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Impurity transport through a strongly interacting bosonic quantum gas
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Using near-exact numerical simulations, we study the propagation of an impurity through a one-dimensional
Bose lattice gas for varying bosonic interaction strengths and filling factors at zero temperature. The impurity is
coupled to the Bose gas and confined to a separate tilted lattice. The precise nature of the transport of the impurity
is specific to the excitation spectrum of the Bose gas, which allows one to measure properties of the Bose gas
nondestructively, in principle, by observing the impurity; here we focus on the spatial and momentum distributions
of the impurity as well as its reduced density matrix. For instance, we show it is possible to determine whether
the Bose gas is commensurately filled as well as the bandwidth and gap in its excitation spectrum. Moreover,
we show that the impurity acts as a witness to the crossover of its environment from the weakly to the strongly
interacting regime, i.e., from a superfluid to a Mott insulator or Tonks-Girardeau lattice gas, and the effects on
the impurity in both of these strongly interacting regimes are clearly distinguishable. Finally, we find that the
spatial coherence of the impurity is related to its propagation through the Bose gas.
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I. INTRODUCTION

The transport of an impurity through a Bose gas has received
much attention due to both its inherent appeal as an example
of nonequilibrium quantum dynamics and its importance in
mimicking the transport of an electron in a conductor [1]. The
advantage of a cold atom and optical lattice setup is its ability
to realize idealized Hamiltonians and fine-tune interactions
over large parameter regimes, often beyond those found in
condensed matter systems [2]. In this vein, we extend the
large body of theoretical work on the transport of an impurity
(partly subject to static forcing) through a superfluid [3-9] by
considering strongly interacting bosons in one dimension up
to the Mott insulator and Tonks-Girardeau limits, whereupon
the bosons exhibit fermionic characteristics [10]. Recently,
impurity transport in this context has received interest due
to its successful realization by two experiments, one using
a species specific dipole potential [11] and another using
gravity to provide a static force for the impurities [12,13].
In this paper, we look at how an impurity subjected to a
one-dimensional tilted optical lattice potential moves through
abosonic lattice gas in diverse regimes. We simulate the system
nonperturbatively and near-exactly at zero temperature using
the matrix product based time-evolution block decimation
(TEBD) algorithm [14,15].

This work also relates to progress made in probing cold
atoms in optical lattices. For example, the excitation properties
of a Bose gas in an optical lattice can be analyzed using
Bragg spectroscopy via two photon scattering [16] and lattice
depth modulation [17,18]—the experiment in [17] having
been later successfully simulated in [19,20]. Studying the
transport of a Bose gas after imparting a momentum on it
using a magnetic field [18] or tilting the lattice [21] has
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allowed experimentalists to successfully reveal signatures of
phase transitions or determine excitation spectra, respectively.
A Bose-Einstein condensate has been used as a source of
matter waves to infer the spatial properties of atoms in a
Mott insulator through Bragg diffraction [22]. Recently, an
impurity has been used in experiments as a coherent probe
for large quantum systems in order to extract impurity-boson
collision parameters [23] and interaction strengths [24].

We here combine and extend these two ideas of probing
a system using impurities and transport; we discuss how the
motion of an impurity depends on its environment and then,
using our simulations, we show what information can be
revealed about the environment nondestructively by observing
the impurity. As our example, we consider the environment to
be a Bose lattice gas and demonstrate that by analyzing the
transport of the impurity one can determine the bandwidth and
the gap in the excitation spectrum of the Bose gas. In the case
of a commensurately filled Bose gas, the impurity propagation
provides a clear signature of the superfluid to Mott insulator
transition in the form of a sharp quench of the expected current.
The strong dependence on the filling allows one to determine
nondestructively whether the bosons have been prepared in a
commensurately filled state, as desired in some applications
of quantum information processing.

The structure of this article is as follows. In Sec. II, we
develop the theoretical framework underlying the dynamics
of impurities in a tilted lattice, first decoupled and then
coupled via interactions to an environment. Subsequently,
we specialize to the case of an environment constituting a
Bose lattice gas. In Sec. III, we simulate the propagation of
the impurity. Specifically, in Secs. IIl A and III B, we analyze
the displacement of the impurity in an incommensurately and
commensurately filled Bose gas, respectively, and show that
deviations from the basic Esaki-Tsu dependence on tilt clearly
reveal information about the gas. In Sec. III C, we show how
the interaction of the impurity with the Bose gas affects the
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momentum distribution of the impurity. Then, in Sec. III D,
we discuss the decoherence of the impurity. We make our
conclusions in Sec. IV and leave a brief review of the TEBD
algorithm to the Appendix.

