of the vortex in a
variety of condensate geometries after t = 0.61 s of evolution.
The phase imprinting technique leads to a straight vortex
line along the z axis, but under evolution the vortex rapidly
thermalizes, typically within 0.1 s (see discussion below).
We observe a significant amount of vortex bending in the
spherical geometry, and as the condensate becomes more two-
dimensional, the magnitude of bending lessens, and the vortex
behaves essentially as a straight line. Although vortex bending
on a short length scale is evident in spherical geometries, the
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FIG. 2. (Color online) Density isosurfaces of the C field after t = 0.61s of SPGPE evolution for a range of trap geometries. Red (light gray)
shows the full-density isosurface. Blue (dark gray) shows the isosurface restricted to the region of the vortex core. The system temperature is
T = 0.78T 0

c .

vortex stays approximately aligned with the z axis throughout
its evolution.

A. Kelvon power spectrum

Transverse excitations of a quantized vortex in a low-
temperature BEC are known to satisfy the Kelvon dispersion
relation [9,12], provided their wavelength λK greatly exceeds
the healing length ξ . In a finite system with straight vortex line
length L, the wavelength is also bounded above: λK � L/2. To
obtain the vortex line coordinates during evolution we locate
the radial position of the phase singularity (xv,yv) in each
plane (i.e., z value) and for all times t . At finite temperature,
fluctuations in the phase at the condensate boundary restrict
the spatial range over which the vortex can be detected. This
reduces the range of z values for which we can obtain the
vortex-line coordinates, and, as time evolves and the vortex
precesses toward the radial condensate boundary, this range
of z values further reduces. For this reason we limit vortex
detection to the range z = ±W , where W = 1

2Rz
TF, with Rz

TF
being the Thomas-Fermi radius along the z direction. We have
found this to be the largest range that gives a well-defined and
unique curl signal over the vortex lifetime for our simulations.

We define u(z,t) = [xv(z,t) − x̄(t)] + i[yv(z,t) − ȳ(t)] to
be the (complex) vortex-line displacement from its instan-
taneous mean, where the barred quantities are the vortex
positions averaged over z. To quantify the extent of vortex
bending at a given time, we take the Fourier transform with
respect to z (denoted by Fz) of u(z,t) and calculate the power
spectrum

Pu(k,t) = ∣∣Fz

[
u(z,t)/Rz

TF

]∣∣2
. (10)

Note that this measure of the power spectrum is insensitive to
varicose waves [12] and is thus entirely due to vortex bending.

Figure 3 shows the power spectra vs Kelvon wave number
for a range of geometries at t = 0.70 s. We rescale the k axis
by k̄ = π/W , which is the wave number corresponding to the
largest visible wavelength within our choice of window length.
In all geometries we see the power spectra take a thermalized
form, with maximum occupation of the long-wavelength
bending modes (low values of k). The thermalization of the
vortex line from the straight initial conditions is most directly
monitored using the Kelvon power spectrum. We find that
typically within ∼100 ms the Kelvon spectrum evolves from
the nonequilibrium initial state to a quasiequilibrium state. At

this point in time the total power in bending modes reaches a
quasistationary value that then evolves over times of the order
of the vortex decay time. The power spectrum equilibration
time is much shorter than the vortex decay time (see Sec. III B),
so the early transient dynamics have a negligible impact on our
calculations of the vortex decay process.

B. Effect of geometry: Kelvon power and vortex decay

The effect of geometry on the importance of the Kelvon
modes is clearly visible when comparing Figs. 3(a)–3(c): The
total power in the spectrum decreases significantly as the
system becomes more oblate. It is useful to calculate this total
power in the bending modes, Ptot = ∫

Pu(k,t)dk, which by
Parseval’s theorem is related to the line-averaged deviation of
the vortex from its mean position [27]. Results for the total
power are shown in Fig. 4(a). It decreases exponentially as the
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FIG. 3. Power spectra for a range of geometries as a function
of kz/k̄, where k̄ = π/W corresponds to the largest wavelength
resolvable for the chosen window W = Rz

T F /2. The spectra are
calculated after t = 0.70 s and for T = 0.78T 0

c .
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FIG. 4. (Color online) (a) Total power as a function of trap
oblateness �. (b) Effective vortex decay rate (1/t̄) as a function
of �. The disconnected points for � = 20 break from the trend of
vortex decay rate independent of �, as discussed in Sec. III C.

geometry becomes more two-dimensional, and we see that the
total power is independent of oblateness for the most highly
oblate condensates. We see that vortex bending is significantly
reduced in the highly oblate systems, being almost entirely
absent for 8 < �.

