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Strongly interacting bosons in a one-dimensional optical lattice at incommensurate densities
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We investigate quantum phase transitions occurring in a system of strongly interacting ultracold bosons in
a one-dimensional optical lattice. After discussing the commensurate-incommensurate transition, we focus on
the phases appearing at an incommensurate filling. We find a rich phase diagram, with superfluid, supersolid,
and solid (kink-lattice) phases. Supersolids generally appear in theoretical studies of systems with long-range
interactions; our results break this paradigm and show that they may also emerge in models including only
short-range (contact) interactions, provided that quantum fluctuations are properly taken into account.
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I. INTRODUCTION

The rapid progress in trapping and cooling atoms has
rendered the study of “tailor-made” low-dimensional systems
[1] experimentally accessible. Both the dimensionality and
the interactions can be controlled, allowing great flexibility
in realizing almost arbitrary strongly correlated physical
systems. A superfluid—Mott-insulator (SF-MI) quantum phase
transition, driven by increasing the potential depth of the
optical lattice (and hence the relative strength of interactions)
beyond a critical value, has been observed for bosons loaded
into an optical lattice in three [2], two [3], and one [4]
dimensions. In addition, the Tonks-Girardeau gas, where
bosons avoid spatial overlap and acquire fermionic properties
due to strong repulsive interactions, has been experimentally
realized in one dimension (1D) [5].

Recently, a new type of quantum phase transition was
observed in 1D in the very strongly interacting regime: for an
arbitrarily weak optical lattice potential commensurate with
the atomic density of the Bose gas, a quantum phase transition
into an insulating, gapped state was observed with the atoms
pinned at the lattice minima [6]. Theoretical studies of one-
dimensional systems based on the sine-Gordon model indeed
predict that above a critical interaction strength, the superfluid
(SF) phase should become a MI even for a vanishingly weak
optical lattice [7].

In this article, we show that another interesting regime
can be reached if the density is incommensurate with the
optical lattice. The system is then described by a driven sine-
Gordon model. In this model, the appearance of superfluidity
(off-diagonal correlations) may be driven in two different
ways, either by tuning the interaction strength at constant
lattice depth and commensurate period, as already realized
experimentally [6], or by tuning the density or lattice parameter
away from commensurability. We study the excitations of
the system in the incommensurate phase and show that a
supersolid (SS) phase may arise. In addition, for sufficiently
large lattice strengths, a solid (S) phase is stabilized even at
nonunit filling.

Our approach to studying this system is as follows: First,
following previous work [6-8], we formulate the underlying
one-dimensional interacting boson problem in terms of a
quantum sine-Gordon field theory, with the deviation of
the number density from commensurate values driving the
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appearance of kinks in the field. We carefully obtain the
density threshold for the commensurate-incommensurate SF-
MI transition, finding that the SF appears for arbitrarily small
deviations of the density from the commensurate density, in
agreement with Ref. [9].

We next study the incommensurate regime, in which the
excess particles appear as kinks of the sine-Gordon field,
having an effective mass and effective interactions different
from the bare particles. We extract these two parameters
exactly from the underlying field theory and finally apply
a functional renormalization group (RG) approach to the
path integral formulation of the many-body statistical density
matrix to obtain the ground-state properties of the system.
The RG transformation shows that quantum fluctuations
renormalize the interactions between the kinks to a power
law form; this maps the system to the Calogero-Sutherland
model [10], an exactly solvable model of one-dimensional
particles with long-range interactions. This finally allows us
to propose a phase diagram for the incommensurate regime
(see Fig. 1). When the lattice potential is strong enough, the
system solidifies. However, the S phase here is actually a lattice
of kinks, and the number of particles per site is not fixed.
At intermediate values of the lattice potential, we predict the
emergence of a SS phase. SS phases usually occur in model
Hamiltonians which include long-range interactions, and have
a characteristic wavelength which is an integer multiple of the
lattice spacing [11]. The most striking feature of the system
studied in this article is that while the original Hamiltonian
contains only /ocal interactions, the SS phase appears due
to the finite-range nature of the interaction between the
excitations. In addition, the periodicity of the SS phase found
here is unrelated to that of the lattice, a qualitatively different
behavior from the situations usually found in the literature.