II. THEORETICAL FRAMEWORK

A. Impurities in a tilted lattice

In our system, we have one or a few impurities confined
to a tilted optical lattice, which allows them to move along
one spatial dimension only, depicted in Fig. 1(a). Such an
optical lattice can be created for the impurities by subjecting
them to both an optical lattice and a static forcing, e.g.,
gravity [12], or by chirping the frequency difference between
the counterpropagating lasers making up the standing wave
of an optical lattice along the direction of motion [25]. For
sufficiently deep lattices and low temperatures, solely the
lowest Bloch band is occupied and only tunneling between
nearest-neighbor sites must be considered. The Hamiltonian
of the impurities is of the form

Hyo=—J Y ala;+ Ay iala, (1)
()] i

where (i, j) denotes nearest-neighbor sites i and j, and &j
(a;) is the creation (annihilation) operator for an impurity in
a Wannier state [26] localized at site i, separated in energy
and distance from its neighbors by the Bloch energy A and
the lattice constant a. An additional condition for the above
Hamiltonian to hold is that the separation of the Bloch bands
must be much greater than the Bloch energy. Note that the im-
purities could be either bosonic or fermionic; we assume them
to be sufficiently dilute so that impurity-impurity interactions
and their quantum statistics have negligible effects.

Without a further interaction with an environment, it is not
possible for an impurity to dissipate energy and therefore alter
its expected position. The eigenstates of the Hamiltonian in
Eq. (1) are centered at each of the lattice sites i and have
energies Ai forming the so-called Wannier-Stark ladder of
states. Introducing the width A = 2J,, /A, the creation operator
for a Wannier-Stark state is defined by c?; =y j jj,,-(A)&;,
where 7,(A) is a Bessel function of the first kind of order n.
As the states are separated by an energy A, a superposition of
them oscillates at a frequency A /A.

This Wannier-Stark picture is consistent with the solution
of the semiclassical equations for an impurity in a lattice
described by a wave packet of well-defined quasimomentum
(therefore, spatially it must be spread over many lattice sites)
[27]. In such a framework, the effect of the tilt is a constant
drift of the quasimomentum of each of the impurities at rate

PHYSICAL REVIEW A 84, 023617 (2011)

k = A /ha. Together with the semiclassical equation of motion
for the group velocity of a wave packet,

k 10E
vik) = 2=
and the single-particle energy spectrum in a lattice E(k) =
2J,(1 — coska), this results in a group velocity that is
sinusoidal in time. Thus an impurity undergoes harmonic
motion with frequency A /h, but there is no net drift down
the lattice. Although originally derived semiclassically, these
Bloch oscillations are a purely coherent phenomenon, can be
arrived at quantum-mechanically, and are rigorously connected
to the Wannier-Stark picture [28]. In Fig. 2(a), we show the
coherent Bloch oscillation of an impurity initially located in a
Wannier state.

We note that Bloch oscillations in semiconductors are
usually obscured by large scattering rates, though they have
been observed in superlattices where the Bloch frequencies
A /h achievable are much higher due to larger lattice spacings
[30]. Bloch oscillations are also observable in analogous
optical lattice setups, as we find here, due to the much smaller
scattering rates.

2

B. Impurities coupled to an environment

If the impurities are coupled to an environment, then
this introduces a mechanism through which an impurity can
dissipate energy and fall down the lattice. Esaki and Tsu
[31], using the semiclassical Bloch oscillation picture, derived
an expression for the average current in the relaxation-time
approximation. The main assumption is that an impurity
suffers collisions at some rate 1/t that resets its momentum
distribution to that of thermal equilibrium (we assume zero
temperature here). The resulting expression for the average
velocity of each of the impurities is then

2al, tA/h

W= a1

3)

describing a linear (ohmic) dependence on forcing at small
tA/h followed by negative differential conductance as
(tA /)~ when TA/h > 1. This dependence is plotted in
Fig. 2(b). In this semiclassical framework, the negative
differential current arises if the time scale of the collisions
is considerably larger than the period of Bloch oscillations, in
which case the velocity of the impurity is not always in the
same direction and averages out between collisions. Negative
differential conductance, as with Bloch oscillations, is usually
obscured in semiconductors but, due to the much larger values
of T A /h achievable, it has been observed in optical lattices [32]
and superlattices [33].

