PHYSICAL REVIEW A 84, 023614 (2011)

Tailored particle current in an optical lattice by a weak time-symmetric harmonic potential
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Quantum ratchets exhibit asymptotic currents when driven by a time-periodic potential of zero mean if the
proper spatiotemporal symmetries are broken. Recently, there has been debate on whether directed currents may
arise for potentials which do not break these symmetries. We show here that in the presence of degeneracies in
the quasienergy spectrum, long-lasting directed currents can be induced, even if the time-reversal symmetry is
not broken. Our model can be realized with ultracold atoms in optical lattices in the tight-binding regime, and
we show that the time scale of the average current can be controlled by extremely weak fields.
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I. INTRODUCTION

Brownian motors or ratchets are spatially periodic systems
with noise and/or dissipation in which a directed current of
particles can emerge from an unbiased zero-mean external
force [1,2]. Models for biological engines that transform
chemical energy into unidirectional mechanical motion behave
as Brownian motors [3]. Extensive studies of the ratchet effect
in classical systems [4] stated the relation between symmetry-
breaking potentials and the existence of the asymptotic current
[5]. For a system driven by a flashing potential of the form
V(x,t) = V.(x)V:(t) with V;(t) = V;(t + T) of zero mean and
Vi(x) = Vi(x + L,) there are up to four different symmetries
in the classical system that must be broken in order to
generate an asymptotic current [6]. A ratchet current arises
if one breaks the relevant spatiotemporal symmetries, here
denoted by Sy, and the time-reversal symmetry S; : (x,p,t) —
(x,—p,—t + 2t,). Lately there has been increasing interest in
the coherent ratchet effect in Hamiltonian quantum systems
[7]. It has been shown that the same symmetry requirements
apply to them [6]; that is, if the Hamiltonian preserves any
of the symmetries, no asymptotic current is possible. Note
that this strict symmetry conditions may not be required for
systems with continuous quasienergy spectrum [8].

Experimentally, directed current generation was first stud-
ied in solid-state devices, quantum dots, and Josephson
junctions [9]. More recently, the precise control achievable
in cold atom experiments opened up the possibility of
realizing directed atomic currents for Hamiltonian systems
with controllable or no dissipation in the time scale of the
measurements [10—13]. Recently, a very clean realization of
a coherent quantum ratchet was experimentally demonstrated
in a Bose-Einstein condensate exposed to a sawtooth potential
realized with an optical lattice, which was periodically mod-
ulated in time [14]. Directed transport of atoms was observed
when the driving lattice potential broke the spatiotemporal
symmetries. The current oscillations and the dependence of
the current on the initial time and the resonant frequencies [15]
were measured, demonstrating the quantum character of the
ratchet.

Although the generation of an asymptotic directed current
needs the breaking of the symmetries S, and S, simultaneously
for unbiased potentials, there has been a recent discussion
on the possibility of obtaining long-lasting directed currents
without it [16-20]. Many-body effects [16,20] with the proper

1050-2947/2011/84(2)/023614(5)

023614-1

PACS number(s): 03.75.Kk, 05.60.Gg, 37.10.Jk, 67.85.Hj

choice of the initial state [16] or an accidental degeneracy in
the quasienergy spectrum [19] may result in a directed current
without breaking the time-reversal symmetry. In contrast
to previous works, we show here that one can exploit a
quasidegeneracy, present for a wide range of parameters, in
the quasienergy spectrum in order to generate a long-lasting
directed average current in a weakly driven system where
we can achieve full control over its magnitude and time
scale.

Previous work on quantum accelerators [8] has shown that
in the presence of quantum resonances one can obtain large
currents without breaking the time-reversal symmetry using
a 8-kicked potential in time. Essentially, for particular values
of the Hamiltonian parameters the spectrum of the Floquet
operator becomes continuous due to quantum resonances.
Under such circumstances one can obtain a linear increase
in momentum with time which has been claimed as a true
ratchet effect driven by resonances instead of noise [13,21].
However, there is no formal proof that the dynamics show
unbounded acceleration for times longer that those that are
computed [22]. Nonetheless, a significant difference between
quantum accelerator ratchets and our system is the existence
of a constant component in the § potential.

