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Localization of a Bose-Fermi mixture in a bichromatic optical lattice
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We study the localization of a cigar-shaped superfluid Bose-Fermi mixture in a quasiperiodic bichromatic
optical lattice (OL) for interspecies attraction and intraspecies repulsion. The mixture is described by the Gross-
Pitaevskii equation for the bosons, coupled to a hydrodynamic mean-field equation for fermions at unitarity. We
confirm the existence of the symbiotic localized states in the Bose-Fermi mixture and Anderson localization
of the Bose component in the interacting Bose-Fermi mixture on a bichromatic OL. The phase diagram in
boson and fermion numbers showing the regions of the symbiotic and Anderson localization of the Bose
component is presented. Finally, the stability of symbiotic and Anderson localized states is established under

small perturbations.
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I. INTRODUCTION

Anderson localization of superfluid atomic gases in weak
disordered potentials with a large exponential tail is currently
attracting a lot of interest in both experimental and theoretical
studies. In experimental studies, a disorder laser speckle [1]
and a quasiperiodic optical lattice (OL) [2] have been used
to localize Bose-Einstein condensates (BEC). The original
description of Anderson localization was based on the local-
ization of noninteracting quantum waves in disorder potentials
due to a cancellation of wave fronts coming from different
locations of the disorder potential. However, superfluid atomic
gases usually are interacting and the study of Anderson
localization has also been extended to the case of localization
of a single-component [3,4] or binary [5] BEC under repulsive
effective interactions. Both a quasiperiodic OL in one [3,6]
and three dimensions [7] and a random potential [8] were
used in these studies. The effect of temperature on Anderson
localization has also been investigated [9].

Another topic of current interest is the problem of trapped
binary superfluids, where the two components could be two
different hyperfine states of the same atom (3’Rb) [10] or
two different atoms. Experimentally, a degenerate Bose-Fermi
8Rb-*'K mixture [11], degenerate Fermi-Fermi mixture of
40K [12] and of °Li [13] were considered among others.
In particular, the Feshbach resonance technique driven by a
magnetic [14] or optical [15] field allows one to vary the
atomic interaction that opens the possibility for the study of
localization of binary condensates with controllable interac-
tions. A Bose-Fermi mixture can exhibit quite distinct features
as the number of atoms and the interspecies and intraspecies
interactions are varied. For example, the intraspecies repulsive
interaction combined with the interspecies attraction may
give rise to the symbiotic soliton [16,17]. In Ref. [18], we
demonstrated that the interspecies attraction contributes to
an attractive pointlike effective potential which affects the
atom density distribution and the stability properties of the
condensate [19].
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Here we investigate the symbiotic localization of a cigar-
shaped Bose-Fermi superfluid mixture without a trap. The
Fermi superfluid is taken to be a mixture of an equal number
of spin-up and spin-down components in a paired state. We
also consider Anderson localization of the Bose component
in the Bose-Fermi mixture in a quasiperiodic bichromatic OL
when the Bose component is not localized in the absence of
the OL. In both cases the intraspecies Bose interaction is taken
to be repulsive and the Fermi component is considered to be at
unitarity [20]. The unitarity limit is the limit of strong attraction
between spin-up and spin-down fermions with the Fermi-
Fermi scattering length approaching infinity. Consequently,
the properties of the Fermi superfluid in this limit become
universal and independent of the Fermi-Fermi scattering
length and are solely determined by the Fermi energy and
Fermi momentum. The unitary limit of a Fermi superfluid can
now be routinely archived and studied in a laboratory [20].
For a theoretical description of the interacting Bose-Fermi
mixture, we consider the mean-field Gross-Pitacvskii (GP)
equation of bosons coupled to a mean-field hydrodynamic
density-functional equation [21] for fermions at unitarity.
The present investigation involves numerical simulation as
well as analytical study based on a variational approach.
The formation of symbiotic and Anderson localizations as
a function of Bose and Fermi numbers is illustrated in
a phase diagram. By numerical simulation of the coupled
mean-field model using the split-step Fourier spectral method,
we confirm the existence of the symbiotic localized states
in the Bose-Fermi mixture without external trapping potential.
We also identify Anderson localization of the Bose component
with an exponential tail assisted by the Fermi component in
the presence of a quasiperiodic bichromatic OL. We find that
the Anderson localization of the Bose component is possible
in the mixture for an interspecies attraction which neutralizes
mostly the bosonic repulsion. Finally, we establish the stability
of both symbiotic and Anderson localizations under small
perturbations.

In Sec. II we present a brief account of the coupled
mean-field model and the bichromatic OL potential used in
the study. The analytical expressions for the width of the
Bose and Fermi localized states obtained by the variational
analysis of the mean-field model are in reasonable agreement
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with the numerical solution. The numerical results for the
static and stability properties of the symbiotic and Anderson
states are presented in Sec. III. In Sec. IV we present a brief
summary.

