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Direct simulation Monte Carlo method for cold-atom dynamics: Classical Boltzmann equation in
the quantum collision regime
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In this paper, we develop a direct simulation Monte Carlo method for simulating highly nonequilibrium
dynamics of nondegenerate ultracold gases. We show that our method can simulate the high-energy collision of
two thermal clouds in the regime observed in experiments [Thomas et al. Phys. Rev. Lett. 93, 173201 (2004)],
which requires the inclusion of beyond s-wave scattering. We also consider the long-time dynamics of this
system, demonstrating that this would be a practical experimental scenario for testing the Boltzmann equation
and studying rethermalization.
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I. INTRODUCTION

Within ultra-cold-atom research, there are a range of
problems requiring the understanding of the dynamics
of a normal gas. For example, studies of collective modes
of Bose [1] and Fermi [2] gases (also see Refs. [3,4]), spin
waves [5,6], hydrodynamic expansion of a Bose gas near the
critical temperature [7], and more recently, the dynamics and
thermalization of a nearly degenerate gas of polar molecules
[8]. These are all regimes in which the Boltzmann equation is
thought to provide an accurate description. In many of these
cases, the system is only weakly disturbed from equilibrium,
and some approximate solution can be provided using a
relaxation approximation for the collision integral and some
form of linearization [9], scaling [10,11], or variational
[12] ansatz. For more strongly dynamical situations, these
approaches are insufficient, however, the direct solution of
the Boltzmann equation for the six-dimensional distribution
function is generally considered intractable and is normally
tackled using some form of stochastic particle simulation.
Some applications of such calculations include the work
of Wu and co-workers [13–15] on evaporative cooling and
expansion dynamics, Jackson and co-workers [16–20] on
bosonic collective-mode dynamics (coupled to a superfluid by
the Zaremba-Nikuni-Griffin (ZNG) formalism [21]), the work
of Urban and Schuck [22], Urban [23,24], and Lepers et al. [25]
in formulating fermion dynamics (see also Refs. [26–29]),
and Barletta et al. [30] and Barletta [31] in describing
sympathetically cooled molecular gases.

Here, we develop an algorithm for simulating the
Boltzmann equation that is significantly more accurate and
efficient than these previous methods and is applicable to more
extreme regimes of dynamics. Indeed, our main motivation
was to develop a theory capable of describing the ultra-
cold-atom collider developed by the Otago group [32–34].
In those experiments (nonquantum degenerate), clouds of
bosonic atoms at a temperature of ∼200 nK were accelerated
and were collided at an energy of ∼200 μK (see Fig. 1).
Several features of these experiments make the numerical
simulation difficult:

(i) The system is far from equilibrium and accesses a large
volume of phase space. A good representation of each cloud
before the collision requires nano-Kelvin energy resolution,
however, during the collision, atoms are scattered over states

on the collision sphere with an energy spread on the order of
a milli-Kelvin.

(ii) The collision energies are sufficiently large that an
appreciable amount of higher-order (i.e., beyond s-wave)
scattering occurs. In particular, in experiments, p-wave scat-
tering [34] and a d-wave [32] shape resonance have been
explored.
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FIG. 1. (Color online) Ultracold atom collider: (a) schematic of
the precollision arrangement of two clouds at ∼200 nK approaching
at a collision energy of ∼200 μK; (b) schematic of a postcollision
system. (c) and (d) experimental images of postscattering density for
two collision energies spanning the d-wave shape resonance. (e) and
(f) show the theoretical calculations matching the experimental results
using the direct simulation Monte Carlo (DSMC) method developed
in this paper.
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The algorithm we develop is suitable for this regime, and, as
shown in Figs. 1(c)–1(f), it can provide a quantitative model for
the experimental data in Ref. [32]. Feature (i) discussed above
presents a great challenge, and using the traditional Boltzmann
techniques employed to date in ultra-cold-atom research, this
would require supercomputer resources. We show how to make
use of an adaptive algorithm (that adapts both the spatial
grid and the times steps to place resources where needed) to
accurately simulate an ultra-cold-atom collider on commodity
personal computer hardware.

We note that, in addition to collider experiments, a capable
Boltzmann solver would allow theoretical studies in a range of
areas of emerging interest, such as the turbulence and flow
instabilities in the normal phase of a quantum gas. Here,
we will focus on the classical regime where the phase-space
density is small compared to unity such that the many-body
effects of Bose-stimulated or Pauli-blocked scatterings are
negligible. However, the systems we consider will be in the
quantum collision regime, whereby the thermal de Broglie
wavelength is larger than the typical range of the interatomic
potential. Notably, in this regime, the scattering is wavelike,
and quantum statistics on the two-body level gives rise to
profound effects in the individual collision processes, even
though many-body quantum statistics is unimportant.

All of the Boltzmann simulations appearing in the ultra-
cold-atom literature have been based on DSMC-like methods,
typically employing the algorithm described in Bird’s 1994
monograph [35]. However, a challenging feature of ultracold
gases is that the local properties (e.g., the density) can vary by
orders of magnitude across the system, and no single global
choice of parameters for the DSMC method can provide a
good description across this entire range. For this reason,
we introduce the use of two locally adaptive schemes to
allow the system to refine the description and to allocate
more computational resources to regions of high density.
These schemes, which we discuss in Sec. III, are as follows:
locally adaptive time steps (LATSs) and locally adaptive cells
(LACs).