II. THE CURRENT IN THE FLOQUET FORMALISM

One useful way of treating time-periodic quantum Hamil-
tonians, H(¢) = H(t + T), is the Floquet formalism [23]. The
cyclic states | ¢;(r + T)) = e "*iT| ¢;(1)) are the eigenstates
of the evolution operator for one period while the quasienergies
¢; are the eigenvalues. The solution to the time-dependent
Schrodinger equation H(z)| ¥ (¢)) = ihd| ¥ (t))/0t can be
spanned in the cyclic eigenbasis (i = 1)

W) = e " cjl¢(t)), D
i

where ¢; = (¢;(0)|v(0)) and the Floquet spectrum is assumed
to be discrete based on our previous experience in related
problems [24]. The average current generated during n cycles
is givenby Z(t =nT) = 13" | T, with

1 mT
L= /( WOl O, @)

m—1)T
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where p is the momentum operator. Note that due to the
periodicity of the cyclic states the average current during n
cycles can be simplified in terms of integrals of the cyclic
states during the first period,

—inT(ej—¢jr)

3)

_ giT(ej —&y)

1 1—e
I(nT) = - Zc,c}(p),j, .
Jd'

where (p);; = %fOT(@(t) |p|qﬁjr(t))e*"’(?f/*sf)dt. In gen-
eral, a sum of oscillatory off-diagonal terms with arbitrary
exponents decays rapidly [25], and for long times only the
diagonal terms in Eq. (3) remain. If both S, and S; are broken,
the cyclic eigenstates are no longer desymmetrize and carry net
momentum, i.e., (p);; # 0 [6]. In such case, the asymptotic
average current at n — 00 is nonzero Z(00) = Zj |cj|2(p)jj.
Correspondingly, if either of the relevant symmetries is not
broken, (p);; =0 and thus Z(co) = 0. Note, however, that
the off-diagonal terms in Eq. (3) become relevant if the initial
state projects mainly into degenerate or quasidegenerate cyclic
states with (p) ;;» # 0. If one induces a resonance between the
proper quasienergy states at low driving, the average current
contains only a small number of terms in the sum and the
exponents can be very small, leading to very slow oscillations
whose period can be fitted by tuning the driving. In order to
maximize the average current, one should then optimize both
the projection into the initial states c;c7, and the (p);;. We
illustrate this here and show that it is possible to populate a high
average momentum superposition of cyclic eigenstates for
times which can be tuned up to the lifetime of the experiment.

III. THE MODEL

We consider a driven system of noninteracting bosons with
H(t) = Hy+ V(¢) in a deep optical lattice of L sites with
periodic boundary conditions [26] and

L
Hy=—J Y I+ 1]+ |1+ 1], )

=1
l . ([ M4rl
+ o sin 2 +o)|,

. . (M2
V({,t) = V sin(wt) [sm (
%)

with M integer, where J is the tunneling probability and
|l) represents the state of a boson located on site /. The
eigenenergies of Hy are Ey = —2J cos(2wk/L) with integer
k = [—kmax,kmax] Where kg.x = (L — 1)/2 for L odd and
the corresponding momentum eigenvectors (/| k) = ¢’ = /L
are degenerate for +k. For convenience, one can intro-
duce the basis (/| sy) = +/2/Lcos(k2xl/L) and (l|ay) =
/2/L sin(k2ml/L), which are symmetric or antisymmetric
under the inversion of k. We add a time and spatially modulated
periodic function V (/,#) with frequency w = 2w /T tuned to
the M-dependent resonant condition [17,27]

2w = E2M — E() = 2][1 — COS(47TM/L)] (6)

and consider the zero momentum | 0) as initial state. Note that
in contrast to [17,27] we add the parameters M and ¢ to the
driving potential in Eq. (5). Parameter M < kp,x/2 allows for
the coupling of the initial state to very high momentum states
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| M) and | 2M ), and the parameter ¢, key to our model, allows
for the coupling between the | s;) and | a;) basis states.