II. MICROSCOPIC MODEL

The microscopic description of a trapped gas of cold bosons
in 1D with contact interactions and in the presence of a single-
particle potential V(x) is

oo hZ
H = / dx {WT(X) (—%Vz + V(x)) v(x)

+ %/ dx W(xW(x)w(x)w(x)}, (D
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FIG. 1. T = 0 phase diagram for a filling factor slightly above
unit filling. SF, SS, and S indicate superfluid, supersolid and solid
phases, respectively. The inset shows the same phase diagram but
in terms of y, the dimensionless interaction strength, instead of the
Tomonaga-Luttinger parameter K.

where g is the strength of the 8-function interaction, ¥ (/1)
are bosonic annihilation (creation) operators, and m is the
atomic mass. The parameter characterizing the strength of
the interactions is the Lieb-Liniger parameter y = mg/h’no,
where ny is the average density.

Writing ¥ (x) = «/n(x)exp ( — i6(x)), with n(x) the den-
sity and 6(x) the (real) phase, and using the Poisson summation
formula, the density operator may then be expressed as [7,8]

n(x) = [no—%am(x)} Y el ()

p=—00

where f dxd,¢(x) = 0. Equation (2) yields an expression for
the bosonic operators in Eq. (1) in terms of the new field ¢.
The appropriate bosonic commutation relations are satisfied if
[0,9(x),0(x)] = —imhé(x — x’), that is, if & and 0,¢ /7 are
canonically conjugate variables. From Eq. (2), it follows that
kinks in the ¢ field correspond to particlelike excitations. This
fact will be of great importance to us later on.

In the long-wavelength limit, and in the presence of an
optical lattice creating a single-particle potential V(x) =
(V/2)cos(4mx /L), the system of Eq. (1) may be described
by an action of the form

_ g © 1 2 2
S[p] = /0 dr [ dx g l0,6P + 0.0

ﬁ [ee]
+%u/ d‘c/ dx cos[¢(x) — Ox], 3)
0 —00

where we have now set i = 1, scaled lengths such that the
speed of sound is unity, and finally scaled ¢ — ¢ /2. Here, § =
1/kgT and u = nyV, while K is the usual Luttinger liquid
parameter. For bosons interacting via contact potentials, K
may be expressed in terms of y; for large y, K ~ (1 +2/y)?,
while for smaller interaction strengths, y it is given by
K ~n/\y —y3/2/Qm). Notice that K > 1, as it should for
bosons with local interactions. We have also only kept the most
relevant (least quickly oscillating in space) terms and written
Q =2m(ng —2/X1) as the deviation of the average density
from its commensurate value.
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FIG. 2. Q > 0; the dashed line is 9,¢/m, the solid line is
the periodic potential, and the corresponding particle positions are
indicated by dots. Notice how kinks (indicated by localized deviations
from a straight line for d,¢ /) correspond to particles in excess of
the commensurate particle density.

In the zero-temperature, § — oo limit, Eq. (3) is formally
equivalent to the model studied in Ref. [12]. It is also related to
previous work on quantum Hall bilayer systems [13,14], with
the important difference that the boundary conditions in the
present case are f dx 9,¢ = 0,whilein Refs. [12,15] (amongst
numerous others), there is no such restriction on ¢. This is
crucial to the position of the boundary of the commensurate-
incommensurate transition and is due to the fact that we are
working at fixed particle number [9].

Since kinks correspond to excess particles above the
commensurate density (see Fig. 2), fixing the particle density
must fix the number density of kinks uniquely. But from its
definition, Q is directly proportional to this excess particle
density, so that the kink density must be proportional to Q
itself. This immediately implies that Q. = 0, at least at zero
temperature.! Mathematically, this is a consequence of the
boundary condition at the edges of the system, which implies
that the commensurate phase cannot exist unless Q = 0. For
any Q > 0, a finite density of bosonic kinks appears.

III. EFFECTIVE MODEL FOR EXCITATIONS

The full analytical expression for the bare interaction
between two kinks in a sine-Gordon model is given in
Ref. [16]; its limiting forms are

seexp(—r/§), r>§
w/(2r), r<LE&.