In Sec. IV, we validate our algorithm using a variety of
tests to demonstrate its applicability and performance. Then,
in Sec. V, we apply it to the regime of the ultra-cold-atom
collider experiments [32].

II. THEORY

A. Boltzmann equation

The system is described semiclassically by the phase-space
distribution function f ≡ f (p,r,t), which evolves according
to the Boltzmann equation [36],[

∂

∂t
+ p

m
· ∇r − 1

m
∇rU (r,t) · ∇p

]
f = I [f ], (1)

and the position space density of the atoms n(r,t) is given by

n (r,t) =
∫

d3p

h3
f (p,r,t) . (2)

The left-hand side of Eq. (1) describes the evolution of atoms
under the potential U (r,t). In general, U (r,t) may contain a
mean-field term, however, for our analysis in this paper, we
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FIG. 2. (Color online) A two-dimensional schematic of the cells
used for a swarm of test particles. (a) The rectangular master cells are
all of the same size and are chosen to ensure all particles lie within the
boundaries of this grid. Cell boundaries are indicated by lines, and
particles are indicated by dots. (b) An enlargement of two master cells
showing their adaptive subdivisions into smaller LAC subcells. The
number of subcells is determined by the number of particles within
the master cell.

only consider the case where U (r,t) is an external trapping
potential.

The collision integral I [f ], accounts for the collisions
between atoms and is given by

I [f ] = 1

m

∫
d3p1

h3

∫
d�

dσ

d�
|p1 − p|[f ′f ′

1 − ff1], (3)

where dσ
d�

is the differential cross section and f1 ≡ f (p1,r,t),
f ′ ≡ f (p′,r,t), etc. When considering the flow of atoms
through phase space due to collisions, I [f ] has a simple
interpretation. The term in Eq. (3) containing ff1 describes
collision events where the atoms are initially at the phase-
space points (p,r) and (p1,r) and have final states (p′,r)
and (p′

1,r). The rate of such a collision depends on the
densities of the initial states ff1, kinetic factors described
by the differential cross section, and the flux of incident
particles, which is proportional to |p1 − p|. The opposite
process where atoms scatter to (p,r) and (p1,r) is accounted
for by the f ′f ′

1 term. The quantum statistics of the atoms
can be included by the addition of (1 ± f ′)(1 ± f ′

1) terms
in the collision integral, which account for Bose-stimulated
scattering (+) or Pauli blocking (−). Here, we neglect quantum
statistics as is appropriate for the regime where f � 1 and
will address considerations for the full quantum Boltzmann
equation elsewhere [37].

B. Partial-wave treatment of collisions

While our interest here is in ultracold gases with sufficiently
low phase-space density to neglect many-body quantum statis-
tics, the two-body collisions themselves are in the quantum
collision regime and are conveniently characterized in terms
of a partial-wave expansion. The differential cross section for
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identical bosons (+) or fermions (−) in the same internal state
is

dσ

d�
= |fsc(θ ) ± fsc(π − θ )|2, (4)

where

fsc(θ ) = h̄

imvr

∞∑
l=0

(2l + 1)(e2iδl − 1)Pl(cos θ ) (5)

is the scattering function, vr is the magnitude of the relative
velocity of the colliding particles, δl is the phase shift
associated with partial wave l, Pl(cos θ ) is the lth Legendre
polynomial, and θ is the center-of-mass scattering angle. In
general, the phase shifts have a collision energy dependence
(vr ), which is a nontrivial task to calculate.

For bosons (fermions), the total wave function is required to
be symmetric (antisymmetric), and hence, only the even (odd)
l terms in Eq. (5) contribute to the differential cross section.
In this paper, we focus on the case of bosons, motivated by the
experimental work we seek to describe [32].

III. THE DSMC METHOD

A. Background for the DSMC method

The DSMC method is the most widely used tool for
modeling fluid flow on the subcontinuum scale and has
found itself successfully applied to a huge range of physics
from shock waves [35] and Rayleigh-Bénard flow [38] to
aerodynamics of spacecraft [39], chemical reactions [40],
microfluidics [41], acoustics on Earth, Mars, and Titan [42],
volcanic plumes on Jupiter’s moon Io [43], and much more.

These situations are characterized by being dilute (two-
body collisions) and having a high Knudsen number (Kn),
which is given by the ratio of the mean-free path to the
representative length scale of the system. For Kn � 0.1,
a microscopic kinetic theory is necessary, while for Kn �
0.1, the system tends to be sufficiently hydrodynamic for
a continuum approach to be applicable for understanding
coarse-grained dynamics.1 This is not to say that the DSMC
method is inapplicable or is inefficient in this regime; indeed,
recently, Bird has shown that, in nonequilibrium situations
with Kn ∼ 0.01, the DSMC algorithm (employing many of
the techniques we introduce for cold atoms here) can be
more accurate and efficient than Navier-Stokes methods, while
also providing details of the microscopic (subcontinuum)
dynamics [44]. We also note that the consistent Boltzmann
algorithm [45] was developed by making an adjustment to the
DSMC algorithm, where the positional shifts associated with
collisions are taken into account, giving the correct hard-sphere
virial. This allows for exploration into even lower Kn and has
been explored in the context of quantum nuclear flows [46,47].