Our choice of a two-harmonic spatial potential times a
monochromatic time-dependent potential implies that sym-
metry S; (labelled S, in [6]) is not broken for ¢, = 7/(2w).
Therefore (p);; = 0 and no asymptotic current is possible for
our system. The average current generated after n cycles arises
only from crossed terms between the cyclic states. Our aim
is to maximize the average current during any experimental
time f,. The key ingredients are to keep few terms in the
sum in Eq. (3), with small exponents and relevant prefactors.
The two first are achieved by tuning the resonance in Eq. (6)
with weak driving V/J < 1. We show that the prefactors can
be successfully optimized if the quasiresonant cyclic states
that have nonzero projection into the initial zero-momentum
state mix the symmetric and antisymmetric momentum states,
which is obtained for ¢ # /5 for [ integer. For ¢ =[x,
accidental degeneracies could in principle allow us to obtain
a small nonasymptotic current for some specific parameters
and a particular value of the coupling [19]. In contrast, we
show that for ¢ # I7r /2 one can tailor an interference between
two paths of the same perturbative order and find optimal
parameters M, ¢, and « for any L and J set by Hj to obtain
an average current that can be tuned up to near optimal value
I(t,) =~ M = kmax /4, for atime interval [0,7.], where #, can be
independently tuned by adjusting the driving strength V' /J.

IV. RESULTS

We show in Fig. 1(a) the average current 7 and the
oscillating average current per cycle Z,, as a function of the
number of cycles. We note that the average current achieves
a maximum M in recoil units and, as expected, vanishes for
long times. We observe in Fig. 1(b) that the current changes
direction with a sign change in ¢ and ¢, scales with V ~2w. For
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FIG. 1. (Color online) (a) Thick solid line shows the average
current, Z(t), in Eq. (3), in recoil units (kycoy = 27t/L) for an initial
zero-momentum state. Thin solid line is the current average per cycle
7, in Eq. (2) obtained with a numerical integration of the Schrodinger
equation for M =5, L =41, J/w=1.0398, V/w =0.1, ¢/7 =
0.2579, and o = 1.2. The driving frequency  is tuned to the
resonance condition in Eq. (6). Dashed line corresponds to the current
of the effective three-level system in Egs. (7) and (8). The average
current attains a maximum M. (b) Numerical calculation of Z(¢) for
same parameters except for solid line V/w = 0.1, ¢/m = 0.2579;
dashed line V/w = 10734/10, ¢ /7 = —0.2579; and dot-dashed line
V/w =107, ¢/m =0.2579. Note that the time of peak average
current scales with V2.
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the weak driving strength used here, the current is nearly zero
(Z < 1073) for ¢ = 0.

A. Resonant three-level model

The previous results are obtained from a full numerical
calculation. In order to further understand the effect, we follow
the methodology of [27] and develop an approximate pertur-
bative model. We find that for our potential this simplified
model also explains the main features and gives very accurate
results for low driving. Close to the resonance Eq. (6) and for
weak driving V/J < 1, the dynamics of the system involve
only three Floquet basis states {| s237,2),] 0,0),| azpr,2)}, where
| j) = | k,n) with {t| n) = e~""*', We apply time-independent
perturbation theory in Floquet space, using the 7 -matrix ap-
proach 7 (¢) = V + VGo(€)T [28], where Go(e) = ) . LG

J e—gl

J
and 8? = Ey — nw. Around the ground-state quasienergy € =
58, the first nonzero term connecting the three states is given by

the second order in the expansion 7(88) ~ VGO(sg)V, which
reduces to

. Sla,d)  Qu  um(ad)
T~—| Qu @ 0 - D
Qo) 0 §(a,)

A sketch of the relevant processes is depicted in Fig. 2, and the
exact values of the matrix elements, inverse of quasienergy
differences which depend on M/L, can be found in the
appendix. The energy shifts are § and the couplings €2 that
correspond to each part of the potential in Eq. (5) are indicated
by the subindex M or 2M. Remarkably, 2,5 o o? sin(2¢) and
thus the coupling between the symmetric and antisymmetric
basis states requires ¢ 7% 0. The other effect of ¢ is to
bring those states closer in energy §° — 6 o a? cos(2¢). The
optimal current is obtained when the cyclic states (related to
eigenvectors of the above matrix) mix the three basis states
on an equal footing, corresponding to the two second-order
processes sketched in Fig. 2 being of the same order. Because
of the structure of the spectrum, this optimal mixing can be
reached for M < kpax/4. Then all the matrix elements in