The effective width of the kinks is & = 1/+4/27w Kn(V, so that
this potential amounts to an impenetrable core plus a finite-
range repulsion.

The effective kink (and antikink) mass o is strongly
renormalized by quantum fluctuations [17]. It may be obtained
using a flow-equation RG scheme as described in Ref. [18];
the salient points are that it is proportional to u at K =1
(that is, it is not renormalized) and vanishes as K — 2. This
vanishing of o is also responsible for the SF-MI transition
observed for weak lattices in Ref [6] at commensurability;
K — 2 corresponds to a critical y,. &~ 3.5. We obtain o for
intermediate values 1 < K < 2 by direct numerical integration
of the flow equations given in Ref. [18].

Vbare(r) - { (4)

'In Ref. [7], a finite value for Q. is obtained which, however, should
be interpreted as a finite chemical potential, not density.
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To study the system of interacting kinks, we employ
the statistical density matrix in imaginary time and position
representation [19,20]. This is given by

p(R.R:p) = [ []Dxjexp=Silm@i/m. )
J

where {x,(7)} denotes the set of positions of the particles at
time t, R = {ry,ry, ...,ry} denotes the set of positions of the
particles at T = 0 and T = 8 (see below), while Dx; denotes
functional integration over x; finally,

1
Slixn(0l = 5 / dr [o D @ex) + Y Vix, — xm)}. 6)

n,m

In Eq. (6), the integral runs from zero to B, and there is
an ultraviolet cutoff A, = 2w /At with At a discretization
step size [20]. In this picture, the world lines of the particles
x;(t) correspond to classical strings without overhangs, the
ends of which are fixed to x;(0) = x;(tr) = r;. Note that
Eqgs. (5) and (6) describe the p appropriate for distinguishable
particles; for bosonic particles, one symmetrizes in the end,
so that pg(R,R’; B) = ZP p(R,PR’; B), with P labeling the
permutation.

We begin by estimating the temperature dependence of the
critical incommensurability Q, above which exchange effects
become important. The world lines of the particles are of
length B in the timelike direction, and the “width” of the
path in the spacelike direction will be w o< v/A*B/c. If the
average interkink distance, proportional to Q ', is larger than
this, quantum effects are not important; the condition for the
statistics to be important is, therefore, Q\/hz,B /o > 1,up to
a numerical factor. This defines a critical Q; « v/ kg Tcr/hz.
Below this Qy, the kinks behave like noninteracting bosons;
above it, they begin to interact, and we expect the effects
described below to be evident. Furthermore, since o vanishes
on the lines V = 0 and K = 2, Q, also vanishes there.

IV. PHASE DIAGRAM VIA THE
RENORMALIZATION GROUP

Next, we concentrate on the 7 =0 or 8 — oo limit,
corresponding to infinitely long strings; in this limit, the
degeneracy condition is always satisfied. We shall employ a
renormalization group (RG) technique applied directly to the
density matrix of Eq. (5). Details of this will be presented
elsewhere [21]; here, we shall only outline our conclusions.

Splitting the fields x; into slow and fast parts as usual [22], it
is possible to extend the Wegner-Houghton approach [23,24]
to the many-body case, obtaining the flow equation for the
potential

8€V:V+lx8xV + 1A, log <1+ afv). (7
2 oA,
Notice that the coarse graining is done in the t direction; thus,
information on length scales comparable to the kink density is
still present in the fixed point potentials.
The physics of the system is determined by the fixed point
potentials of Eq. (7). For bare (initial) potentials that diverge
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at the origin,” these may be determined numerically; for x >
h/A .o, their behavior is

R — 1)
=0 x2

where we have written the coefficient of x 2 as i?A(A — 1)/20
in order to make contact with the conventional notation in the
literature (see below). We are, thus, dealing with a system of
bosons interacting via an inverse square power law; this is
the celebrated Calogero-Sutherland model [10], the ground-
state wave function and low-energy spectrum of which are
known. We concentrate here on its ground-state properties,
which have been studied using numerical techniques [25]. The
authors of Ref. [25] find (quasi-)long-range off-diagonal order
for 0 < A < 2, while they find (quasi-)long-range diagonal
order for A > 1. The system is, thus, in a condensed, SF state
for0 < A < 1,ina SS state, characterized by the simultaneous
presence of diagonal and off-diagonal long-range order for
1 < A < 2,and in a crystalline, S state characterized by strong
diagonal correlations for 2 < A. Therefore, the phase in which
the system is for incommensurate densities (Q # 0) depends
on the range in which the A corresponding to the potential in
Eq. (4) lies.