For reference, cold-atom experiments often operate
in the collisionless regime (Kn > 1), however, values
of Kn ∼ 0.01 have been explored, e.g., the above-critical

1In the cold-atom community, it is more common to specify these
regimes as ωτ , where ω is the excitation frequency and τ is the
collision time.

temperature collective modes of a 23Na gas studied by
Stamper-Kurn et al. [4] had Kn ∼ 0.1; Shvarchuck et al. [1]
studied the hydrodynamical behavior of a normal 87Rb gas in
which Kn ∼ 0.02–0.5.

B. Overview of formalism and general considerations

In the DSMC method, the distribution function is repre-
sented by a swarm of test particles,

f (p,r,t) ≈ α h3
NT∑
i=1

δ[p − pi(t)]δ[r − ri(t)], (6)

where α = NP /NT is the ratio of physical atoms (NP ) to test
particles (NT ). These test particles are evolved in time in such
a manner that f (p,r,t) evolves according to the Boltzmann
equation.

The basic assumption of the DSMC method is that the
motion of atoms can be decoupled from collisions on time
scales much smaller than the mean-collision time. In practice,
this means that a simulation is split up into discrete time steps
�t , during which, the test particles undergo a collisionless
evolution, then collisions between test particles are calculated.

The relation of the test particles to physical atoms is
apparent in Eq. (6) when α = 1, but, in general, they are simply
a computational device for solving the Boltzmann equation.
In many conventional applications of the DSMC method,
good accuracy can be obtained with α � 1 (i.e., each is a
superparticle representing a larger number of physical atoms),
however, in our applications on nonequilibrium dynamics of
ultracold gases, we often require α � 1. Increasing the number
of particles improves both the accuracy and the statistics of
the simulation, and in highly nonequilibrium situations, it can
be essential to have a large number of particles. The DSMC
method is designed so that the number of computational
operations per time step scales linearly with the number of
particles, i.e., O(NT ). The recent work of Lepers et al. [25]
departs from the DSMC method by using a stochastic particle
method similar to that developed in nuclear physics for the
simulation of heavy-ion collisions [48,49], which tests if two
particles are at their closest approach in the present time step,
causing the algorithm to scale as O(N 2

T ). These methods have
been reformulated in terms of the DSMC method by Lang
et al. [50]. We typically use NT = 105–107 test particles, and,
by the various improvements we describe below, in most cases
considered, here, we can obtain accuracy to within 1%.

As pointed out in Sec. II A, the Boltzmann equation
has a simple interpretation in terms of the flow of atoms
through phase space. Hence, the collisionless evolution of
the test particles is performed by solving Newton’s laws
for the potential U (r,t), and collisions are governed by the
collision integral [Eq. (3)]. The collisions are implemented
probabilistically (see Sec. III C 3) using a scheme that requires
the particles to be binned into a grid of cells in position space.
This serves two purposes: (i) It allows for the sampling of the
distribution function, and (ii) it establishes a computationally
convenient mechanism for determining which particles are in
close proximity. Thus, the accuracy of the DSMC method
depends on the discretization of the problem, the cell size,
the time step, and NT . It has been shown to converge to
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the exact solution of the Boltzmann equation in the limit of
infinite test particles, vanishing cell size, and vanishing time
step [51].

In the original DSMC algorithm [35], a test particle may
collide with any other particle within the cell. This coarse
grains position and momentum correlations, such as vorticity,
to be the length scale of the cells, as observed by Meiburg [52].
If the cells are not small enough, this transfer of information
across a cell could lead to nonphysical behavior. To combat
this, we have employed a nearest-neighbor collision scheme
[53] outlined in Sec. III C 4, where the collision partner of a
particle must be chosen from the nearest neighbors. Although
nearest-neighbor collisions alleviate this problem, the cell
sizes still must be small in comparison to the local mean-free
path and the length scale over which the density varies for
accurate sampling.

The time step of the simulation must also be small in
comparison to the smallest local mean-collision time to ensure
the validity of the basic assumption of the DSMC method and
that physical atoms do not propagate further than the local
mean-free path before colliding. To ensure this (and for added
efficiency), we implement locally adaptive time steps [53]
where, instead of a single global time step, the time step can
vary over the whole system, adapting to the local environment.

C. Implementation of the DSMC method

Here, we consider the basic implementation of the DSMC
method; a collisionless evolution followed by a collision step
where test particles are binned in position space and collisions
between them are implemented stochastically via a collision
probability. We also discuss the various adaptive schemes we
employ for better accuracy and efficiency, while retaining the
desired linear scaling of the computational complexity with
test-particle number.

1. Collisionless evolution

The collisionless evolution is performed by a second-order
symplectic integrator [18,54], which updates the phase-space
variables of the ith test particle in three steps,

qi = ri(t) + �t

2m
pi(t), (7a)

pi(t + �t) = pi(t) − �t ∇qi
U (qi ,t), (7b)

ri(t + �t) = qi + �t

2m
pi(t + �t). (7c)

Symplectic integrators have the properties of conserving
energy and phase-space volume over long periods of time.

2. Master grid and LACs

To perform collisions, we must first bin the test particles into
a grid of cells according to their position. Collision partners
are then selected from within each cell. In general, the binning
occurs in up to two levels: (i) the master grid on which each
master cell is a rectangular cuboid of equal size [see Fig. 2(a)]
and (ii) the adaptive subdivision of the master cells into
smaller LAC subcells dependent on the number of particles
in the parent master cell [see Fig. 2(b)], which is an optional
refinement. The use of several LAC schemes in the DSMC

method is discussed in Ref. [35]. It is a useful refinement to
the algorithm for applications to cold-atom systems because
these typically have large variations in density (such a scheme
has been employed in Ref. [55] to account for the large change
in density during evaporative cooling of a cloud of cesium
atoms). We now discuss these levels in further detail.