FIG. 1. (Color online) Schematic diagram for the (a) impurity, (b) Bose gas, and (c) interaction Hamiltonians.
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FIG. 2. (Color online) Motion of a single impurity in a tilted
lattice with and without a scattering process. (a) The impurity
decoupled from any environment will coherently Bloch oscillate
at frequency A /A, but its expected position will not drift [5,29].
Here we plot the evolution in time ¢ for just over one and a half
Bloch oscillations. The impurity is initially localized in a Wannier
state at the middle site of the 101-site lattice. We set the tilt to
be A/J, =0.1 and (71,;) is the impurity density at lattice site i.
(b) Introducing a scattering mechanism under the relaxation-time
approximation results in the Esaki-Tsu dependence of drift on tilt in
Eq. (3). We plot this dependence here.

Clearly the relaxation-time approximation is not always
valid and the actual current will depend on the details of the
environment and its interaction with the impurity. However, it
has been found that, at least qualitatively, an Esaki-Tsu-like
dependence of current on forcing is obeyed in many cases:
for density-density interactions between an impurity and a
Bose lattice gas at finite [8,34] and infinite temperatures [4,35]
(see [36] for a discussion from the perspective of quantum
chaos); when an impurity scatters from a set of different fixed
impurities with scattering resulting in a Fermi distribution in
momentum space [37]; and where an impurity scatters on
phonons [38].

Turning this on its head, the precise way in which the current
of the impurity deviates from the Esaki-Tsu dependence
reveals information about the environment and impurity-
environment interaction. For example, the ability to excite
optical phonons in the environment at a single frequency
results in resonances in the current of an impurity at certain tilts
dependent on this frequency [38]. The interaction of impurities
with a superfluid in a lattice, which has a divergence in the
density of phonon states at the band edge, also causes peaks at
forcings related to fractions of the bandwidth [8].
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We now consider in which way properties of the environ-
ment manifest themselves in the current of the impurities,
approaching the problem using both the semiclassical and
Wannier-Stark pictures.

1. Scattering in momentum space

First, we use the semiclassical approach where the distri-
bution of impurities in quasimomentum space g(k) obeys the
Boltzmann equation [27],

% = @/dq[W(q,k)g(q) — Wik.qg)g®l, (4
A

which is valid for homogeneous systems of impurities in

the steady state and where W(q,k) is the rate of incoherent

scattering between quasimomenta g and k. The average

velocity of each impurity is then the expected value of the

group velocity of wave packets distributed according to g(k),

(v) = / dk gk, 5)

where the group velocity for a particular quasimomentum is
defined in Eq. (2). Several choices of scattering rates lead to
the motion of the impurity exhibiting exactly or approximately
an Esaki-Tsu dependence [31,35].

For small enough tilts, the quasimomentum will be a very
slowly changing quantity and hence, for weak interactions
with the environment, we may approximate the incoherent
scattering rates using Fermi’s golden rule as

2 A
W(gk) = =2 3 10k (ns | usl )1 05}

x 8(E,, — Eo, — 2J,[cosqa — coska]).

Here we have assumed the environment to be sufficiently large
and cold so that before scattering we may take it to be in the
ground state | 0) of energy Ey,. The result of the interaction of
the impurity with the environment, for which the Hamiltonian
is given by H,, is to scatter the environment to some excited
state | np,) with energy E,, .

Particularly important for our system is the case of
impurities coupled to a many-body environment, here the Bose
gas, via a density-density interaction. For low energies, the
interaction takes the explicit form

Ao =Uaw Y ala;blh;, 6)
i

where U, is its characteristic energy and 13j (l;i) is the creation
(annihilation) operator for a particle in the environment at
lattice site i. The corresponding quasimomentum scattering
rates are given by [39]

2w U?
W(g.k) = %S(g —k, — 2J,[cosqa — coskal), (7)

where L is the length of the system, S(g,w) is the zero-
temperature dynamic structure factor of the environment,

S(q,w) =3, 1{ns 1541 0p) [P8(E,, —

and p, is the Fourier transform of the particle density of the
environment. Hence the impurity current and, more directly,

th — ha)),
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the momentum distribution at small tilts are governed by the
dynamic structure factor of the environment.

2. Transitions between Wannier-Stark states

At larger lattice tilts, it is convenient to work in the basis of
Wannier-Stark states and to consider the incoherent transitions
between these. The dynamics of the impurities is described by
the master equation

dP(0) _

T = D Wi Py = Wy Pio)l,

J#

with the incoherent hopping rates W;;. The probability P;
that the impurity occupies Wannier-Stark states at site i
is normalized to ), P;(t) = 1. The corresponding average
velocity then reads

(v) =Zaid1;it(t).

i

Note that in an infinite homogeneous system the average
velocity would be (v) = Zi a(j —i)W;;. Again, for weak
coupling to the environment the transition rates W;; between
different Wannier-Stark states are given by Fermi’s golden rule
as

2n : -
Wij = == D 16 10y | Hap| 1 05)

np

X 8(En, — Eo, +[i — j1A). ®)

In this picture, negative differential current arises due to
the increasing localization of the Wannier-Stark states: as A
increases, the width of the Wannier-Stark states decreases as
1/A, resulting in a suppression of their overlaps and thus the
motion of the impurity.

