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Isobars of an ideal Bose gas within the grand canonical ensemble
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We investigate the isobar of an ideal Bose gas confined in a cubic box within the grand canonical ensemble for a
large yet finite number of particles, N . After solving the equation of the spinodal curve, we derive precise formulas
for the supercooling and the superheating temperatures that reveal an N−1/3 or N−1/4 power correction to the
known Bose-Einstein condensation temperature in the thermodynamic limit. Numerical computations confirm
the accuracy of our analytical approximation, and further show that the isobar zigzags on the temperature-volume
plane if N � 14 393. In particular, for the Avogadro’s number of particles, the volume expands discretely about
105 times. Our results quantitatively agree with a previous study on the canonical ensemble within 0.1% error.
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I. INTRODUCTION

A classic paper written by Anderson in 1972 is titled
“More is Different” [1], which characterizes the notion of
“emergence,” i.e., the way complex systems and patterns
arise out of a multiplicity of relatively simple interactions.
One relevant question is then, How many is different? To
answer the question, we may consult quantum statistical
physics where the key quantity is the partition function. Once
we know the exact expression of the partition function, we can
compute various physical quantities. For example, when the
partition function in the grand canonical ensemble, Z(T ,V,z),
depends on three variables (temperature, volume, fugacity),
the pressure and the average number of the particles are given
by

P = kBT ∂V lnZ(T ,V,z) , N = z∂z lnZ(T ,V,z) , (1)

where kB denotes the Boltzmann constant. If the system is
finite, due to the analytic property of the partition function,
the physical quantities that are given as a fraction between
the partition function and its derivatives, like (1), cannot
feature any mathematical singularities. On the contrary, infinite
systems may do so. In this way, it seems that, More is the same;
infinitely more is different [2].

Viewing Avogadro’s number, NA � 6 × 1023, as an enor-
mous quantity might well suggest to take the infinity limit
or the thermodynamic limit: the limit of the large volume
and the large number of particles with the density held fixed
[3]. Essentially due to the quantum commutation relation,
[x̂,p̂] = ih̄, the reduced Planck’s constant, h̄, is positioned
inside the expression of the partition function along with
the volume, V , generically through the combination, V/h̄3,
where the power of h̄ corresponds to the dimension of space.
This implies that the large volume limit may be traded with
the classical limit h̄ → 0, and hence special care should be
taken while considering the thermodynamic limit in order
to preserve any quantum nature [4–7]. Further, since taking
the thermodynamic limit and taking the derivatives do not
commute in general, it is safer and thus preferable to take the
thermodynamic limit only at the end of computation.
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Recently, two of the authors investigated the isobar of
an ideal Bose gas confined in a box within the canonical
ensemble, without assuming the thermodynamic limit [8].
Numerical computations based on the exact expression of
the corresponding canonical partition function revealed that
if the number of particles is equal to or greater than a
certain critical value, which turns out to be 7616 for the
“cubic” box, the isobar zigzags featuring an “S shape” on
the (T ,V ) plane (cf. Fig. 2 in the present paper). The two
turning points on the S-shaped isobar are naturally identi-
fied as the “supercooling” (T ∗,V ∗) and the “superheating”
(T ∗∗,V ∗∗) points. Between the supercooling and the super-
heating temperatures, T ∗ < T < T ∗∗, the volume becomes
triple-valued. Since all the physical quantities are functions of
the temperature and the volume, every physical quantity itself
is triple-valued between the two temperatures and changes
discontinuously on isobars as the temperature increases. In
fact, any temperature derivative restricted on isobars diverges
at the points with the universal singularity exponent, 1/2 [9].
In this way, imposing the “constant pressure constraint,” a
discrete phase transition was for the first time realized in a
finite system, derived ab initio from the corresponding partition
function.

However, due to the limitation in our computational
power (supercomputer, SUN B6048), the numerical analyses
performed in Refs. [8,9] were restricted to the particle numbers
not greater than one million. In particular, the separation
between the supercooling and the superheating temperatures
gets wider as the number of particles increases within the
range 7616 � N � 106. Hence, it was not clear what would
happen for a much larger number of particles, or closer to the
thermodynamic limit.

It is the purpose of the present paper first to verify the
same feature of the ideal Bose gas within the grand canonical
ensemble, both analytically and numerically, and second to
address rigorously its thermodynamic limiting behavior.