Figure 4(b) shows the effect of condensate geometry on the
vortex lifetime for a range of system temperatures. The lifetime
is quantified here in terms of the mean first exit time [22],
denoted by t̄ . This is calculated as the ensemble average of
the time it takes for the vortex to become indistinguishable
from thermal fluctuations at the BEC edge (in the plane z =
0). The vortex decay rate 1/t̄ decreases with increasing �,
following the same trend as the total bending mode power
[Fig. 4(a)]. However, rather than decreasing to zero, the decay
rate approaches a constant value of order ∼0.1 s−1, being
almost independent of � for 8 < � < 20. This constant is
determined by purely 2D vortex dissipation processes that do
not involve bending. Interestingly, for the highest temperatures
considered, the decay rate starts to increase again at � = 20.
This increase is not associated with an increase of bending
mode power [Fig. 4(a)]. Aside from this anomaly, discussed
below, we infer a critical oblateness of �c ≈ 8 for the onset of
2DV dynamics in our system.

C. Effect of temperature: Anomalous decay in quasi-2D systems

The results of the previous section show that the vortex
enters a 2D dynamics regime at � ∼ 8, associated with
strong suppression of bending modes and a diminished vortex
decay rate. However, for the highest temperatures the decay
rates exhibit a revival as � increases. We interpret this as
arising from the system entering a phase-fluctuating quasi-2D
regime.

First, to more accurately characterize the critical tempera-
ture we include the downward shifts from T 0

c due to interaction
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FIG. 5. (Color online) Vortex decay rate as a function of relative
temperature for a range of geometries. Here the critical temperature is
adjusted to account for interactions and finite-size effects [Eq. (11)].
The highest decay rate (for � = 20) is at T/Tc(corr) = 0.98, giving
1/t̄ = 3.9 s−1.

and finite-size effects [28]. This gives a corrected critical
temperature

Tc(corr) = T 0
c + δT fs

c + δT int
c , (11)

where δT fs
c = −0.73ω

ω̄
N−1/3T 0

c is the first-order correction
due to finite-size effects and δT int

c = −1.33 a
ā
N1/6T 0

c is the
first-order correction due to interactions, with ω = (2ωr +
ωz)/3 and ā = (h̄/mω̄)1/2. In Fig. 5 we show the decay rates
versus Tc(corr), verifying that these systems at the highest tem-
peratures remain below the 3D critical temperature. However,
for oblateness 12 � � we see anomalously rapid increase in
the vortex decay rate for temperatures exceeding ∼0.95Tc(corr).
For these cases the system crosses over to being quasi-2D as
the chemical potential becomes of the order of the energy to
activate degrees of freedom in the tightly confined direction,
i.e., μ � h̄ωz + ε0 (where ε0 is the single-particle ground-
state energy). In particular, the highest-temperature results
for � = 8,12,15,20 have μ/h̄ωz = 2.2,1.69,1.42,1.19 (cf.
h̄ωz + ε0 ≈ 3h̄ωz/2). In the quasi-2D regime the dynamics of
vortices are not well understood, but strong phase fluctuations
will likely facilitate the rate of vortex damping, as we observe
in our results [29]. A systematic investigation of vortex decay
in a system more deeply in the 2D regime is therefore needed
but is beyond the scope of our work here.

IV. DIPOLE DECAY

Having systematically studied the role of geometry and
temperature in single-vortex decay, we now consider two
particular cases of the decay of a vortex dipole at finite
temperature. Counter to the expectation that vortex-antivortex
pairs rapidly annihilate, a vortex dipole in a trapped BEC can
be quite long lived, despite intervortex distances of order ξ

occurring during the orbital motion. This unexpected lack of
decay (also observed in Ref. [15]) is due to weak dissipation
and the diverging nature of vortex trajectories in a trapped
BEC. The basic trajectory is an orbit of each vortex, in which
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FIG. 6. (Color online) Density isosurfaces of the C field showing the SPGPE evolution of a vortex dipole with initial vortex locations
(x,y±) = (0, ± s/2) for separation s = 3 μm. Red (light gray) shows the C field isosurface. Blue (dark gray) shows the isosurface restricted
to the region of the vortex cores.

it is successively attracted to the real antivortex inside the BEC
and to the image antivortex induced by the vanishing BEC
density. This latter interaction is responsible for inhibiting
vortex dipole annihilation in the trapped system.