Inserting the interaction Hamiltonian in Eq. (6) into Eq. (8),
we arrive at the environment correlation function,
_ 2nU 317 ’
h

x 8(E,, — Eo, + [i — j1A), )

Wij Y 1l Y Tem j (M Te-i(A)b}b|0y)
np 4

which determines the current at larger tilts. From this, we
immediately see two effects that we expect to be visible
in the impurity current. First, consider the case where the
environment has a gap G in its excitation spectrum such that
E,, — Eo, > G. This means that the delta function in Eq. (9)
will be zero unless A > G/(j — i) and hence the contributions
to the current due to hopping between Wannier-Stark states
shifted by ¢ sites will only be made at tilts above A = G/£.
Second, if the excitation spectrum of the environment has a
finite bandwidth such that there are no states above an energy
B, ie., E, — Eo, < B, then we expect £-site contributions
to the current to be suppressed at tilts above A = B//.
Hence the deviation of the dissipation process from the
relaxation-time approximation results in the dependence of
the impurity current on A exhibiting sharp features that clearly
reveal information about the environment; we can infer these
environmental properties by observing the impurities.
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C. Properties of the Bose gas environment

Our specific environment consists of a Bose gas trapped
in a horizontal (nontilted) optical lattice in which the bosons
are confined to move in the same single dimension as the
impurities. As for the impurities, we consider temperatures to
be low enough such that only the lowest Bloch band need be
considered. In such a case, the bosons are described by the
Bose-Hubbard model [40],

A At A U, Afata A
Hb = —Jb ijbj + szbjbjbzbz )
(i) i

where the operator 13} (b;) creates (annihilates) a boson in
a Wannier state localized at site i and the lattice parameter
a is the same as that for the impurities. J, and U, are
parameters that determine the hopping between neighboring
sites and the on-site interaction, respectively, and can be tuned
experimentally by adjusting the laser parameters or using
Feshbach resonances [2,40].

Let us briefly review some properties of the Bose gas, which
we will use to interpret our findings. In the superfluid regime
(Up/Jp < 1), the Bose gas supports excitations in the form
of Bogoliubov phonons, whose excitation spectrum is given
by [41]

hor = v éer(er + 2Upny), (10a)
e = 2J,(1 — coska), (10b)

where ny, is the ratio of bosons to lattice sites. From this, we
find that the density of states (dwy /dk)~" diverges at the upper
edge of the band with bandwidth B = 4J,/1 + Upny/2J,.
In the opposite limit U,/J, — oo, the bosons map to the
same number of noninteracting identical fermions with energy
spectrum &;. Hence, in this regime, the Bose gas supports
particle-hole excitations for n, < 1 within the single band of
bandwidth B = 4J,,.

For the commensurately filled case of n, = 1, an increasing
interaction strength U,/J, takes the gas through a contin-
uous superfluid to Mott insulator transition, which occurs at
Up/Jp, = 3.37 [42,43] in the thermodynamic limit. A principal
signature of this transition is the appearance of a gapped
excitation spectrum suppressing the low-energy response.
Deep in the Mott insulator regime (U,/J, > 1), the gap in
the excitation spectrum is G >~ Uj,.

D. Detailed model and measuring procedure

To summarize, the model for our system is given by the
impurity Hamiltonian ﬁa, the Bose-Hubbard model I:Ih, and
the density-density interaction H,;, as shown schematically
in Fig. 1. More precisely, we consider an M-site system
with box boundary conditions or a suitably flat bottomed
potential (see [44] for an example of a box trap realized in an
experiment). As argued in [8], we expect our system to share
its bulk behavior with the experimentally important case of an
additional harmonic trap, provided that the trap is sufficiently
shallow. A realization of the model may also draw on recent
experimental successes in trapping atoms in species-specific
optical lattices [11,45,46].
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The system is the same as that considered in [4], where
for low tilts A /J, < 1 they used that the relevant correlation
functions of the Bose gas decay quickly enough to allow the
dynamics of the impurity to be described by a Markovian
master equation. For the same system, Ref. [47] uses the
chaotic system approach along with Kubo’s formalism to
derive the current in the ohmic region Atr/h < 1. We
also considered this system in [8] focusing on a superfluid
environment (U / Jp, < 1), in which the impurity and Bose gas
together mimicked the electron-phonon interaction. However,
the control and flexibility of an optical lattice setup allows
for the creation of a strongly interacting Bose gas (Uy/J, >
1), the regime we explore in this paper.