Basically, we set to analyze the following equation [10],
which shall be derived from the grand canonical partition
function of the ideal Bose gas:

dT

dV

∣∣∣∣
P,N

= 0 . (2)
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This condition is equivalent to the usual definition of the
spinodal curve [10–13],

dP

dV

∣∣∣∣
T ,N

= 0 , (3)

and must be met at the supercooling and the superheating
points on isobars.

II. ANALYSIS

Essentially due to the nonrelativistic dispersion relation,
E = �p 2/(2m), where m is the mass of the particle, the grand
canonical partition function of the ideal Bose gas confined in a
cubic box is a two-variable function depending on the fugacity,
z, and the combination of temperature and volume, T V 2/3.
Specifically, we set, as for the two fundamental variables in
our analysis,

ε := π2h̄2

2mkB

(T V 2/3)−1 , σ := − ln z . (4)

In terms of these, the grand canonical partition function reads

lnZ(ε,σ ) = −
∑
�n∈N3

ln (1 − e−ε�n2−σ ) . (5)

With the Dirichlet boundary condition that we deliberately
impose, �n = (n1,n2,n3) ∈ N3 is a positive integer-valued
lattice vector, such that the lowest value of �n2 is the spatial
dimension, 3, and σ is bounded from below,

σ > −3ε , (6)

while ε is positive. Searching for spinodal curves near to the
thermodynamic limit, we shall be interested in the small-ε
region.

It is useful to note, for the computation of various physical
quantities such as (1),

T ∂T |V,z = 3
2V ∂V |T ,z = −ε∂ε , z∂z|T ,V = −∂σ . (7)

It follows that the number of particles (1) reads

N (ε,σ ) = −∂σ lnZ(ε,σ ) , (8)

and the formula of the pressure (1) is equivalent to

TP (ε,σ ) :=
(

2m

π2h̄2

) 3
5

kBT P − 2
5 =

[
− 2

3
ε

5
2 ∂ε lnZ(ε,σ )

]− 2
5

.

(9)

Being a combination of T and P , this dimensionless quantity,
TP , can determine the physical temperature on an arbitrarily
given isobar. Similarly, we may define a dimensionless
“volume,”

VP (ε,σ ) :=
(

2m

π2h̄2 P

) 3
5

V =
[

− 2

3
∂ε lnZ(ε,σ )

] 3
5

, (10)

and another dimensionless “temperature,”

Tρ(ε,σ ) := 2m

π2h̄2 kBT

(
V

N

) 2
3

= [−ε
3
2 ∂σ lnZ(ε,σ )]−

2
3 . (11)

As we already wrote, N , TP , VP , and Tρ are functions of the
two variables ε, σ only. They satisfy the identities

εTP (ε,σ ) = [VP (ε,σ )]−
2
3 , εTρ(ε,σ ) = [N (ε,σ )]−

2
3 . (12)

Now the spinodal curve (2) is positioned on the (ε,σ )
plane to satisfy dN(ε,σ ) = 0 and dTP (ε,σ ) = 0, such that
the following linear equation must admit a nontrivial solution:(

0

0

)
=

(
∂ε∂σ lnZ ∂2

σ lnZ(
5
2ε−1∂ε + ∂2

ε

)
lnZ ∂ε∂σ lnZ

) (
dε

dσ

)
. (13)

It follows that the 2 × 2 matrix in (13) must be singular,

� := det

(
∂ε∂σ lnZ ∂2

σ lnZ(
5
2ε−1∂ε + ∂2

ε

)
lnZ ∂ε∂σ lnZ

)
≡ 0 . (14)

This algebraic equation determines the spinodal curve on the
(ε,σ ) plane. Further, it is straightforward to show that the
determinant is proportional to dTP

dVP
|N as

d ln TP

d lnVP

∣∣∣∣
N

= 2

3
(
∂2
σ lnZ

)2
var(�n2)

�, (15)

where var(�n2) is our shorthand notation for

var(�n2) := ∂2
ε lnZ

∂2
σ lnZ −

(
∂ε∂σ lnZ
∂2
σ lnZ

)2

, (16)

which can be identified as the variance of �n2 with respect to the
probability distribution proportional to sinh−2( 1

2ε�n2 + 1
2σ ) (in

our convention, sinh−2(x) = [sinh(x)]−2, etc.). Hence, var(�n2)
is positive definite and the vanishing of the determinant is, as
expected, equivalent to the vanishing of dTP

dVP
|N . Our main task

is to solve (14) and express the solutions in terms of the more
physical variables N , TP , VP , and Tρ using (8), (9), (10), and
(11). Our numerical solutions are depicted in Figs. 1 and 2,
along with an analytic approximation that we discuss below.