II. ANALYTICAL CONSIDERATION OF LOCALIZATION

We consider a binary superfluid Bose-Fermi mixture of
Npg bosons of mass mg and Nr fermions of mass mpg at zero
temperature. The spin-half fermions are taken to be at unitarity
and populated equally in spin-up and spin-down states. The
intraspecies Bose interaction is taken to be repulsive and the
interspecies Bose-Fermi interaction is taken to be attractive.
Experimentally, this situation is, for example, accessible
in a Bose-Fermi mixture [12,22] of bosonic ®’Rb atoms
in the hyperfine state |F = 2,mp =2) and fermionic “°K
atoms in the two equally populated hyperfine states |F =
9/2,mp = —9/2) and |F = 9/2,mp = —7/2). Theoretically,
the bosons are treated by the usual mean-field GP equation
with contact interaction, which is equivalent to the standard
hydrodynamical equations. The fermions are treated by a
mean-field density-functional equation, which is equivalent
to the standard hydrodynamical equations for the Fermi
superfluid. The bosons and fermions are assumed to interact by
a zero-range potential. Within the framework of the density-
functional theory, a coupled GP-type equation for the mixture
can be obtained [21,23].

The system is made effectively one-dimensional (1D),
assuming that the mixture is confined in transverse directions
by a tight axisymmetric harmonic potential of frequencies
w,p and w, g for bosons and fermions, respectively. The
three-dimensional equations of Ref. [21] for a cigar-shaped
superfluid Bose-Fermi mixture can then be reduced to an
effective 1D form by integrating out the dependence on the
radial spatial variables [23]. The dynamics of the 1D mixture
is described by the dimensionless coupled time-dependent
nonlinear equations [23]

Oun _ 10U | ualu + gor Neluslun + Vo)
— = —= ug|‘u ugp|‘u X)ug,
a3 2 9.2 8BlUB| UB T SBF/VFIUF| UB B
(1)
i Jug 13214]? 4/3 2
EW = —gm + grlup|" ur + gerNelup| ur + V(x)ur,

(@3]

where V(x) is the trapping potential acting on both the Bose
and Fermi components, ug = ug(x,t) and up = up(x,t) are
the 1D wave functions with normalization f_oooo lug|?dx =
ffooo |ug|?dx = 1. In Egs. (1) and (2), we set the transverse
oscillator lengths a,g =a,p=a, and w,p =w,Fr =w,,
measuring length, energy, and time in units of @, , iw, , and
a)ll, respectively [23]. This implies that 2mg = mp, a condi-
tion which is roughly satisfied by the 3’Rb-*"K mixture. The
dimensionless interactions are [23] gg = 2(ag/a,)Np,gsr =
6(apr/aL).gr = 32?33 /5)N;", where ag is the Bose
scattering length, agp is the Bose-Fermi scattering length,
and the universal Bertsch constant & has the value & = 0.4
at unitarity [20,24]. We consider the scattering length for
collision between 3’Rb atoms to be positive, ag &~ 108ay with
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ao the Bohr radius [25], whereas the interspecies scattering
length between bosons (®’Rb) and fermions (*°K) is negative,
agg &~ —284ay [22,26]. If the Bosons are decoupled from
the Fermions (by considering agr = 0), they satisfy the
GP equation, and it was found in Ref. [4] that Anderson
localization is destroyed due to Bose-Bose repulsion while
the stationary states are exponentially localized [27]. Once
a Bose-Fermi attraction above a critical value is introduced
via a nonzero negative agg, so that the Bose-Bose repulsion
in the GP equation is nearly compensated for by interatomic
attraction, localization is restored.

The coupled equations (1) and (2) will be used to study a
cigar-shaped, localized Bose-Fermi system [28-30]. We study
the symbiotic localized states of this system and Anderson
localization of bosons in the Bose-Fermi mixture. To study
the symbiotic localized states due to the strong interspecies
attraction we take V(x) = 0. To study the Anderson local-
ization, following the experiment of Roati et al. [2], the
potential V(x) is taken to be a quasiperiodic bichromatic OL
of incommensurate wavelengths:

2
V(x) = Z A sin®(k;x), (3)

=1

with A; = 27%s;/A%,1 = 1,2, where A;’s are the wavelengths
of the OL potentials, s;’s are their intensities, and k; = 27 /A;
are the corresponding wave numbers. Without losing general-
ity, we take s; = 10, s, = 0.3s1, A1 = 10, and k»/ k; = (/5 —
1)/2 [31] which roughly represent the generic experimental
situation [2].

To obtain the stationary localized states of the coupled equa-
tions (1) and (2), we may set upg g(x,t) = ¢p p(x) exp(—iup, rt)
with up g the respective chemical potentials. The real wave
functions ¢p p(x) obey the stationary equations

unds = —¢y/2 + gy + gerNedids + Vs, (4)
prde/2 = —¢¢ /8 + grdy” + gerNdadr + Vr,  (5)
where the prime denotes space derivative. The stationary
localized states can be investigated by the Gaussian variational

approach [32]. In this approach, the Lagrangian density for
Egs. (4) and (5) is

£ = Np[updl — (9p)*/2 — godp/2 — V3]
+ Ne[1rg2/2 — (91)%/8 — 3grdp > /5 — V2]
— g8r N Npgi . (6)

‘We use the variational trial function

1 ./\/B F x2
- [[¥BF — , 7
PBr(x) = —7 - eXp< 2wl @)

where the parameters wpp are the widths of the Bose
and Fermi localized states, respectively, with normalization
Ner = [, ¢3 p(x)dx. The trial function (7) and potential
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(3) lead to the the effective Lagrangian

© 1
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Euler-Lagrange equations dL/dupr =0 yield Ny = Ng =
1. The remaining Euler-Lagrange equations dL/dwg g = 0
yield, respectively,

14+ 8% oW 4 2NeGy = 0 (10)
— B FYB — Y,
V2
16 (3" gruy/’
1+?<§> o — 8We+8NsGr =0, (1)
2
Wor=whyp Y Akle v, (12)
=1
gBFwé,F

Gop=—— Pl (13)
v (wh +wd)”

where we have set N3 = Mg = 1. Equations (10) and (11)
give the spatial widths of the localized states.