A. Spherical geometry: Decay via ring and loop formation

We first consider dipole decay in a spherical trap.
We use SPGPE simulation parameters (T ,μ,εcut) =
(52nK,37h̄ω̄,71h̄ω̄), which give a total atom number N = 2 ×
106 and dimensionless damping rate (9) of h̄γ /kBT = 3 ×
10−4. These parameters give a system with the same atom
number and temperature as the oblate configuration considered
in the experiment of Ref. [15] and in the next section, so the sys-
tem serves as a benchmark for the effect of geometry on vortex
dipole dynamics in this system. We create a finite-temperature
vortex dipole state by imposing a vortex dipole phase pattern on
a SPGPE equilibrium state via ψC(x) → ψC(x)ei�(x), where
�(x) = arctan ( y−y1

x
) − arctan ( y−y2

x
). This creates an axially

aligned vortex dipole with positive and negative vortices
located at (x,y±) = (0, ± s/2), with s = 3 μm. Figure 6
shows the decay sequence for the vortex dipole. The initially
axially aligned vortices rapidly curve as the vortices precess,
such that the vortex cores are normal to the surface. This
long-wavelength bending leads to formation of a vortex ring,
which then subsequently dissociates into two vortices at
t = 0.5 s. As the vortices closely approach again at t = 0.62 s,
both loops and rings form, reducing the total vortex length
and leading to total decay in less than 1 s. We thus observe
rapid vortex dipole decay via intermediate vortex ring and loop
formation.

B. 2DV regime: Comparison of experiment and theory

In this section we use (8) to model the dynamics of a
charge-1 vortex dipole in a highly oblate finite-temperature
Bose-Einstein condensate, as in the experiment by Neely
et al. [15]. The system consists of ∼2 × 106 atoms at tem-
perature T ∼ 52 nK, held in a harmonic trap with frequencies
(ωr,ωz) = 2π × (8,90) Hz. The trap aspect ratio � = 11.25
exceeds �c ≈ 8 identified in Sec. III B for closely related
parameters. For comparison with Fig. 5, this system has
critical temperature T/Tc ∼ 0.52 and so is well outside the
critical regime. We can therefore expect that the experimental
regime is also approximately that of 2DV. Experimentally, a
single-vortex dipole is created by pushing the BEC around
and past an obstacle above a critical velocity. Ideally, we
would like to compare the distance s between the two vortices
upon the creation of the dipole in both experiment and
simulations and to relate s to the vortex dipole lifetime in
each case. However, the experimental spatial resolution was
∼6 μm, which is also the approximate vortex separation
found immediately after dipole creation in Gross-Pitaevskii
simulations of the experiment [15]. Since the vortices are
not individually resolvable immediately after creation, the
experimental data can only place an upper bound on s. We
are thus unable to carry out quantitative comparison at this
point. In this work we instead map out the dependence of
dipole lifetime on s by computing the decay dynamics for a
range of initial vortex separations.

As in the spherical geometry of Sec. IV A we use SPGPE
simulation parameters (T ,μ,εcut) = (52 nK, 37h̄ω̄,71h̄ω̄),
which again gives a total atom number N = 2 × 106 and
dimensionless damping rate (9) of h̄γ /kBT = 3 × 10−4. As
in the spherical case, we phase imprint a vortex dipole into
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FIG. 7. (Color online) Average number of vortices as a function
of time during vortex dipole decay for numerical simulations and
experimental data. The dashed lines show SPGPE results for a range
of initial vortex dipole separations. Circles show experimental data of
Ref. [15]. The blue diamond at t = 0 s shows the average number of
vortices observed in the experimental initial state due to spontaneous
vortex formation [21].

the BEC. We choose the initial separation between vortices as
s = 1,2,2.5,3, and 3.5 μm. Note that the condensate radius is
∼50 μm, so these separations are small relative to the system
size but are larger than the healing length ξ ≈ 0.2 μm.

Qualitatively, our simulations differ from the experiment
in several ways: in our simulations we have two vortices
initially, a high degree of cylindrical and mirror symmetry,
and a well-defined total atom number. In the experiment there
is occasionally a vortex present from the BEC formation
process [21], an irreducible (albeit very small) cylindrical
asymmetry of the harmonic potential, a mirror asymmetry
of the stirring potential, and uncertainty in the total atom

number. We do not attempt to model all of this complexity
here, confining our study to the basic decay process of internal
annihilation in the symmetric system, with fixed total atom
number [30].