0.00 0.02 0.04 0.06 0.08 0.10
N 1 40.995

1.000
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P P
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FIG. 1. The supercooling and the superheating spinodal curves on
the (N−1/4,TP /T BEC

P ) plane (lower and upper curves, respectively).
The dotted curves are from the numerical computations based on
the exact formulas (8), (9), and (14). The solid lines correspond to
our analytic approximation (31) and (32) for large N . A pair of
spinodal curves starts to develop at N = Nc � 14 392.4 (N−1/4

c �
0.091 299 1), which is comparable to the critical number of the
canonical ensemble, 7616 [8].
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FIG. 2. Isobar curves on the (TP /T BEC
P ,VP /N ) plane. They

zigzag featuring an “S shape” if 14 393 � N < ∞.

A. Analytic approximation

Our analytic analysis starts with the following expression
for the derivatives of the partition function, which holds for
k � max(l,1):

(∂ε)l(∂σ )k−l lnZ(ε,σ ) =
∑
�n∈N3

k∑
a=1

(�n2)l
(−1)kCk,a

(eε�n2+σ − 1)a

=
∑
�n∈N3

∞∑
p=0

k+p∑
b=1

(�n2)l
(

σp

p!

)
(−1)k+pCk+p,b

(eε�n2 − 1)b
. (17)

Here Ck,a are positive integers, determined by a recurrence
relation,

Ck+1,a = aCk,a + (a − 1)Ck,a−1 , (18)

with the initial value, C1,1 = 1. The recurrence relation comes
from the expansion(

− d

dx

)k

ln(1 − e−x) = −
k∑

a=1

Ck,a

(ex − 1)a
. (19)

Taking an x derivative of the right-hand side of (19) leads to
(18).

Further, it is also useful to note

∂2
σ lnZ(ε,σ ) =

∑
�n∈N3

[
1

(ε�n2 + σ )2
−

∞∑
k=2

(
1

4

)k

× cosh−2

(
ε�n2 + σ

2k

)]
. (20)

This expression is due to an identity,

sinh−2(x) =
(

1

4

)p

sinh−2

(
x

2p

)
−

p∑
j=1

(
1

4

)j

cosh−2

(
x

2j

)

= x−2 −
∞∑

j=1

(
1

4

)j

cosh−2

(
x

2j

)
, (21)

which holds for an arbitrary positive integer, p. Taking p to
infinity gives the second equality in (21).

In order to compute the sums in (17), we adopt the following
scheme of analytic approximations:

(i) Introduce a cutoff, � � 3, for the lattice sum,∑
�n∈N3

f (ε�n2) =
∑
�n2��

f (ε�n2) +
∑
�n2>�

f (ε�n2).

(ii) Approximate the last term by an integral,∑
�n∈N3

f (ε�n2) �
∑
�n2��

f (ε�n2)

+
∫ ∞

ε�

dx

(
π

4
ε− 3

2 x
1
2 − 3π

8
ε−1

)
f (x).

(iii) Put σ = −εμ with a new variable, μ. From (6), μ < 3.
(iv) Keep only the dominant singular terms in the power-

series expansion of (ii) in ε, which are manifestly cutoff-
independent. Allow μ to be expandable in ε with an arbitrary
leading power.

The approximation (ii) can be traced back to an identity,

∑
�n∈N3

f (ε�n2) = 1

8

[ ∑
�n∈Z3

f (ε�n2)

]
− 3

8

[ ∑
�n∈Z2

f (ε�n2)

]

+ 3

8

[ ∑
n∈Z

f (εn2)

]
− 1

8
f (0) , (22)

where the first two sums on the right-hand side of the equality
can be approximated by integrals in three- or two-dimensional
spherical coordinates, and the remaining part may be neglected
for small ε (see [4] and references therein).