To study how widths wg g evolve with the particle numbers
Ng g, we solve Egs. (10) and (11) and show the phase diagram
of the number of bosons and fermions in Fig. 1 illustrating
the regions where the localization can exist with or without
a trapping potential [Eq. (3)]. The region I bounded by the
solid line corresponds to V(x) = 0 where Eqgs. (10) and (11)
have finite real solutions for both widths wg . In this region,
symbiotic localized states supported by interspecies Bose-
Fermi attraction can be produced in spite of intraspecies Bose
and Fermi repulsion. Generally, a self-repulsive Bose or Fermi
superfluid cannot support a localized state by itself; however,
a sufficiently strong interspecies attraction can induce a net
effective attraction responsible for the formation of symbiotic
states in a Bose-Fermi system [16].

With the bichromatic OL [Eq. (3)], Egs. (10) and (11)
yield real solutions for both widths wg r in regions I and
II bounded by the lines with crosses. In regions III and IV,
however, finite real solutions of Egs. (10) and (11) do not
exist. In region II, the fact that the widths wg r are finite
and real implies that the localized states are created by the
quasiperiodic bichromatic OL [Eq. (3)]. The parameter space
in Fig. 1 where localization can exist is enlarged from region
I to region II because of the bichromatic OL. The phase
diagram also shows that the effect of the bichromatic OL
is small when Ny is small and Ng > 200. For example, the
region II between regions I and III is very narrow. This
implies that, compared to the bichromatic OL, the interspecies
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FIG. 1. (Color online) Phase diagram of Bose and Fermi atom
numbers showing the regions of localization without the external
trap (region I) and with the bichromatic OL [Eq. (3)] (regions I
and II) from a solution of the variational equations (10) and (11).
In regions III and IV the variational equations have no solution.
Single-peaked localization in the bichromatic OL is possible from a
numerical solution of Egs. (1) and (2) in the region bounded by the
dashed lines.

interaction is dominant in this region, because a larger Ng and
small Ng induce a large enough effective interspecies attrac-
tion to localize the Bose-Fermi mixture. When Ny is larger,
however, the effect of the bichromatic OL is more important on
localization as indicated by a wide region II between regions I
and I'V.

The present discussion based on a Gaussian ansatz for
the wave function has its limitation in the presence of the
bichromatic OL where it is possible to have multipeak density
for the components not taken care of by the simple Gaussian
ansatz. Single-peaked Gaussian-type localization is possible in
regions I and II. However, in the presence of the bichromatic
OL, localized states can exist beyond regions I and II into
regions III and IV, where at least one of the components has
a multipeak density distribution along the OL. Such states are
not obtainable from a Gaussian variational analysis and will be
studied in Sec. III using the full numerical solution of Eqgs. (1)
and (2).

III. NUMERICAL RESULTS

We perform the numerical integration of coupled GP
equations (1) and (2) employing real- and imaginary-time
propagation using the split-step Fourier spectral method with
space step 0.04 and time step 0.001. The time evolution is
continued till convergence. We also checked the accuracy of
the results by varying the space and time steps and the total
number of space and time steps. Although the imaginary-time
propagation method could find some of the localized states, the
stability of these states was confirmed through the real-time
propagation method. For studying the dynamics we used
real-time propagation corresponding to the solution of the full
time-dependent Eqs. (1) and (2).

023632-3



YONGSHAN CHENG AND S. K. ADHIKARI

1 T T 0.4 LN B S e i e e
(@) —wg(N) —wg(N) (b)
08 Y] I B ]
L06F\  Ng=1000 SN | Ne=280
gnci b WF(V) gﬂi O.ZM
o2k 0.1F B
1 0 |- ----- e L

0 1 1
100 150 200 250 300 1000 1500 2000 2500 3000
N, N,

3 B

FIG. 2. (Color online) Dimensionless numerical (N) and varia-
tional (V) widths wg ¢ of the Bose and Fermi components of the
stationary symbiotic localized states with V(x) =0 vs (a) Ng for
Np = 1000, and vs (b) Ny for Ng = 280.

We first confirm the existence of the symbiotic localized
states. By numerical integration of GP equations (1) and
(2) with V(x) =0, we find that the symbiotic localized
states of the Bose-Fermi systems can exist in Region I of
Fig. 1. In order to investigate the effects of the number of
atoms of the two components on the localized states, the
typical numerical (N) and variational (V) widths of the atom
density profiles of the stationary symbiotic localized states
are exhibited in Fig. 2. The numerical widths are calculated
via wi = fo;o x2|up p|*dx. We find that the numerical
results are in good agreement with the variational results
in the central part of region I. Near the edges (the solid
line in Fig. 1), the difference between the numerical and
variational widths is larger because of the deformation of the
wave functions, while the atom density distributions deviate
from the single-peak Gaussian shape and assume a multipeak
structure. When Ny p are smaller, we find that the deformation
of the fermionic component is larger than that of the bosonic
component consistent with Fig. 2(a). On the contrary, the
deformation of the bosonic component is larger than that of
the fermionic component when Np p are larger consistent with
Fig. 2(b).