To measure the impurity current, we propose the following
procedure. The N bosons are cooled to their ground state
with the impurities fixed in highly localized states at their
initial locations (for example, using a tight optical trap). The
system reaches equilibrium and the presence of the impurities
inevitably leads to density variations in the initial state of the
bosons as compared to the ground state of the Bose-Hubbard
Hamiltonian. At time ¢ = 0, the impurities are released, their
lattice is tilted, and the system is left to evolve. Later, a time-of-
flight measurement [2] or in sifu image [48,49] is taken.! Note
that alternative preparations of the initial state we considered,
e.g., preparing the bosons in equilibrium without the impurities
and then adding the impurities at + = 0, produced the same
qualitative results despite this being a more energetic initial
state.

For our numerical simulations, we consider the complete
two-species system governed by the Hamiltonian H, + H), +
H,». The simulations of the full many-body quantum dynamics
at zero temperature are performed using the TEBD algorithm.
This is a matrix product based method extending the powerful
density matrix renormalization group to real time evolution.
We present an overview of the method in the Appendix along
with the algorithm parameters used.

We consider a single impurity initially localized in a
Wannier state at the center of the lattice. We evolve the system
up to tgqm ~ Mh/4J,, the time it approximately takes the
disturbances in the bath caused by the impurity to reach the
boundaries of the system, thus minimizing finite-size effects.
This time limit is determined by the maximum group velocity
v, of the bosons in the band, which can be derived in both the
superfluid U,/J, — 0 and strongly interacting U,/J, — 00
limits by differentiating hw; and & [Egs. (10)], respectively,
with respect to k. The time taken for disturbances in the Bose
gas to travel a distance Ma/2 to the edge of the system is then
Ma/2v,, from which the previous expression for #y, follows.
We choose to hold the interaction between the impurity and
the bosons constant at U,/ J;, = 0.5 and the impurity hopping
at J,/Jp = 0.6. These values are chosen to reflect the behavior
we observed over a wide range. Notably, they are outside the
perturbative regime used in Sec. II, yet still lead to the predicted
effects.

'Over multiple realizations, this allows the calculation of the
elements of the reduced single-particle density matrix in the Wannier
basis (61,-T a;) or its diagonal, the density distribution.
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FIG. 3. (Color online) Transport of an impurity through a bosonic
bath. An example of the evolution of the impurity and boson densities
for the case A/J, =0.3, Uy/J, =2, M =101, and N = 50. The
color map in the xy plane shows the expected impurity density at
each lattice site (71, ;), and similarly for the surface plot and boson
density (71,,;).

III. SIMULATIONS OF IMPURITY PROPAGATION

As a demonstration of the system and numerical method,
we show the evolution of both the impurity and bosons in
Fig. 3 for an intermediate boson-boson interaction strength
Up/Jp, = 2. The impurity undergoes Bloch oscillations as it
would if the bosons were not present—see Fig. 2(a)—however,
the nonzero impurity-boson interactions cause the impurity to
dissipate energy into the Bose gas and drift down the lattice.
The same interactions also create density fluctuations in the
Bose gas, which spread out and reach the system boundary
near the end of the simulation.

Examining the system for a range of tilts A allows us
to find the dependence of impurity displacement (X,) =
Y ;alio —i){Ai,;) on A, where i is the site at which the
impurity was initially localized. Using this, we can calculate
the average impurity velocity (v) = (X,)/%im. From detailed
examination of our simulations, we find that the displacement
does not increase just linearly in time but oscillates slightly at
the frequency of the Bloch oscillations (as would be observed
in an experiment). For all but the lowest tilts, the durations of
evolutions considered is sufficient that by 7, the displacement
has averaged over enough Bloch oscillations that (v) gives a
good representation of the long-time average drift.

A. Superfluid and Tonks-Girardeau regimes

Our starting point is the propagation of the impurity through
a Bose gas in the superfluid regime with incommensurate
filling. A typical dependence of the displacement of the
impurity (X,) on the lattice tilt A is given by the red circles
in Fig. 4(a). This dependence has the characteristic features
of the Esaki-Tsu result, shown in Fig. 2(b), namely an ohmic
region followed by negative differential conductance [4,8,31].
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FIG. 4. (Color online) Determining the bandwidth and gap from
the dependence of displacement on tilt. (a) The dependence of the
displacement of the impurity (£,) at g, as a function of tilt A for
three regimes of the Bose gas: the superfluid regime U,/J, = 0.1
with N = 50, M = 101 (SF: displacement scaled down by a factor
of 0.1); the Tonks-Girardeau limit U, /J, — oo with N = 150,M =
151 (TG); and the Mott insulating regime U,/ J, = 10with N = M =
101 (MI: displacement scaled up by a factor of 100). (b) The same
quantity is plotted for several bosonic systems in the Tonks-Girardeau
limit, demonstrating that the qualitative shape and the positions of the
bandwidth suppressions are independent of the filling (so long as it
is incommensurate) of the Bose gas.