At the beginning of the collision step, the grid of master cells
is chosen to ensure all particles are held within its boundaries
[see Fig. 2(a)]. We choose to keep the size of the master cells
in each direction constant in time so that if the particles spread
out further in space during the simulation, we add extra cells
rather than changing the size of the cells. The particles are then
binned into these master cells, and the number of particles in
each cell Nc is stored.

For adaptive subdivision, each master cell is considered
in turn, and the particles are binned further into a grid of
smaller LAC subcells according to Nc [see Fig. 2(b)]. Because
the number of collisions within a cell increases with density
(i.e., number of particles), the subdivision of highly occupied
master cells gives a finer resolution of spatial regions where
the local collision rate is highest and, hence, more accurate
simulations.

Our subdivision procedure aims to produce cells in which
the average number of particles is close to some threshold
value Nth for which the choice of is discussed in Sec. IV B 2.
In our algorithm, we do this by finding the integer l such that
Nc/2l is closest to, but not less than, Nth. The master cell is then
subdivided into 2l LAC subcells, while giving no preference
to any direction in this subdivision. We choose this division
scheme over more complicated schemes, as when additionally
implementing LATS, the protocol for dynamically changing
grids becomes simpler.

We have adopted the notation of specifying quantities
pertaining to a particular cell by a subscript c. In what follows,
when referring to cells, we will mean finest level of cells,
i.e., the LAC subcells or master cells otherwise. We do not
explicitly label the cells, indeed, this is to partly emphasize
that the calculations performed in each cell are independent
of other cells. Thus, the algorithm is intrinsically parallel and
is suitable for implementation on parallel platforms (e.g., see
Ref. [41]).

3. Collisions: Scaling

The collision probability for a pair of test particles i and j

in a cell of volume �Vc is given by

Pij = α
�t

�Vc

vrσ (vr ), (8)

where σ (vr ) is the total cross section. This collision probability
can be derived from the collision integral (3) via the Monte
Carlo integration [18,37], the kinetic arguments [35], or the
elementary scattering theory [49]. The correct collision rate
is established by testing Mc = Nc(Nc − 1)/2 collisions in
the cell (see the Appendix for justification of this choice).
This is inefficient as the number of operations scales as
N 2

T , and the collision probability may be far less than 1.
However, within a cell, the collision probabilities and the
number of tested collisions can be rescaled by a single
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parameter � such that the number of operations scales as
NT [35],

Pij → P̃ij = Pij

�
, (9a)

Mc → M̃c = Mc�, (9b)

and still converge to the same Boltzmann equation evolution.
Here, � is chosen to be

� =
⌈
Mcα

�t
�Vc

[vrσ (vr )]max
⌉

Mc

, (10)

where [vrσ (vr )]max is the maximum of this quantity over
all pairs of particles in the cell and 
x� denotes the ceiling
function. This corresponds to Bird’s proposal of using � =
max{Pij } [35], while we ensure that Mc is an integer and at
least one collision is tested (Fig. 14 demonstrates the reduction
in collisions if this is not taken into account). With this choice
of scaling, the maximum collision probability within the cell
is �1 (expected to be close to 1), and the number of collisions
that need to be tested is reduced to

M̃c =
⌈

Nc − 1

2
nc�t[vrσ (vr )]max

⌉
, (11)

where

nc = αNc/�Vc, (12)

is the density in the cell.
This enhancement of efficiency is often missed by other

stochastic particle methods, or the collisions are adjusted in
some other manner. For example, Tosi et al. [27] introduced a
scheme for fermions where collision pairs with small classical
collision probability were neglected.

4. Collisions: Nearest-neighbor selection of partners

We employ a nearest-neighbor collision scheme to combat
discretization effects from finite cell sizes, in particular, the so-
called transient adaptive subcell (TASC) scheme [53]. Simple
sorting of the test particles for the nearest neighbors scales
quadratically with the particle number. The TASC-sorting
scheme retains linear scaling, but it does not guarantee the
exact nearest neighbor.

The basic TASC scheme is to further bin the particles into
subcells within the cell [see Figs. 3(a) and 3(b)], the number
of which is roughly equal to Nc. In our case, the number of
subcells in each direction is equal and is given by [ 3

√
Nc] (with

x� as the floor function). When a particle is randomly picked
for a collision, its collision partner is established by looking
within the immediate TASC subcell [Fig. 3(a)], and if not
found [Fig. 3(b)], each layer starting closest to the particle is
searched for other particles. If a layer contains more than one
particle, the collision partner is randomly chosen from that
set to avoid any biasing. This reduces the distance between
colliding pairs significantly and may be decreased even more
by increasing NT .

We use this procedure to select each of the M̃c pairs of
particles for testing if a collision occurs. We also ensure a
particle does not undergo a second collision in the same time
step.

Collision pair

(a)

Transient subcells

(b)
Central subcell

Layer 1Layer 2Layer 3

Collision pair

FIG. 3. (Color online) A two-dimensional schematic of how
collisions are performed within the TASC scheme. A single cell (outer
boundary line) and the distribution of test particles (black dots) are
shown in (a) and (b) for two different random collisions. The finer
grid of internal lines represents the boundaries of the TASC subcells.
The first particle of the collision pair is selected at random from all
the particles in the cell. In (a), the first particle occupies a TASC
subcell that contains other particles, and the second participant in the
collision is chosen at random from these other particles. In (b), the first
particle (which occupies the central subcell) is the sole occupant of a
TASC subcell. In this case, we check to see if there are any particles
in layer 1, and if so, the collision partner is chosen at random from
these other particles. If there were no particles in layer 1, we would
then check layer 2, and so on.