A careful analysis of the density distribution of the localized
Bose-Fermi system reveals some interesting features. In fact,
an attractive interspecies interaction may induce a spatially
localized effective attraction [18] which can reduce the width
of the atom density profiles, and even develop a sharp peak on
the top of the bosonic and fermionic atom density envelopes
[19] as we shall see in the following, viz., Fig. 3. Once a peak
appears in the density of the first species (Bose or Fermi), this
induces a highly localized effective interaction in the second
species (Fermi or Bose) resulting in a highly localized structure
in the second species. The small width of a species, say Bose,
may, however, emerge in two ways: (i) a large overall attractive
interspecies interaction g NE|ug|>ug due to a large number
of the second species, N, or (ii) a highly localized interspecies
interaction ggr Ng|ug|?up due to a narrow localized state of the
second species, Fermi.

Figure 2(a) indicates that wp r decreases monotonically as
Nr increases. This is because a larger N induces a larger
effective attraction among bosons [16], which reduces the
Bose width wg due to possibility (i) above. Simultaneously,
the narrower Bose localization causes a stronger attractive
pointlike effective potential for the Fermi component, which
reduces the Fermi width wg due to possibility (ii). Figure 2(b)
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FIG. 3. (Color online) Numerical densities |ug r|* of the coupled
Bose-Fermi localized states with the bichromatic OL [Eq. (3)]
vs dimensionless position x for (a) Ng = 800,Nr = 80, (b) Ng =
200, Ng = 50, (¢) Ng = 1800, Ng = 90, and (d) Ng = 1800, Ng = 90
in logarithmic scale. The solid line corresponds to bosons and the
dashed line to fermions.

shows that, as Np increases, wg decreases and wg increases.
With the increase of Ny for a fixed Ng, the Bose species
becomes more repulsive due to an increase of intraspecies
repulsion for a roughly fixed interspecies attraction, thus
increasing the width of the Bose species. However, the increase
of Ng for a fixed Ng increases the interspecies attraction on
the Fermi species, thus reducing the Fermi width.

Next, we study the Bose-Fermi localized states with the
quasiperiodic OL [Eq. (3)] in region II of Fig. 1. Typical
atom density profiles of stationary Bose and Fermi localized
states are shown in Figs. 3(a)—3(d). We find that, because
of the bichromatic OL, the localized Bose or Fermi states
may exist beyond region I. For example, Fig. 3(a) shows both
Bose and Fermi components in single-peaked configuration
for parameters corresponding to region II. The numerical
simulation indicates, however, that both components can be
single peaked only in the region between the dashed lines
in Fig. 1. We name this region the single-fragment region.
In the region below the single-fragment region (viz., the
region with smaller Ng), the atom density profile of the Bose
component is single peaked, but the Fermi component shows
a symmetrical multipeak structure with a pronounced peak
at the center, as shown in Fig. 3(b). However, in the region
above the single-fragment region (viz., the region with larger
Ng), the density profile of the Fermi component is single
peaked and that of the Bose component is multipeaked as
shown in Figs. 3(c) and 3(d). To show this clearly, Fig. 3(d)
is plotted in a logarithmic scale which shows that the Bose
density profile develops undulating tails occupying many OL
sites. When Ny is larger, as in Figs. 3(c) and 3(d), the Bose
system becomes more repulsive and hence spreads to many
OL sites and thus develops undulating tails. However, a large
Ny also introduces a strong interspecies attraction on the
Fermi component, thus confining it in a small region. This
narrow Fermi peak creates a smaller narrow peak in the Bose
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FIG. 4. (Color online) Numerical density |ug|®> of the Bose
component in the Bose-Fermi mixture on the bichromatic OL [Eq. (3)]
vs dimensionless x in logarithmic scale for (a) Ng = 90 and Ny = 600
(solid line), 700 (dashed line), 800 (dotted line), and for (b) Ny = 600
and Ng = 70 (solid line), 80 (dashed line), 90 (dotted line). The
crosses are exponentially fitted to density tails ~ exp(—|x|/Lioc),
where L, is the dimensionless localization length.

component due to interspecies attraction as seen in Fig. 3(c).
The role of Bose and Fermi is interchanged for a small Ny
as can be seen in Fig. 3(b), where one has a single-peak
Bose distribution on top of a multipeak Fermi distribution.
The situation for an intermediate value of N is shown
in Fig. 3(a).