Figure 7 shows the mean vortex number over time from
the experimental data [15] compared with the results of
our simulations. In our simulations we always find that the
vortices mutually annihilate each other in the center of the
BEC, rather than damping at the boundary. The vortices move
rapidly when closely approaching each other, nearing the speed
of sound c = 0.2 cm/s. Consequently, most of the orbital
time is spent at the outer edge of the BEC, and the time
interval in which annihilation may occur is a small fraction
of the orbital period (∼10%). Thus the vortex number has an
abrupt time dependence for a given initial separation, with
the characteristic time scale given by the orbital period of
the vortex dipole, found numerically and experimentally to be
∼1.2 s and independent of s over a wide range [15]. In general,
the s value selects a given orbit of annihilation, within which
there is very small variation of lifetime.

In detail, we find that for s = (1,2,2.5,3,3.5) μm the mean
lifetime is τ = (0.01,0.86,2.04,2.07,3.30) s, corresponding to
N0 = (0,1,2,2,3) dipole orbits before annihilation. For exam-
ple, with s = 1 μm, the dipole self-annihilates immediately
after creation. The separations s = 2.5 μm and s = 3 μm lead
to almost identical lifetimes of about 2 s, corresponding to the
significant drop in vortex number seen experimentally for 2 s
� t � 2.5 s, which we interpret as an experimental indication
of the dipole lifetime.

In Figure 8 we plot a time series of simulation data for
s = 3 μm showing internal annihilation at the end of the
second orbit. Interestingly, we observe a tilt in the axis of
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FIG. 8. (Color online) (top) Column densities and (bottom) phase slices for the C field showing the SPGPE evolution of a vortex dipole
with initial vortex locations (x,y±) = (0, ± s/2) for separation s = 3 μm. The series spans two orbits of the dipole, where a single orbital
period is ∼1.2 s, culminating in mutual vortex annihilation toward the completion of the second orbit. The peak density is renormalized to
unity at each time (upper color bar), and the phase is represented on the interval [−π,π ) (lower color bar).
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dipole precession caused by thermal fluctuations, which is
also observed in experimental absorption images.

V. CONCLUSIONS AND OUTLOOK

Here we summarize our results on single-vortex and vortex
dipole decay.

Subcritical regime. For spherical systems at T = 0.78T 0
c ,

a lone vortex is freely deformed from its initial straight-line
configuration by the activation of vortex-bending modes. This
effect diminishes as the condensate is flattened, and bending
modes become energetically inaccessible. The total bending
mode power decreases exponentially as the condensate geom-
etry becomes increasingly two-dimensional. For geometries
with oblateness � � �c(≈ 8), the total power asymptotes to
zero, indicating bending is strongly inhibited. The effective
vortex decay rate also decreases as � increases, approaching a
constant two-dimensional value for �c � �. �c can therefore
be identified as the critical oblateness required for the system
to enter the 2D vortex regime.

Critical regime. The foregoing comments hold for tem-
peratures outside an observed critical regime. When critical
fluctuations associated with the phase transition become
significant, we find that the vortex decay rate is highly
sensitive to temperature and geometry. In particular, we
see an anomalously large increase in the decay rate for
geometries with �c < �, and 0.95Tc(corr) � T that we attribute
to phase fluctuations associated with the lowest-energy mode
of the system entering the quasi-2D regime. We interpret
this as arising from quasi-2D behavior of the superfluid

fraction, despite the fact that the systems we consider remain
thermodynamically three-dimensional (i.e., many z modes are
occupied). Determination of the superfluid fraction remains
an unsolved problem within classical field theory, the solution
of which may also shed light on the anomalous vortex decay
identified here.

Vortex dipole decay. We have modeled the experiment
of Neely et al. [15], which is in the 2DV regime (� =
11.25), and found that the approximate time for decay of
a vortex dipole in the experiment (∼2.25 s) is consistent
with numerical simulations with an initial vortex separation of
s ∼ 2.5–3 μm. In the simulations with these initial conditions
mutual vortex annihilation occurs after two complete orbits, at
t ∼ 2 s. In this work we have used s as the fitting parameter;
improved experimental resolution would be required for a
quantitative comparison without any fitting parameters. In
similar computations of spherical (� = 1) BECs, the vortices
decay much more quickly to rings and other bent geometries
that would not be readily visible after only ∼100 ms using
the experimental methods of Ref. [15]. We thus infer from
the experiments of Ref. [15] and the calculations presented
here that the experimental system consisting of a BEC with
oblateness � ≈ 11.25 is within the 2D vortex dynamics
regime, consistent with our calculations suggesting a critical
oblateness of �c ≈ 8.
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[4] H. Schmidt, K. Góral, F. Floegel, M. Gajda, and K. Rzążewski,
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