5. Collisions: Testing and implementation of collisions

For each of the pairs, the collision goes ahead if R < P̃ij ,
where R is a random number uniformly distributed between
0 and 1. As Eq. (1) describes binary collisions of pointlike
particles that conserve total energy and momentum, only
the momenta are changed by keeping the total momentum
constant, and the relative momentum vector is rotated about
its center [56]. The scattering angles are determined by
using an acceptance-rejection Monte Carlo algorithm for the
differential cross section.

6. LATSs

All of the preceding aspects of our implementation of the
DSMC method can be performed with the single global time
step �t for all cells such that the evolution of the system is
simulated at the times tk = k �t , with k as an integer. At each
of these steps, the collisionless evolution is performed, then, is
followed by the collision step [see Fig. 4(a)]. However, if there
is large variation in the properties over the system, the use of a
single time step can be inefficient, as it may be much smaller
than required for low-velocity or low-density regions. This
has been addressed by a recent improvement to the DSMC
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FIG. 4. (Color online) An example of the sequence of steps in
a DSMC evolution. (a) A simple DSMC scheme where the whole
system evolves according to a single global time step �t . (b) An
example of a cell using LATS. In this example, the global time step
(δt) is held constant, while the local time step (δtc) is shown to vary.
Collisionless evolution occurs at each global time step. A collision
step is performed at the global step when, at least, δtc has passed since
the last collision step. At global time t3, we show a collision step, at
which the local time counter (tc) is updated and a new local time step
(δt ′′

c ) is established. Here, the local time step decreases, showing two
further collision steps that follow shortly after the first.

algorithm [53], where a local time step was introduced for the
collision step. Performing the collision step is computationally
expensive, so this improvement can lead to a great increase in
the efficiency of calculations.

With the use of LATS, there are two time steps of
importance for each cell: (i) The global time step δti , which
is the fundamental increment of time in all cells of the
system. The global time after k steps is specified as tg =∑k

i=1 δti , and during each increment of δti , collisionless
evolution is performed [i.e., Eqs. (7a)–(7c) with �t → δti].
(ii) The local time step for the cell δtc, which is the desirable
time scale for performing collisions in this particular cell. Note
δti = min{δtc}, i.e., we choose the global time step to be the
smallest value of δtc over all cells in the system at the end of
each step.2

A collision step is performed at the global time step when,
at least, a time of δtc has passed since the last collision step
for the cell under consideration [see Fig. 4(b)]. To implement
this, we introduce a cell timer tc, indicating the time up to
which collisions have been accounted for in the cell. In general,

2If δti is sufficiently large that the accuracy of the collisionless
evolution is compromised, δti is split into smaller increments for this
evolution.

tc < tg and is incremented by δtc during each collision step.
Performing collisions in this way ensures that tc is within δtc
of tg at all times,3 and at the end of the simulation, all tc
are updated to the final time by performing collisions with
δtc = tg − tc.

In our simulations, δtc is chosen to be small compared to
the relevant collision and transit times of the cell. In detail,
these time scales,

τ coll
c = [ncvrσ (vr )]−1, (13a)

τmax
c = {nc[vrσ (vr )]max}−1, (13b)

τ tr
c = min

{
�xc

vx

,
�yc

vy

,
�zc

vz

}
(13c)

are the mean-collision time, the maximum collision time,
and the mean-transit times of the cell, respectively. These
expressions are evaluated at the end of each collision step,
and the average speeds (vx,vy,vz) are given by averaging
over all the test particles within the cell, while vrσ (vr ) is the
average of vrσ (vr ) over the particles tested for collisions.
The cell widths (�xc,�yc,�zc) correspond to the cell under
consideration [e.g., �xc is the LAC subcell x width and the
master bin width (�x) otherwise].

In terms of these time scales, we take

δtc = min
{
ηcollτ

coll
c ,ηmaxτ

max
c ,ηtrτ

tr
c

}
, (14)

where ηcoll, ηmax, and ηtr are constants less than unity. At the
end of each collision step, δtc is reset by Eq. (14). Whenever δtc
is established without performing a collision step, i.e., begin-
ning of the simulation or when the LAC subcells are collapsed
or expanded, we take it to be δtc = min{ηmaxτ

max
c ,ηtrτ

tr
c }.

For the accurate simulation of dynamics, it is required
that δtc � τ coll

c as well as δtc � τ tr
c . We also require that it

is unlikely for a particle to undergo multiple collisions in a
collision step (accounted for by τmax

c ). These requirements
are ensured by the constants ηcoll, ηmax, and ηtr, which are
optimized for the desired accuracy.

Care has to be taken when the LATS is implemented in
conjunction with the LAC scheme, as the cells can change
dynamically during the evolution (cells can be resized, can
be added, or can be removed). Our procedure for dealing
with dynamically changing subcells is as follows: As each
master cell is considered in turn, if the number of LAC subcells
changes, a new layout of LAC subcells must be established.
If the number of these subcells increases, then each of these
new cells inherits the tc of the original cell. Alternatively, if the
number of subcells decreases, then the new cells are formed
by merging old cells. In general, the values of tc for each of
the cells to be merged are different, and we take the new value
of tc to be the largest of these. This requires tc of the old cells
to be updated to the new tc, thus, collision steps are performed
within the old cells before merging, using the time difference.