[syp02>

[5°-6°](4) ’

|a,.2>

|0,0>

FIG. 2. (Color online) Sketch of the second-order process in
Eq. (7) that takes place for weak coupling V/J < 1 between the three
resonant Floquet states. Dashed horizontal line shows the resonance
quasienergy for zero driving strength and § indicates the quasienergy
shifts induced by the potential in Eq. (5). Arrows represent the
couplings €2 between the Floquet basis states induced by the driving.
The optimal current shown in Fig. 1 is obtained when the mixing
between the symmetric and antisymmetric states is maximized and
both couplings in this diagram have the same weight.
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FIG. 3. (Color online) Left panel: Amplitude C/4M of the current
in Eq. (8) for different values of the potential parameters ¢ and « for
an initial zero-momentum state and L =41, M =5, J/w = 1.0398.
Right panel: Eigenenergies of the effective 7 matrix in Eq. (7) in
units of V2/(2w) as a function of ¢ for « = 1.2. For fixed values ¢
and « the average current per cycle in Eq. (8) is a sum of sinusoidals
with an amplitude C shown in the left panel and frequencies given by
the quasienergy differences.

Eq. (7) are of order O(1/w) and the quasienergies &; >~ V2w,
leading to the time scale of the dynamics shown in Fig. 1(b).

For an initial state | ¥(0)) = |0), the average current at
cycle m after evolution with the effective Hamiltonian Eq. (7)
reduces to a sum of three oscillatory terms with different
frequencies and the same weight,

T, = Cla,¢) Y _sin(mT Ae;j), (8)
i<J'

where C(O(,(f)) = 4iCTC2<p)12 with p = 2(| S2M><a2M| +
| @apr) (52 |) in the reduced basis and Ag;r := (— 1)/ (¢; —
€jr). Once the prefactors cjc, are optimized for any given
M < kmax /4, the current is linear with M. Thus, we can set
Moy, as the closest integer to kpmax/4 and obtain a robust
near-optimum value for the integrated current of Z >~ M. As
shown in Fig. 1 (dashed line), the three-mode approximation
in Eq. (8) fits perfectly the exact numerical results.

We show the current amplitude C in the left panel of Fig. 3
for different parameters o and ¢. As explained above, it attains
its maximum at oy > 1.2 when both terms of the driving
potential have the same weight; it is periodic in ¢ with
periodicity and has vanishing values for ¢ = [mn/2 with [
integer. For ¢op 2 £7/4 one can see in the right panel of
Fig. 3 that the quasienergies become equidistant, and thus
there is only one relevant energy scale Aeg, = 0.205V?/w
in the sum in Eq. (8) while the other sinusoidals oscillate
with half this frequency. One can then average Z, over
different periods to obtain Z, which achieves its maximum

0 e B
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T

FIG. 4. (Color online) Upper panel: Real (thick bar) and imagi-
nary part (thin bar) of the {(—2M |,(0|,(2M |}| ¥ (¢)) att = 0 and at
the times showed by vertical lines in the lower panel. Lower panel:
Average current per cycle Z,, /M in recoil units and average tunneling
energy per cycle (dashed line) in units of 1/w as a function of time.
Same parameters as in Fig. 1(a).
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FIG. 5. (Color online) Average current in recoil units in Eq. (3)
as a function of time for an initial zero-momentum state. Parameters
M=5, L=41, J=1.0398, ¢/7 =0.2579, and o = 1.2. The
dashed line corresponds to V = 0.2 and w = 1.01, the thick line cor-
responds to V = 0.5 and w = 1, and the dash-dotted line corresponds
to V = 0.2 and @ = 1 with an initial state (k|1 (0)) ~ exp(—k?/1.5%).

I(te = n.T) =~ M after n. = 1.81(V /w)~? cycles as shown in
Fig. 1(b).

B. State engineering and robustness of the method

In the context of cold atoms, not only the generation of
a current from an initial zero-momentum state but also the
control of the quantum state of the system may be of interest.
We plot in Fig. 4 the particle state in the momentum basis,
the average current per cycle, and the average kinetic energy

fOT dt{Hp)/T. We observe that the zero-momentum state can
be converted into an almost pure momentum state |+2M).
One could then switch off the driving, thus breaking the
time-reversal symmetry S;, and use this scheme to generate
an asymptotic current. This is an example of the high
controllability of our system.