To map out the phase diagram, we note that local analysis
of the fixed point ordinary differential equation, Eq. (7) with
the left-hand side set to O, indicates that the fixed point
potentials, Vgp, have the property that d Vep/do > 0 (for all
x). An increase in o, therefore, results in an increase in A
of Eq. (8). In addition, at K = 1 and V = 0 (hard-core free
bosons), A = 1[26]. Based on these two pieces of information,
and the behavior of the mass described earlier, we propose the
phase diagram in Fig. 1 for 7 = 0. Starting from the point
K =1, V =0, an increase of V causes a rapid increase of
o, which corresponds to an increase in A so that A > 1 which
corresponds to a SS phase. As V is further increased, A reaches
the value . = 2 at V =V, ,, at which point phase coherence
is lost, the structure factor displays a sharp peak [25], and
the system is in the S state. On the other hand, starting from
any point on the K = 1 line and increasing K corresponds to
decreasing o, thus decreasing A from its value at K = 1. Asa
result, the line V., curves upward as K increases. Starting
from V. o(K = 1) =0 and increasing K, A must decrease
below 1 so that the diagonal order is suppressed; thus, the
line V.o separating the SF from the SS region also curves
upward. As K — 2, or y — 3.5, the effective mass vanishes
for any V; this results in a rapid decrease of A, so that both
lines curve upward sharply.

It is important to note that the presence of the SS
phase represents an order out of disorder effect: quantum
fluctuations, which at first sight one would expect disorder
the system, result in a strengthening of the repulsion which in
turn causes the system to order.

Let us briefly discuss the differences between the phases just
described in terms of experimentally accessible quantities. The

, ®)

2Note that the potential between a kink and an antikink does not
diverge at the origin [16]; thus, our analysis does not apply to the SF
obtained at K > 2.
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main distinguishing features of these phases are the diagonal
and off-diagonal correlations. Off-diagonal long-range order
may be observed using time-of-flight measurements, which,
therefore, allow us to distinguish the SF and SS phase-coherent
phases from the S phase; in the latter, phase correlations
drop quickly and the time-of-flight image is smeared. On the
other hand, techniques for measuring density variations would
distinguish between the SS and S phases on one hand and the
SF phase on the other; single-site addressability is possible
[27], which may allow us to detect density oscillations.

We emphasize that the phase diagram of Fig. 1 is obtained
by considering the quasiparticles (kinks) and not the under-
lying bosons; in effect, these form a new interacting system
which we study using our functional RG flow equation.

V. CONCLUSIONS

In summary, we have shown that the incommensurability-
induced SF-MI transition occurs for arbitrarily small incom-
mensurability. We have then studied the system of bosonic
quasiparticles which appears as soon as commensurability is
lost; calculating the effective interactions between them, as
well as their effective mass, and using an RG transformation,
we have argued that quantum fluctuations drive the interactions
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to acquire an inverse square form (a Calogero-Sutherland
model). A phase diagram for the current system of strongly
interacting bosons in a weak one-dimensional optical lattice is
then proposed, which features SF, SS, and S phases. The most
striking feature of our calculations is the appearance of a SS
phase, in spite of the local character of the interactions in the
original model. The periodicity of both the SS and the S phases
is unrelated to that of the underlying lattice, thus providing us
with more exotic states of matter.

Although the experimental setup of Ref. [6] allows us,
in principle, to tune the density and to investigate also the
commensurate-incommensurate quantum phase transition, up
to now only the commensurate regime has been studied. Our
studies indicate that the elusive SS phase is within reach by
modifying a single parameter in the experimental setup of
Ref. [6]. We hope that our work will trigger further experiments
into this fascinating and largely unexplored regime.
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