Now we consider the possibility of Anderson localiza-
tion of the bosons with an exponential tail in density in
the interacting Bose-Fermi mixture on the bichromatic OL
[Eq. (3)] [1-3,6,31]. There are domains around region II
of the phase diagram shown in Fig. 1 where the inter-
and intra-species interaction on the bosons approximately
“cancel” each other. Consequently, the bosons behave like
quasifree particles (with effective weak repulsion) and the
weak quasiperiodic bichromatic OL is necessary for localizing
the bosons. In order to understand the novel phenomenon, we
investigate the localization of Bose and Fermi components
in the bichromatic OL [Eq. (3)] away from the domain of
strong interspecies interactions, where there is no localization
in the absence of the bichromatic OL potential, e.g., around
region II of Fig. 1. In that case, we find that the wave function
of the Bose component may possess a pronounced exponential
tail demonstrating Anderson localization. However, we could
not find a similar exponential tail of fermion density distribu-
tion in the whole phase diagram in Fig. 1.

To study Anderson localization of the Bose component,
while both Bose and Fermi components are single peaked
under the action of the OL trap [Eq. (3)], we plot in Fig. 4
the atom density |ug|?, in log scale, of the stationary Bose
localized states. The central part of the atom density is
quasi-Gaussian, however, with a long exponential tail. We
have also shown in Fig. 4 the exponential fitting to density tails
with ~ exp(—|x|/Lio), Where L, is the localization length.
(Note that our definition of localization length [3] differs from
that of Refs. [1,6] by a factor of 2.) The length L. depends
on the effective nonlinearity of the bosonic component and
the disorder of the quasiperiodic OL [33]. Here, we fix the
quasiperiodic OL [Eq. (3)] and study the effect of nonlinearity
on localization length. In Fig. 4(a), for Ng = 90, Li,. = 0.25
for Ng = 600, Lj,c = 0.28 for Ng = 700, and L;,. = 0.35
for Ng = 800 and the localization length increases with Ng.
This is because that a larger Np, for a fixed Ng, implies a
larger repulsive bosonic nonlinearity, thus resulting in a larger
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FIG. 5. (Color online) Dimensionless localization length L, of
Bose density |ug|? vs (a) Ng for Ng = 200,400, and vs (b) Ng for
Ng = 100,280, in the Bose-Fermi mixture on the bichromatic OL
[Eq. (3)].

value of localization length. Figure 4(b) indicates that, for
a fixed Ng = 600, L., decreases with Ng with L;,. = 0.44
for Ng = 70, Li,c = 0.32 for Ng = 80, and L, = 0.25 for
Nr =90. A larger Ng, for a fixed Np, implies a larger
interspecies attraction on the bosonic component [16], thus
reducing the localization length.

We also investigate numerically the Anderson localization
of the Bose component [Eq. (3)] for small Ng. With the
OL [Eq. (3)], the Bose localization length Lj,. vs N and
Ny is illustrated in Figs. 5(a) and 5(b), respectively. As
shown in Fig. 5(a), because of interspecies attraction, Li,.
for a fixed Ng monotonically decreases with the increase of
Ng. For smaller Ng(=200), there is a saturation of L;j,. and
Anderson localization with an exponential tail continues with
the increase of Ng. For larger Ng(= 400), L, is reduced
rapidly with the increase of Ng until the Anderson localization
with an exponential tail is destroyed, and one has strong
localization without an exponential tail. In Fig. 5(b), we show
the variation of L, with Ng for Ng = 100 and 280. From
the phase plot in Fig. 1 we find that in both cases Anderson
localization is rapidly destroyed as we enter the region I of
Fig. 1 of permanent symbiotic trapping with the increase of
Npg, and the localization length is reduced rapidly.

Now we study numerically some dynamics of the localized
Bose-Fermi states and test their stability. First, we consider
a Bose-Fermi state in the region I of Fig. 1 correspond-
ing to permanent symbiotic trapping. To do this, first we
create the stationary localized Bose-Fermi mixture under
appropriate conditions. Successively, at + = 0, we suddenly
introduce a phase exp(i pg px) in the wave function of one of the
components to initiate a translational motion. No momentum
is given to the second component. By introducing an initial
translation to the Bose or Fermi component, the evolution
of the atom density envelopes is presented in Fig. 6 for
N = 1000, Ng = 160, and for (a) pg = 0.02, pr =0, and
for (b) pg =0, pr = 0.1. We find that the two components
remain bound together and move with the same constant
velocity although the initial momentum is given to only one
component. The binding is caused by the stronger interspecies
attraction. We see in Fig. 6 that the symbiotic Bose-Fermi
locazed states remain unchanged after perturbation, which
confirms the stability of these states.

Next we consider the dynamics of an Anderson localized
Bose state in the Bose-Fermi mixture on the bichromatic OL
[Eq. (3)] with Ng = 800 and Nr = 90 corresponding to one of
the localized states of Fig. 4(a). The dynamics is initiated by
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FIG. 6. (Color online) Numerical densities |up | vs dimensionless x and ¢ of the symbiotic Bose-Fermi localized states after introducing a
momentum in one of the components by transformation ug r — ug r exp(ipp rx). The parameters are Ng = 1000, Ng = 160 and (a) pg = 0.02,

pr=0,and (b) py =0, pr = 0.1.

introducing a phase exp(ipp gx) in the wave function of one of
the components to start a translational motion. Because of the
quasiperiodic OL [Eq. (3)], the bound Bose-Fermi localized
state oscillates together periodically about the origin in one
site of the OL after introducing an initial momentum into one
of the components, as shown in Fig. 7 which shows only
the movement of the center of the Bose component, e.g.,

s

AL

0 20 40 60 80
t

100

FIG. 7. (Color online) Dimensionless center of the Bose state xp
vs dimensionless time ¢ during the location oscillation of the Bose-
Fermi mixture on the bichromatic OL [Eq. (3)] initiated suddenly
by introducing an initial momentum pg  through the transformation
UB,F — UBF exp(ipB.Fx).

xp Vs t. Different initial momenta result in oscillations with
different amplitudes [see the solid line (pg = 0.3), the dashed
line (pr = 0.3), and the dotted line (pg = 0.1) in Fig. 7].
Sustained oscillation of the Bose (as well as the bound Fermi
component not shown here) component confirms the stability
of the coupled Bose-Fermi state.