However, a phenomenon that is specific to the case where
the bosons feel a lattice is the occurrence of resonances
in the vicinity of the lattice tilts A =4J,/¢ for integer
£ > 1. As shown in [8], we expect resonances at tilts A =

@Jp/0)/1 4+ Upny/2J, corresponding to a divergence in the
density of phonon states at the upper band edge. Moreover, the

PHYSICAL REVIEW A 84, 023617 (2011)

10"

ba) /@

N3

max(

1074 I I 1 1 1 1 I I I
0 Uy/Jy 10

FIG. 5. (Color online) Suppression of average drift in the strongly
interacting regimes. Here we show the peak displacement (maximized
over all tilts) as a function of interaction strength U,/J, for
commensurate and incommensurate fillings of a 101-site bosonic
lattice.

suppression of the propagation of the impurity for A 2 4.J,/¢
reflects the sudden inability of the impurity to move ¢ sites
down the lattice by dissipating the energy £ A into the Bose gas
through a single phonon process. Hence the superfluid Bose
gas is a prime example of how the value of the bandwidth of its
excitation spectrum B manifests itself in the dependence of the
current of the impurity. Note that the small fluctuations in the
dependence of drift on tilt at small tilts in Fig. 4(a) are a result
of the finite time of our simulations and would be smoothed
out by considering longer times. The same would be true in an
experimental realization.

One expects to see the bandwidth dependent features even
with strong boson-boson interactions; the reasoning used to
predict current dropoffs after A = B/¢ in Sec. II assumes
the bosonic system is susceptible to low-energy excitations,
which is the case for incommensurately filled systems of any
interaction strength [41]. Indeed, we have simulated M = 25
site systems over a range of boson-boson interaction strengths
Up/Jp (not shown here) and found no qualitative change in
the behavior of the motion. However, as shown in Fig. 5,
the average displacement of the impurity decreases with
increasing interaction strength.

In the extreme case of infinitely strong interactions
Uy/Jp, — o0, i.e., in the Tonks-Girardeau limit, the situation
simplifies considerably. The bosons map to identical non-
interacting fermions with bandwidth B = 4J,, and so the
creation of particle holes at the Fermi surface provides low-
energy excitations. Accordingly, we expect a large impurity
displacement at low lattice tilts and sharp drops in propagation
for tilts above integer divisions of the bandwidth 4J,/¢, in
agreement with Fig. 4(a).

We find the same behavior in the Tonks-Girardeau limit for
many different bosonic filling factors, as shown in Fig. 4(b).
The half-filled bosonic system gives rise to a peak impurity

023617-6



IMPURITY TRANSPORT THROUGH A STRONGLY ...

current that is an order of magnitude above that for the cases
where the bosonic lattice is filled by a single or M — 1 bosons.
This can be attributed to there being a greater number of
excitations available in the half-filled bosonic system; using
the fermionic mapping, we find there are approximately M?/4
single quasiparticle excitations available in the half-filled case
as compared to M — 1, when there is only one boson or M — 1
present. This reasoning suggests that the peak displacement
may be used as a measure of the filling of the bosonic
system.

B. Superfluid to Mott insulator transition

We now turn to the case of a commensurately filled Bose
gas and the continuous superfluid to Mott insulator transition.
Since motion of the impurity through the superfluid at low
lattice tilts is a result of the ability of the bosons to accept
low-energy excitations, we expect propagation to be highly
suppressed in the Mott insulator phase, which has a gap in the
excitation spectrum of G >~ Uy,

The effect of this signature on the propagation can be seen in
Fig. 4(a), where the displacement has a peak at A ~ U,,. There
is also a second peak at A = U, /2 resulting from second-order
processes involving two lattice-site jumps, similar to what is
seen using Bragg spectroscopy in [19] and tilting the bosonic
lattice in [21]. As in those cases, the nonzero J, results
in a broadening of the peaks. This behavior confirms the
predictions in Sec. II for the transport of an impurity in a
gapped environment. This drastic change from the behavior
predicted by Esaki and Tsu also tells us that the relaxation-time
approximation is not at all valid for the interaction of an
impurity with a Mott insulator.