When the LAC scheme is implemented with small threshold
numbers (e.g., Nth < 5) and the number of test particles is

3If a cell becomes unpopulated (Nc = 0), tc may not have been
updated such that tc = tg before the test particles leave the cell, which
decreases the collision rate. However, δtc is chosen such that this effect
is negligible.
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large (NT > 106), it can become inefficient to implement
the LATS in conjunction with the LAC subcells. In such
regimes, very dense grids of LAC subcells typically arise, for
which the computational intensity of the LATS and memory
requirements become too great. Furthermore, small cell sizes
lead to excessively small time steps (e.g., τ tr

c is proportional to
the cell size), which further reduces the algorithm efficiency.
In these cases, it is more efficient to implement the LATS for
the master cells (i.e., only the master cells have a time counter
and desired time step) and implement collisions in all the LAC
subcells using that same desired time step.

IV. TESTS AND OPTIMAL PARAMETERS

In this section, we develop tests relevant to ultracold
systems that we use to validate and to explore how to optimize
the performance of the DSMC algorithm by quantifying
the effects of the adaptive enhancements. Primarily, we are
interested in the quality of the representation of the phase-
space distribution, since this is of fundamental importance for
accurate Boltzmann evolution. In particular, we address the
effects of increasing the number of test particles and refining
the grid on collision rates as compared to exact results.

A. Analytic results

We develop benchmark analytic results to calibrate the
algorithm against. To do this, we consider the equilibrium
(Maxwell-Boltzmann) distribution function for a harmonically
trapped gas,

feq(p,r) ≡ NP (βh̄ω)3 exp

{
− β

[
p2

2m
+ U (r)

]}
, (15)

where

U (r) = m

2

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)

(16)

is a harmonic trapping potential and ω = (ωxωyωz)1/3.
The total collision rate is given by

R = σ0

m

∫
d3p

h3

∫
d3p1

h3

∫
d3r|p1 − p|ff1. (17)

Here, we have taken the differential cross section to be velocity
independent to give a total cross section of σ0. Evaluating this
expression for the equilibrium cloud, Eq. (15), we obtain

Req = N 2
P

2π2
mβω3σ0. (18)

As we are concerned with simulating the collisions of equi-
librium clouds, it will be useful to consider the instantaneous
distribution,

fcoll = feq(p + p0ẑ,r) + feq(p − p0ẑ,r), (19)

which corresponds to two spatially overlapping clouds with
equilibrium shapes that are traveling with opposite momenta
±p0 along the z direction. The total collision rate for this case is

Rcoll = N 2
P

2π2
mβω3σ0

[
2 + exp

(
− p2

0
β

m

)

+ 1

2p0

√
πm

β

(
1 + 2p2

0
β

m

)
erf

(
p0

√
β

m

)]
. (20)

For small p0 the term in the square brackets scales as
4 + 2

3βp2
0/m + O(p4

0), showing that, for p0 = 0, Eq. (20)
reduces to Eq. (18) with NP → 2NP , as expected. While for
large p0, it scales as 2 + √

βπ/mp0 + O(p−1
0 ). The first term

corresponds to the intracloud collisions, while the linear term
is that of which is obtained for momentum distributions of
vanishing width, i.e., Dirac δ functions δ(p ± p0ẑ).

B. Grid parameters and test-particle number

To investigate the accuracy with which collisions are
treated, we compare the numerical collision rate to the exact
values in Eqs. (18) and (20). To do this, we calculate the
relative error of the numerical collision rate and examine
its dependence on the number of test particles and grid
refinement.4

1. Numerical collision rate

For the purpose of comparison, we need to extract a
collision rate from the DSMC representation of f (p,r,t). To
do this, we evaluate the mean number of collisions in each cell
over some time δtc. Hence, in each cell, the mean collision rate
is

Rc ≈ 2α

M̃c∑
(ij )

P̃ij

�Vc δtc
, (21)

where (ij ) indicates the indices of the M̃c selected collision
pairs in the cell. Thus, the total collision rate for the system is

R =
∑
cells

Rc�Vc. (22)

By calculating the collision rate in this way, we are, in effect,
directly performing a Monte Carlo integration for the integral
(17), which is the basis of the derivation of the collision
probability in Refs. [18,37]. The time step for the cell δtc
is somewhat arbitrary, and we choose it to give M̃c = Nc/2�
collision pairs.

A convenient length scale for the trapped system is given by
the thermal widths Wx = √

2kBT /mω2
x , etc., and we choose

the master cell widths such that the resolution in each direction
(relative to these widths) are the same, i.e.,

γ = �x

Wx

= �y

Wy

= �z

Wz

. (23)

In what follows, γ will serve as an important parameter to
specify the fineness of the spatial resolution.