IV. SUMMARY

Here we studied symbiotic localization in a cigar-shaped
Bose-Fermi superfluid with intraspecies repulsion and in-
terspecies attraction. The Fermi component is considered
at unitarity. In the presence of a quasiperiodic bichromatic
OL, the Bose component in the Bose-Fermi mixture could
exhibit Anderson localization with a large exponential tail
due to a near cancellation of the intraspecies repulsion and
interspecies attraction while no localization is possible in the
absence of the OL. No evidence of Anderson localization with
a long exponential tail was found in the Fermi component.
The cigar-shaped Bose-Fermi mixture is described by an
effective one-dimensional GP equation for bosons coupled to
a mean-field hydrodynamic equation for fermions at unitarity
[23]. In this study, we use both numerical and variational
solutions of the mean-field equation for the mixture. We obtain
a phase plot of the number of bosonic and fermionic atoms
showing the domain of symbiotic localization without the
external trap and localization in the presence of a quasiperiodic
bichromatic OL. The numerical and variational densities
of the localized states are in good agreement with each
other. Both symbiotic localization and Anderson localization

023632-6
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are found to be dynamically stable when given a small
initial velocity to one of the components. The Bose and
Fermi components are found to move together under such
a perturbation. With present know-how, it should be possible
to study the Anderson localization of the Bose component in
the Bose-Fermi mixture on a bichromatic OL experimentally
under appropriate conditions.

PHYSICAL REVIEW A 84, 023632 (2011)

ACKNOWLEDGMENTS

FAPESP (Brazil) and CNPq (Brazil) provided partial sup-
port. The Science and Technology Program of the Education
Department of Hubei, China, under Grants Nos. D200722003
and 7200722001, provided support during the initial stage of
the project in China.

[1] J. Billy, V. Jossel, Z. Zuo et al., Nature (London) 453, 891
(2008).

[2] G. Roati, C. D’Errico, and L. Fallani et al., Nature (London)
453, 895 (2008).

[3] Y. Cheng and S. K. Adhikari, Phys. Rev. A 83, 023620 (2011);
81, 023620 (2010); Laser Phys. Lett. 7, 824 (2010).

[4] A. S. Pikovsky and D. L. Shepelyansky, Phys. Rev. Lett. 100,
094101 (2008); S. Flach, D. O. Krimer, and Ch. Skokos, ibid.
102, 024101 (2009); I. Garcia-Mata and D. L. Shepelyansky,
Phys. Rev. E 79, 026205 (2009); Ch. Skokos, D. O. Krimer,
S. Komineas, and S. Flach, ibid. 79, 056211 (2009); P. Lugan,
D. Clement, P. Bouyer, A. Aspect, and L. Sanchez-Palencia,
Phys. Rev. Lett. 99, 180402 (2007); J. E. Lye, L. Fallani,
C. Fort, V. Guarrera, M. Modugno, D. S. Wiersma, and
M. Inguscio, Phys. Rev. A 75, 061603(R) (2007).

[5] Y. Cheng and S. K. Adhikari, Phys. Rev. A 81, 023620 (2010).

[6] S. K. Adhikari and L. Salasnich, Phys. Rev. A 80, 023606 (2009).

[7]1 S. K. Adhikari, Phys. Rev. A 81, 043636 (2010).

[8] Y. Cheng and S. K. Adhikari, Phys. Rev. A 82, 013631 (2010);
L. Sanchez-Palencia, D. Clement, P. Lugan, P. Bouyer, G. V.
Shlyapnikov, and A. Aspect, Phys. Rev. Lett. 98, 210401 (2007);
D. Clément, A. F. Varon, M. Hugbart, J. A. Retter, P. Bouyer,
L. Sanchez-Palencia, D. M. Gangardt, G. V. Shlyapnikov, and
A. Aspect, ibid. 95, 170409 (2005); J. E. Lye, L. Fallani,
M. Modugno, D. S. Wiersma, C. Fort, and M. Inguscio, ibid.
95, 070401 (2005); B. Damski, J. Zakrzewski, L. Santos,
P. Zoller, and M. Lewenstein, ibid. 91, 080403 (2003);
T. Schulte, S. Drenkelforth, J. Kruse, W. Ertmer, J. Arlt,
K. Sacha, J. Zakrzewski, and M. Lewenstein, ibid. 95, 170411
(2005); G. Srinivasan, A. Aceves, and D. M. Tartakovsky, Phys.
Rev. A 77, 063806 (2008).