For small tilts, the motion of the impurity caused by
low-frequency excitations is completely suppressed; at large
enough U,/Jp, the ground state is well approximated by a
unit-filled Fock state. In such a regime, the impurity Bloch
oscillates as it has no means of dissipating energy into the Bose
gas; hence there is no net current across the lattice. As a result,
we get a startlingly clear signature of the superfluid to Mott
insulator transition in our dynamics in the form of a quench of
more than four orders of magnitude in the propagation of the
impurity. This is shown in Fig. 5.

As well as the ability to probe the superfluid to Mott
insulator transition using the impurity, this quench provides
a nondestructive way of establishing whether the bosonic
system is commensurately filled or not. If our system is
strongly interacting U,/J, 2 4, there are several orders of
magnitude separating the currents for an impurity in the
commensurate and incommensurate cases, shown in Fig. 5.
Many implementations of quantum information processing
involve creating a commensurately filled system. Using an
impurity as a probe is one way in which this commensurability
could be checked nondestructively.

C. Quasimomentum distribution of the impurity

Alternatively, one can gain information about the impurity
by looking at its quasimomentum distribution, which is directly
accessible in time-of-flight experiments. With the impurity
prepared in a Wannier state, each quasimomentum state is

PHYSICAL REVIEW A 84, 023617 (2011)

FIG. 6. (Color online) Quasimomentum distribution of the impu-
rity after traveling through the Bose gas. Here A /J, = 0.063,M =
101 and 71, , is the number operator for an impurity quasimomentum
of 2nrp/aM. (a) The momentum distribution of the impurity at
tym for a range of interaction strengths U,/J, and incommensurate
filling N = 50. (b) The same as (a), but for commensurate filling
N =101.

equally occupied. However, we expect interactions with the
Bose gas to alter this momentum distribution, resulting in
the drift seen in Sec. III. The current (v) can be calcu-
lated from the distribution in the semiclassical picture using
Eq. (9).

As can be seen in Figs. 6(a) and 6(b), the result of
interactions with the Bose gas is the enhancement of the
distribution near the center of the Brillouin zone. Moreover,
the interaction gives rise to an asymmetry with the distribution
skewed toward negative quasimomentum, necessary for the
impurity to have a current.

Our simulations show that a well-defined quasimomentum
emerges in the superfluid regime by the time fg,, supporting
the accuracy of the semiclassical approximation. However, for
stronger bosonic interaction strengths, the scattering results in
a wide distribution with a negative quasimomentum shoulder.
By U,/Jp = 10, the distribution already approximates its
Uy/Jpy — oo value. In the case of the Mott insulating regime
in Fig. 6(b), it is unchanged from its initially flat distribution.
Once again, the momentum distribution of the impurity
provides a signature of the transition (crossover) between the
superfluid and Mott insulator (Tonks-Girardeau) regimes.

The difference in steady-state quasimomentum distribution
is related to the structure factor of the Bose gas, cf. Egs. (4)
and (7), but a quantitative comparison with our simulations is
difficult since, in general, they do not reach the steady state.
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Since this limitation is due to the finite time of our simulations,
it would also restrict an experimental realization.

D. Reduced density matrix of the impurity

So far we have focused on the evolution of the spatial
and quasimomentum distributions of the impurity; however,
more information is contained in its reduced density matrix
Dq- First, evaluating the elements of the density matrix in the

Wannier basis (&iT a;) may tell us more about the effect of
boson-impurity interactions on the impurity. Another quantity
that can be calculated from the reduced density matrix is the
purity Tr(,ég), which takes the maximal value 1 if g, describes
a pure state and decreases for increasingly mixed states. The
initial state of the total system is a product of pure states for the
impurity and bosons, and since we consider coherent evolution
it remains pure. However, through interactions of the impurity
with the Bose gas, the two subsystems are entangled, resulting
in a loss of purity of the impurity. Our bosonic environment
is sufficiently large that for most parameter values revivals are
not observed and so we use purity to quantify the decoherence
of the impurity.

To demonstrate the behavior of the density matrix p,
for a M = 101 site system, we have plotted in Figs. 7(a)
and 7(b) the absolute values of its Wannier basis elements
at t;, for both intermediate and weak bosonic interaction
strengths, respectively (the elements of g, in the quasimo-
mentum basis were calculated for M =7 sites in [47]).
In Fig. 7(a), we observe a symmetric coherent interference
pattern in the off-diagonal elements as the impurity undergoes
Bloch oscillations. Additionally, density-density interactions
with the bosons result in a slight decay of the off-diagonal
coherences and an asymmetric distribution along the diagonal
with a higher occupancy of the lower-energy lattice sites.
This decoherence is much more pronounced for a superfluid
environment, as shown in Fig. 7(b), and the resulting density
matrix is nearly diagonal.