Finally, let us analyze the feasibility of the model. We can
summarize our findings in a simple recipe. Hy sets the energy
scale J and the length L of the system. We can obtain a
final average current Z of nearly (L — 1)/8 in recoil units for
a given time interval [0,z.] if one tunes a driving potential
in Eq. (5) with parameters @ from Eq. (6), Mqpi, 0topt, @opt
(defined above), and V = \/11.371[1 — cos(4m Mope/ L)1/ te
with the constraint that V//J < 1. We show in Fig. 3 that small
changes in @ and ¢ around optimal values only slightly affect
the current. Smaller M would reduce the maximum average
current attained and require adjustment of the resonance
condition in Eq. (6). Thus, the only actual requirements of
our model are that the system is tuned to resonance and that
the driving field is weakly coupled. To show the robustness
of the method, we plot in Fig. 5 the average current when
the system is not perfectly tuned to resonance and when
the driving field is stronger. We find that couplings up to
V /w = 0.5 and errors of 1% in the resonant frequency still give
rise to high particle currents. Note that due to the resonance

PHYSICAL REVIEW A 84, 023614 (2011)

condition at low driving the effect is highly selective. If the
initial state is a narrow wave packet centered at k = 0, only
this component is mixed to k = 2M, whereas other k < M
components remain uncoupled. The reduced average current
will be just proportional to the weight of k = 0 state; see
Fig. 5.

V. CONCLUSIONS

We have presented a model system where one can obtain
currents with amplitudes orders of magnitude larger than those
observed in recent experiments with coherent ratchet currents
[14]. The oscillation period of the current can be controlled
by the amplitude of the driving potential, and in particular by
decreasing the driving strength one obtains currents which do
not decay during the lifetime of the experiment. This effect
is obtained with a potential which does not break the time-
reversal symmetry and is due to crossed terms between the
cyclic states of the system. The proposed scheme requires
that the system is tuned to resonance and that the driving
potential is weakly coupled such that only a few cyclic states
are involved in the dynamics. We have checked the robustness
of the method by tuning the system out of resonance and
increasing the coupling strength. Furthermore, we have shown
that it is possible to control the quantum state and the amount
of kinetic energy in the system, using the proposed scheme
to convert a zero-momentum state into a state with high finite
momentum and vice versa.
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APPENDIX

The second-order expansion of the 7" matrix around 88 is
given by
T(ed) = VGo(el)V
V2
e [sin(Mx)G sin(Mx)

+a? cos? ¢ sin2Mx)G sin(2M x)
+a? sin” ¢ cos(2Mx)G cos(2Mx)

VZ
4 80 0 0 __ 0_1 8

(52,27 52,2)

+a?sin ¢ cospsin2Mx)Ggocos(2Mx)]. (A1)
In the resonant three-state Floquet basis, it reduces to
|
1 1 V2a? 1 1 V?
Nt —— ) ==, (A2)
0o~ ¢fn1 ¢ €9~ &1 &9 & 4
2 ( 1 N 1 N 1 N 1 )
8 38 - 5(1)1 88 - 5(1)3 58 - 8(3)1 58 - 8(3)3
V2a? [ 2sin’ ¢ 2sin” ¢ 1 1 V? ]
" 0 T o 0 o T )= % (A3)
16 \eg—eg &9 —€5 & —&4 € — a3 4
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V2 1 1
(@.21T|a2) = — | 57— +

PR — )
88_8(3)1 88_8(3)3

8 \&y— € 88_813
V2a? (2cos?¢p  2cos’ ¢ 1 1 vz
0 0 0 0 0 0 o ) = % (A4)
16 \eg—ey &9 —&;3 & —€1 € — s 4
V2vE ool v?
0,01T|s2,2) = o = — um, (AS)
4 gy 4
(0,0(T|ay,2) =0, (A6)
V2a?sing cos ¢ 2 2 V?
(52,2| T |az,2) =i ( o T 0 o ) = —Qu, (A7)
4 £) — €4 £y — Ep3 4

which is the effective 7 matrix, Eq. (7), in the paper and where 8,?n = E; —no.
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