[9] I. L. Aleiner, B. L. Altshuler, and G. V. Shlyapnikov, Nat. Phys.
6, 900 (2010); D. M. Basko, I. L. Aleiner, and B. L. Altshuler,
Phys. Rev. B 76, 052203 (2007).

[10] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E.
Wieman, Phys. Rev. Lett. 78, 586 (1997); J. Stenger, S. Inouye,
D. M. Stamper-Kurn et al., Nature (London) 396, 345 (1998).

[11] G. Modugno, G. Ferrari, and G. Roati et al., Science 294, 1320
(2001).

[12] B. DeMarco and D. S. Jin, Science 285, 1703 (1999).

[13] K. E. Strecker, G. B. Partridge, and R. G. Hulet, Phys. Rev. Lett.
91, 080406 (2003); G. B. Partridge, W. Li, Y. A. Liao, R. G.
Hulet, M. Haque, and H. T. C. Stoof, ibid. 97, 190407 (2006).

[14] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M.
Stamper-Kurn, and W. Ketterle, Nature (London) 392, 151
(1998).

[15] M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff,
R. Grimm, and J. H. Denschlag, Phys. Rev. Lett. 93, 123001
(2004).

[16] S. K. Adhikari, Phys. Lett. A 346, 179 (2005); Phys. Rev. A
72, 053608 (2005); J. Phys. A 40, 2673 (2007); S. K. Adhikari
and L. Salasnich, Phys. Rev. A 76, 023612 (2007); L. Salasnich,
S. K. Adhikari, and F. Toigo, ibid. 75, 023616 (2007).

[17] V. M. Pérez-Garcia and J. B. Beitia, Phys. Rev. A 72, 033620
(2005).

[18] Y. S. Cheng, J. Phys. B 42, 205005 (2009); Y. S. Cheng, R. Z.
Gong, and H. Li, Opt. Express 14, 3594 (2006).

[19] B. T. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev. A
71, 033609 (2005); D. J. Frantzeskakis, G. Theocharis, F. K.
Diakonos, P. Schmelcher, and Y. S. Kivshar, ibid. 66, 053608
(2002).

[20] L. Luo and J. E. Thomas, J. Low Temp. Phys. 154, 1
(2009).

[21] S. K. Adhikari and L. Salasnich, Phys. Rev. A 78, 043616 (2008);
S. K. Adhikari, ibid. 79, 023611 (2009); Laser Phys. Lett. 6, 901
(2009); J. Phys. B 43, 085304 (2010).

[22] G. Modugno et al., Science 297, 2240 (2002); K. Gunter,
T. Stoferle, H. Moritz, M. Kohl, and T. Esslinger, Phys. Rev.
Lett. 96, 180402 (2006); Th. Best, S. Will, U. Schneider,
L. Hackermuller, D. vanOosten, I. Bloch, and D. S. Luhmann,
ibid. 102, 030408 (2009).

[23] S. K. Adhikari, B. A. Malomed, L. Salasnich, and F. Toigo, Phys.
Rev. A 81, 053630 (2010).

[24] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys.
80, 1215 (2008).

[25] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev.
Mod. Phys. 71, 463 (1999).

[26] G. Roati, F. Riboli, G. Modugno, and M. Inguscio, Phys. Rev.
Lett. 89, 150403 (2002).

[27] C. Albanese and J. Frohlich, Commun. Math. Phys. 116, 475
(1988); C. Albanese, J. Frohlich, and T. Spencer, ibid. 119, 677
(1988); C. Albanese and J. Frohlich, ibid. 138, 193 (1991).

[28] W. Yi and L.-M. Duan, Europhys. Lett. 75, 854 (2006).

[29] A. M. Belemuk, N. M. Chtchelkatchev, V. N. Ryzhov, and S. T.
Chui, Phys. Rev. A 73, 053608 (2006).

[30] S. K. Adhikari and B. A. Malomed, Phys. Rev. A 76, 043626
(2007).

[31] M. Modugno, New J. Phys. 11, 033023 (2009); M. Larcher,
F. Dalfovo, and M. Modugno, Phys. Rev. A 80, 053606 (2009);
M. Larcher, M. Modugno, and F. Dalfovo, ibid. 83, 013624
(2011).

[32] V. M. Pérez-Garcia, H. Michinel, J. 1. Cirac, M. Lewenstein,
and P. Zoller, Phys. Rev. A 56, 1424 (1997); S. K. Adhikari and
B. A. Malomed, ibid. 79, 015602 (2009); B. A. Malomed, Prog.
Opt. 43, 71 (2002).

[33] L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, and
A. Aspect, New J. Phys. 10, 045019 (2008); L. Fallani, C. Fort,
and M. Inguscio, Adv. At. Mol. Opt. Phys. 56, 119 (2008).