2. Accuracy

To increase the accuracy of our numerical calculation of
the total collision rate, we must improve the accuracy of our
representation of continuous distribution f (p,r,t) or take more
samples. In the DSMC method, f (p,r,t) is represented in
two ways: (i) the test-particle swarm, (ii) the grid of cells
that sample the test-particle swarm. The Appendix shows that,
without cell adaption [i.e., LAC or LATS], (i) and (ii) are

4The relative error in the collision rate is independent of NP and σ0.
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FIG. 5. The relative error of the total collision rate, Eq. (18),
for the equilibrium distribution feq(p,r) against γ with NT = 107 is
shown for the cases without (solid line) and with cell adaption where
Nth = 2 (dotted line), 150 (dashed-dotted line), and 500 (dashed line).
The results shown here are averaged over 200 initial conditions,
while the error bars give the standard deviation. Without adaption,
the error increases with increasing γ , since feq(p,r) becomes more
coarsely grained. However, with the inclusion of adaption, this
behavior is combatted as the LAC subcells adapt accordingly. We
obtain the initial conditions for the test particles from feq(p,r) using
the Monte Carlo acceptance-rejection method. System parameters:
The harmonic potential is chosen to be the same as that used in
the ultracold collider experiment with ωx = ωy = 2π × 155 Hz and
ωz = 2π × 12 Hz, NP = 2 × 105 and T = 600 nK.

largely decoupled. However, simply decreasing the size of
the master cells can cause large statistical fluctuations in the
number of collisions, as single occupation of a cell becomes
more common, hence, requiring a larger number of samples.

Our LAC scheme essentially establishes a local maximum
size of the cells (i.e., maximum error), which is set by NT , Nth,
and n(r,t). In our results, this is seen for the collision rate of the
equilibrium cloud given in Fig. 5. These results show that the
magnitude of the relative error does not continue to increase
with increasing γ (as it does in the unadapted case) but tends to
a constant dependent on Nth. With decreasing Nth, smaller cell
sizes are achieved, hence, lower error.5 However, we restrict
ourselves to Nth � 2 to avoid the increasingly large statistical
fluctuations mentioned earlier. The results in Fig. 5 remain
qualitatively similar for different values of NT , however, the
fluctuations (i.e., error bars Fig. 5) increase with decreasing
test-particle number.

It is worth noting that systems with identical density
distributions are coarse grained in the same fashion (provided
NT is the same when using the LAC scheme), hence, they
have the same accuracy. For example, the equilibrium (15) and
collision (19) distributions have identical relative error profiles
as seen in Fig. 5. However, if a system is dynamically changing
and no adaption was employed, evolving to a more dilute
system would decrease the magnitude of the relative error,
while increasing if becoming denser. For adaptive schemes,

5Care needs to be taken with other adaptive schemes, as the approach
the Appendix outlines (to remove statistical biasing) neglects to take
into account statistical fluctuations from other sources (e.g., volume),
which may become important [57].

2r0

2 duolC1 duolC p0 -p0

FIG. 6. (Color online) Schematic of the ultracold collider used
in Sec. IV C. Two clouds initially separated by a distance of 2r0

collide at a relative momentum of 2p0. The number of atoms that
have scattered out of the clouds, after they have passed through each
other, is referred to as Nsc.

this is not an issue, as the cell sizes automatically adjust to this
change.

3. Performance considerations

The results in Fig. 5 show that the following cases
approximately have the same relative error in collision rate:
[SIM1] an unadaptive simulation with γ = 0.02, [SIM2] a LAC
simulation with Nth = 2 and γ = 0.2 (we also include the
LATS for dynamics in SIM2). A fuller picture of the merits of
using either of these approaches for a simulation requires us
to understand their resource requirements.

Speed. We find that, with our code, SIM2 is approximately
five times faster than SIM1 for near-equilibrium evolution.
Note, we only use the LATS scheme in SIM2 for the master
cells (as discussed at the end of Sec. III C 6). It should also
be noted that this performance indicator is dependent on the
code implementation and physical problem under consider-
ation (i.e., equilibrium cloud versus highly nonequilibrium
situation).

Storage. SIM1 requires ∼5 × 107 master cells, while SIM2

requires ∼5 × 104 master cells with a maximum of 4096 LAC
subcells within a master cell (typically requiring a total of
∼7 × 106 LAC subcells).

C. Collisions between clouds: Comparison to simple methods

In this subsection, we consider the collision of two
equilibrium clouds in a harmonic trap, feq(p ± p0ẑ,r ∓ r0ẑ),
shown schematically in Fig. 6. We study this collision using
our DSMC algorithm and compare its results to a simplified
model that has been used previously to analyze this problem.
Initially, the two clouds are centered at locations separated
by a distance of 2r0 along the z direction, chosen to ensure
that (initially) the clouds do not overlap. The clouds approach
each other, moving at a relative momentum of 2p0, and when
they overlap, collisions scatter atoms out of the clouds. Here,
our main interest is the total number of such scattered atoms
Nsc, after the two clouds have completed passing through each
other.

The simple model we consider was used in Ref. [32] (see
also, Ref. [58]) and was derived from the Boltzmann equation
description of the colliding clouds by making the following
approximations: (a1) the harmonic potential is ignored (colli-
sion taken to be in free space); (a2) the momentum distribution
of each cloud is replaced by δ(p ± p0ẑ); (a3) the dynamics of
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scattered atoms are neglected. These approximations lead to
an equation for the densities ni of cloud i = 1,2 of(

∂

∂t
± vr

2

∂

∂z

)
ni(r,t) = −vrσ0n1(r,t)n2(r,t), (24)

where vr = 2p0/m. We can solve these equations directly
using a pseudospectral method.