With the constants,

as :=
∫ ∞

0
dx

xs

ex − 1
= 	(s + 1)ζ (s + 1) ,

(23)

b :=
∫ ∞

0
dx

√
x cosh−2(x) ,

and the estimations [4],∫ ∞

ε�

dx
1

ex − 1
�

∫ ∞

ε�

dx
xex

(ex − 1)2
� − ln ε , (24)

our scheme enables us to compute

∂ε lnZ � −
〈

3ε−1

3 − μ

〉
−2

− π

4
a 3

2
ε− 5

2 + 3π

8
a1ε

−2 ,

∂σ lnZ � −
〈

ε−1

3 − μ

〉
− 3

2

− π

4
a 1

2
ε− 3

2 − 3π

8
ε−1 ln ε ,

∂2
ε lnZ �

〈
9ε−2

(3 − μ)2

〉
−3

+ 5π

8
a 3

2
ε− 7

2 − 3π

4
a1ε

−3 ,

(25)

∂ε∂σ lnZ �
〈

3ε−2

(3 − μ)2

〉
− 5

2

+ 3π

8
a 1

2
ε− 5

2 + 3π

8
ε−2ln ε ,

∂2
σ lnZ � ε−2

(3 − μ)2
+

[ ∑
�n2>3

1

(�n2 − μ)2

]
ε−2

− (2 + √
2)π

8
b ε− 3

2 ,
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where 〈 g(ε) 〉−n denotes a part of the series expansion
of g(ε) in ε, which is at least (−n)th-order singular, for
example,

〈ε− 3
2 + ε−1 + 1 + ε〉− 3

2
= ε− 3

2 ,
(26)

〈ε− 3
2 + ε−1 + 1 + ε〉−1 = ε− 3

2 + ε−1 , etc.

Especially for ∂2
σ lnZ , it is important to note that the sum,∑

�n2>3(�n2 − μ)−2, converges, since

∑
�n2>�

1

(�n2 − μ)2
�

∑
�n2>�

1

(�n2 − |μ|)2
�

∫ ∞

�

dx

π
4 x

1
2 − 3π

8

(x − |μ|)2

= π

8

[
2
√

� − 3

� − |μ| + 1√|μ| ln

( √
� + √|μ|√
� − √|μ|

)]
. (27)

The numerical values of the constants are

a 1
2

=
√

π

2
ζ

(
3

2

)
� 2.315 16, a1 = π2

6
� 1.644 93,

(28)

a 3
2

= 3
√

π

4
ζ

(
5

2

)
� 1.783 29, b � 0.758 128.

Having the expressions (25), we now proceed to solve the
spinodal curve condition (14). Since the indices n of the
symbol 〈·〉−n appearing in (25) are various, letting the leading
singular term of ε−1

3−μ
be order of ε−h, we need to separately

consider the following nine possible cases:

h < 1, h = 1, 1 < h < 5
4 , h = 5

4 , 5
4 < h < 3

2 ,

h = 3
2 , 3

2 < h < 2, h = 2, 2 < h .

Keeping only the two dominant terms in (25) for each case, it
is straightforward to check that only the two cases, h = 1 and
2, admit solutions, and hence there are two spinodal curves, as
follows.

(i) Curves on the (ε,μ) plane.
(a) Constant μ � μ∗ line with h = 1, satisfying

∑
�n∈N3

1

(�n2 − μ∗)2
= 9

8

[
ζ (

3

2
)

]2

. (29)

Numerically, we get

μ∗ � 2.618 73.

(b) Linear line with h = 2,

μ � μ∗∗(ε) = 3 − 240

π3
ε . (30)

(ii) Curves in terms of the physical variables, N , TP , VP ,
Tρ .

(a) Supercooling spinodal curve, for h = 1,

T ∗
P /T BEC

P � 1 + π3

60

[(
T BEC

P

)5
/T BEC

ρ

] 1
2 N− 1

3 ,

V∗
P � (

T BEC
ρ /T BEC

P

) 3
2

(
N + π

4
T BEC

ρ N
2
3 ln N

)
,

T ∗
ρ /T BEC

ρ � 1 + π

6
T BEC

ρ N− 1
3 ln N. (31)

(b) Superheating spinodal curve, for h = 2,

T ∗∗
P /T BEC

P � 1 + 1

150

(
π15

15

) 1
4 (
T BEC

P

) 5
2 N− 1

4 ,

V∗∗
P � 8

(
15

π3

) 3
4 (
T BEC

P

)− 3
2 N

3
4 ,

T ∗∗
ρ � 4

(
15

π3

) 1
2

N− 1
6 . (32)