023632-7


http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1103/PhysRevA.83.023620
http://dx.doi.org/10.1103/PhysRevA.81.023620
http://dx.doi.org/10.1103/PhysRevA.81.023620
http://dx.doi.org/10.1002/lapl.201010063
http://dx.doi.org/10.1103/PhysRevLett.100.094101
http://dx.doi.org/10.1103/PhysRevLett.100.094101
http://dx.doi.org/10.1103/PhysRevLett.102.024101
http://dx.doi.org/10.1103/PhysRevLett.102.024101
http://dx.doi.org/10.1103/PhysRevLett.102.024101
http://dx.doi.org/10.1103/PhysRevE.79.056211
http://dx.doi.org/10.1103/PhysRevLett.99.180402
http://dx.doi.org/10.1103/PhysRevA.75.061603
http://dx.doi.org/10.1103/PhysRevA.81.023620
http://dx.doi.org/10.1103/PhysRevA.80.023606
http://dx.doi.org/10.1103/PhysRevA.81.043636
http://dx.doi.org/10.1103/PhysRevA.82.013631
http://dx.doi.org/10.1103/PhysRevLett.98.210401
http://dx.doi.org/10.1103/PhysRevLett.95.170409
http://dx.doi.org/10.1103/PhysRevLett.95.070401
http://dx.doi.org/10.1103/PhysRevLett.95.070401
http://dx.doi.org/10.1103/PhysRevLett.91.080403
http://dx.doi.org/10.1103/PhysRevLett.95.170411
http://dx.doi.org/10.1103/PhysRevLett.95.170411
http://dx.doi.org/10.1103/PhysRevA.77.063806
http://dx.doi.org/10.1103/PhysRevA.77.063806
http://dx.doi.org/10.1038/nphys1758
http://dx.doi.org/10.1038/nphys1758
http://dx.doi.org/10.1103/PhysRevB.76.195415
http://dx.doi.org/10.1103/PhysRevLett.78.586
http://dx.doi.org/10.1038/24567
http://dx.doi.org/10.1126/science.1066687
http://dx.doi.org/10.1126/science.1066687
http://dx.doi.org/10.1126/science.285.5434.1703
http://dx.doi.org/10.1103/PhysRevLett.91.080406
http://dx.doi.org/10.1103/PhysRevLett.91.080406
http://dx.doi.org/10.1103/PhysRevLett.97.190407
http://dx.doi.org/10.1038/32354
http://dx.doi.org/10.1038/32354
http://dx.doi.org/10.1103/PhysRevLett.93.123001
http://dx.doi.org/10.1103/PhysRevLett.93.123001
http://dx.doi.org/10.1016/j.physleta.2005.07.044
http://dx.doi.org/10.1103/PhysRevA.72.053608
http://dx.doi.org/10.1103/PhysRevA.72.053608
http://dx.doi.org/10.1088/1751-8113/40/11/006
http://dx.doi.org/10.1103/PhysRevA.76.023612
http://dx.doi.org/10.1103/PhysRevA.75.023616
http://dx.doi.org/10.1103/PhysRevA.72.033620
http://dx.doi.org/10.1103/PhysRevA.72.033620
http://dx.doi.org/10.1088/0953-4075/42/20/205005
http://dx.doi.org/10.1364/OE.14.003594
http://dx.doi.org/10.1103/PhysRevA.71.033609
http://dx.doi.org/10.1103/PhysRevA.71.033609
http://dx.doi.org/10.1103/PhysRevA.66.053608
http://dx.doi.org/10.1103/PhysRevA.66.053608
http://dx.doi.org/10.1007/s10909-008-9850-2
http://dx.doi.org/10.1007/s10909-008-9850-2
http://dx.doi.org/10.1103/PhysRevA.78.043616
http://dx.doi.org/10.1103/PhysRevA.79.023611
http://dx.doi.org/10.1002/lapl.200910090
http://dx.doi.org/10.1002/lapl.200910090
http://dx.doi.org/10.1088/0953-4075/43/8/085304
http://dx.doi.org/10.1126/science.1077386
http://dx.doi.org/10.1103/PhysRevLett.96.180402
http://dx.doi.org/10.1103/PhysRevLett.96.180402
http://dx.doi.org/10.1103/PhysRevLett.102.030408
http://dx.doi.org/10.1103/PhysRevA.81.053630
http://dx.doi.org/10.1103/PhysRevA.81.053630
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/PhysRevLett.89.150403
http://dx.doi.org/10.1103/PhysRevLett.89.150403
http://dx.doi.org/10.1007/BF01229204
http://dx.doi.org/10.1007/BF01229204
http://dx.doi.org/10.1007/BF01218350
http://dx.doi.org/10.1007/BF01218350
http://dx.doi.org/10.1007/BF02099674
http://dx.doi.org/10.1209/epl/i2006-10210-x
http://dx.doi.org/10.1103/PhysRevA.73.053608
http://dx.doi.org/10.1103/PhysRevA.76.043626
http://dx.doi.org/10.1103/PhysRevA.76.043626
http://dx.doi.org/10.1088/1367-2630/11/3/033023
http://dx.doi.org/10.1103/PhysRevA.80.053606
http://dx.doi.org/10.1103/PhysRevA.83.013624
http://dx.doi.org/10.1103/PhysRevA.83.013624
http://dx.doi.org/10.1103/PhysRevA.56.1424
http://dx.doi.org/10.1103/PhysRevA.79.015602
http://dx.doi.org/10.1016/S0079-6638(02)80026-9
http://dx.doi.org/10.1016/S0079-6638(02)80026-9
http://dx.doi.org/10.1088/1367-2630/10/4/045019
http://dx.doi.org/10.1016/S1049-250X(08)00012-8