To make this relationship between the decoherence of
the impurity and the internal interaction strength of the
environment clearer, Fig. 7(c) shows the purity of the reduced
density matrix of the impurity as a function of both tilt
A and interaction strength U,/J,. As can be seen in the
figure, the coherence of the impurity is a clear signature of
the crossover between the superfluid and Tonks-Girardeau
regimes. Moreover, the values of U,/J, at which the most
significant changes occur is around the same values where
the transition occurs in a commensurate Bose gas. We also
calculated the entanglement entropy between the impurity
and Bose gas (not shown here), which showed very similar
behavior to purity. If the Bose gas is commensurately filled,
the transition between weak and strong interaction strengths
makes an even clearer impact on the purity as deep in the Mott
insulator phase the impurity does not become at all entangled
with the Bose gas.

Finally, comparing Figs. 7(c) and 3(d), we find that the
regimes of high transport coincide with those of the smallest
purity; the very same scattering processes that lead to the
propagation of the impurity along the lattice also cause
its decoherence. This relationship between decoherence and
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FIG. 7. (Color online) Decoherence of an impurity traveling
through an incommensurately filled system N = 50,M = 101. (a)
Absolute values of the elements of the reduced density matrix for the
impurity |(&j&j)| with U,/J, = 2 and A/J, = 0.1, calculated at #,.
(b) The same as (a), but for U,/J, = 0.1. (c) Also at ty, we have
plotted the purity of the density matrix Tr(52) as a function of tilt and
interaction strength.

transport of the impurity was also found in the case where the
impurity undergoes spontaneous emission [50].

IV. CONCLUSIONS

We performed fully quantum many-body simulations of
large (100 or more sites) two-species systems using the
TEBD algorithm, simulating the one-dimensional motion of
an impurity confined to a tilted optical lattice through a Bose
lattice gas. We discussed the Esaki-Tsu dependence of the
current of the impurity on tilt and provided evidence that this
shape is qualitatively obeyed by an impurity traveling through
an incommensurately filled bosonic system of any interaction
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strength including the Tonks-Girardeau limit. Contrasting this,
a very different dependence was found in the Mott insulating
regime.

We discussed how deviations to the Esaki-Tsu shape depend
on properties of the Bose gas. Information about the gas
can then be extracted without needing to measure the bosons
themselves, i.e., nondestructively. In particular, we discussed
how the impurity could be used to probe the commensurateness
of the system, and obtain the gap and bandwidth of its
excitation spectrum.

Following this, we analyzed the transport of the impurity
by considering its momentum distribution, showing that the
semiclassical picture of an impurity of well-defined quasimo-
mentum emerges after a short time for bosons in the superfluid
regime.
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APPENDIX: TIME-EVOLVING BLOCK DECIMATION

The TEBD algorithm efficiently simulates both the uni-
tary and imaginary time evolution (according to et
e~ Hi, respectively) of quantum systems comprising a one-
dimensional lattice of subsAystems, each with a finite number
of configurations, where H is composed of nearest-neighbor

and

PHYSICAL REVIEW A 84, 023617 (2011)

terms [14,15]. It does this by storing the state of a system as
a matrix product state (MPS) of dimension x. In general, for
an exact representation of the state vector, the dimension x
and hence the resources required for the simulation must grow
exponentially with the size of the lattice. However, for ground
and low-lying excited states of one-dimensional systems, near-
exact accuracy can be obtained using a much smaller x that
does not grow exponentially with system size [51,52]. With
this being the case and using a Suzuki-Trotter decomposition of
the operator e ~/#% (without the i for imaginary time evolution)
[53], the evolution may be simulated by the application of
a polynomial number of two-site gates, each followed by a
recompression into MPS form, which can be done efficiently.
For details, we refer the reader to [14,15,54,55].

Our system, described in Sec. II, is of this type, provided
we restrict the occupancy of the bosonic lattice to a finite
number. To realize our scheme, we first used TEBD to find
the ground state of the bosonic part of the system, with an
on-site potential U,;, added at each site corresponding to an
impurity. The initial state of the whole system was then the
tensor product of this bosonic state with the initial state of the
impurity, which consists of Fock states with occupancies 0 or
1. Next, TEBD was used to simulate the evolution of this state
under the full Hamiltonian H = H, + H, + H,,. Expectation
values, such as bosonic and impurity densities, were easily
extracted from the numerics due to the efficient contractibility
of an MPS.

For our simulations, we used a maximum boson lattice-
site occupancy of 4 and the largest MPS dimension we used
was x = 120. Our time step was 8t = 5 x 10734/ J,. These
parameters were sufficient for the time-evolution considered
here; we found that increasing x and decreasing 8¢ resulted in
no significant changes to the observables computed.
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