In the above, T BEC
P and T BEC

ρ denote two constants,

T BEC
P =

(
64

π3

) 1
5
[
ζ

(
5

2

)]− 2
5

� 1.027 81,

(33)

T BEC
ρ = 4

π

[
ζ

(
3

2

)]− 2
3

� 0.671 253,

which correspond to the well-known Bose-Einstein conden-
sation temperatures for the variables, TP (9) and Tρ (11), the
definitions of which we recall here,

TP :=
(

2m

π2h̄2

) 3
5

kBT P − 2
5 , Tρ := 2m

π2h̄2 kBT

(
V

N

) 2
3

,

(34)

VP :=
(

2m

π2h̄2 P

) 3
5

V = N

( Tρ

TP

) 3
2

.

III. DISCUSSION

As computable from our analytic expressions, (31) and (32),
the separation between the supercooling and the superheating
temperatures becomes maximal if the number of particle is
equal to

Nmax = 515

(27π )3

[
ζ

(
3

2

)]4

� 2.328 90 × 106. (35)

This also agrees with the numerical result in Fig. 1, as
(Nmax)−1/4 � 0.025 598 4. When the number of particles
exceeds this critical value, the two temperatures T ∗

P and
T ∗∗

P —satisfying T BEC
P < T ∗

P < T ∗∗
P —get closer, and even-

tually converge to the BEC temperature, T BEC
P (33), in the

thermodynamic limit. That is to say, Nmax is the critical number
for the thermodynamic limit to start to work.

The ratio of the two volumes,

V∗
P /V∗∗

P �
(

π

15

) 3
4
[
ζ

(
3

2

)]−1

N
1
4 � 0.118 511 × N

1
4 , (36)

enables us to estimate the discrete volume expansion rate at
the liquid-gas-type phase transition. For Avogadro’s number,
NA � 6.022 14 × 1023, the volume expansion rate (36) gives
V∗

P /V∗∗
P � 104 399. Thus, the ideal Bose gas made up of

Avogadro’s number of particles expands its volume discretely
about 105 times during the phase transition. This is a genuine
finite effect of Avogadro’s number, which cannot be seen
directly in the thermodynamic limit where V∗

P /V∗∗
P → ∞.
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TABLE I. Quantitative agreement between the canonical and the
grand canonical results, within 0.1% error.

(T ∗
P ,T ∗∗

P ) Grand canonical Canonical

N = 105 (1.041,1.043) (1.0410,1.0424)
N = 106 (1.0348,1.0364) (1.034,1.036)

Our numerical computations based on the exact formulas
agree quantitatively with the canonical ensemble results [8]
for N = 105 and 106 within 0.1% error (see Table I), though
the minimum (natural) numbers required for the emergence of
the spinodal curves are different, 14 393 versus 7616.

In this work, we have focused on the Dirichlet boundary
condition. Alternatively imposing the periodic or Neumann
boundary condition brings out a volume-independent ground-
state energy that, as shown in [8], causes a thermodynamic
instability at low temperature near absolute zero (see also
[14]). This further implies that, under the alternative boundary
conditions, periodic or Neumann, the isobar on the (TP ,VP /N )
plane is of “C shape” rather than of the zigzagging “S shape,”
as in Fig. 2: That is, there is a nontrivial lower bound in TP of
the isobar, above which the volume is always double-valued.
In the thermodynamic limit, the lower bound converges to
T BEC

P , and the isobar eventually becomes independent of
the boundary conditions, identical to the case of N = ∞ in

Fig. 2, except for VP /N = 0. When VP /N = 0, under the
periodic or Neumann boundary condition, TP may assume any
value that is greater than or equal to T BEC

P (as anticipated in
Fig. 12.8 of [3]), while under the Dirichlet boundary condition,
it is quite the opposite, 0 � TP � T BEC

P , as depicted in Fig. 2.
In conclusion, we have shown, both numerically and

analytically, that the isobar of the ideal Bose gas zigzags
on the temperature-volume plane, qualitatively featuring the
liquid-gas transition, if N � 14 393. This is an emergent
phenomenon of the finitely many bosonic identical particles.
We have derived the precise formulas for the two turning
points: supercooling (31) and superheating (32). Our formulas
reveal an N−1/3 or N−1/4 power correction to the BEC
temperature and enable us to estimate the volume expansion
rate, (36).
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