An analytic expression may be derived with an additional
approximation: (a4) The loss of atoms is small enough such
that the shape of the densities do not deform but remain
Gaussian while the normalization of each cloud NP decreases.
Using this, one can integrate Eq. (24) over all position space
to find the total number of scattered atoms from the collision,

Nsc = N 2
P

4π
mβωxωyσ0. (25)

Following the terminology established in experiments, we
characterize the collider kinetic energy in temperature units by
the parameter Tcoll ≡ μv2

r /2kB , where μ = m/2 is the reduced
mass. As shown in Sec. IV A, when considering the limiting
behavior of Eq. (20), the approximation (a2) is satisfied when
Tcoll � T (which is the case for collider velocities we consider
here). That the momentum distributions can be replaced with
Dirac δ functions is consistent with many-body quantum
statistics not playing a significant role in the scattering that
occurs when the two clouds collide. However, the internal
motion of each cloud can be influenced by quantum statistics.

As the full DSMC solution includes the dynamics of
scattered atoms, it is useful to split the scattered atoms into
two groups: (i) scattered atoms that have not undergone any
subsequent collisions, (ii) scattered atoms that have undergone
additional collisions, including all collision partners.6 All of
the scattered atoms predicted by Eqs. (24) and (25) are of
group (i).

In Eqs. (24) and (25), Nsc is independent of the details of
the differential cross section (only depending on the total cross
section), and this is largely true for the full solution in the case
considered here. Thus, it is convenient to take σ0 = 8πa2

sc,
which is of the form of the total cross section for s-wave
scattering in the low-collision energy limit with scattering
length asc. Additionally, Nsc in both equations is independent
of vr , i.e., Tcoll. However, this is not the case for the full
solution, since the collision occurs in a trap. For example, if the
radial confinement is tight, then a scattered atom can oscillate
out and back in the radial plane and can recollide (depending
on the time scale over which the collision proceeds). Here, we
choose to operate in a regime where these effects are small and
the simple model should accurately describe the full solution.
To do this, we choose parameters such that Tcoll = 300 μK,7

giving a short time scale for the collision.
The results of Eqs. (24) and (25), as well as the full

solution, are shown in Fig. 7 for varying asc. All models
agree well in the low-scattering regimeNsc/NP < 0.05, while

6We include atoms that are scattered out of cloud 1 or 2 by a collision
with an already scattered atom.

7For the full DSMC solution, the clouds accelerate as they approach
the trap center, and we take the value of p0 that they obtain at the trap
center as the value to compare against the simple model.
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FIG. 7. (Color online) The fraction of scattered atoms due to the
collision of two equilibrium clouds as a function of asc. Equation (25)
[solid green (gray) line] has poor agreement with the solution of
Eq. (24) (solid black line) for Nsc/NP > 0.05, since approximation
(a4) is no longer valid. Group (i) scattered atoms (dashed black line)
and total scattered atoms [groups (i) and (ii)] (dashed-dotted black
line) from the DSMC solution. The system parameters are given
in Fig. 5, and for the DSMC simulation, γ = 0.2, NT = 107, and
Nth = 2. The standard deviation error is not shown as it is on the
order of the linewidth.

for higher scattering fractions, approximation (a4) becomes
invalid, and the dynamics of the scattered atoms becomes
increasingly important. However, the solution of Eq. (24)
agrees to within 10% of the relative error to the total [groups (i)
and (ii) combined] scattered fraction given by the full solution
over the whole range.

We can modify the collision problem and the DSMC
method to a regime that is exactly described by the simplified
equation (24). To do this, all particles are taken to have
momentum ±p0 along the z axis (the components of momenta
in the xy plane are zero) and evolve without an external
trapping potential. Consistent with the approximations going
into Eq. (24), whenever a pair of particles undergoes a
collision, it is removed from the system (eliminating any need
for consideration of multiple collisions). Due to the form of
the distribution function, nearest-neighbor collisions cannot
be used.8

The relative error of Nsc as calculated by the DSMC
solution to that of our numerical solution of Eq. (24) is shown
in Fig. 8 for the two cases NT = 105 and 107. The excellent
agreement of the two results is a good test that the DSMC
method is correctly implemented. The error bars represent the
statistical fluctuations of the DSMC results. These fluctuations
reduce with increasing asc as Nsc increases, while between the
two cases, they are reduced by a factor of 10, since they also
decrease with increasing NT (to be definite, these fluctuations
are given by the inverse square root of the number of scattered
test particles).

8Particles have no transverse momenta, thus, particles from the
same cloud never leave the proximity of each other. Hence, it is
required that a particle from one cloud is closest to a particle from the
other cloud before a collision can occur, which results in a decreased
number of collisions.
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FIG. 8. (Color online) The relative error of Nsc as calculated by
the DSMC solution of Eq. (24) [see text] to that of our pseudospectral
solution of Eq. (24). Here, we show the two cases NT = 105 (black)
and 107 [green (gray)] with γ = 0.2, Nth = 25, and the system
parameters given in Fig. 5. We use ηcoll = 0.01, ηmax = 0.1, and
ηtr = 0.01. The results shown here are averaged over 200 simulations,
while the error bars give the standard deviation.

V. MANY-BODY SIMULATION OF AN ULTRACOLD
COLLIDER

In this section, we demonstrate the application of our
DSMC algorithm to the simulation of the ultra-cold-atom
collider reported in Ref. [32]. The main extension, over the
DSMC collision test presented in Sec. IV C, is the inclusion
of the full two-body collisional cross section needed for a
realistic microscopic description of the collisional interactions.
We then extend our consideration to the long-time dynamics
of the collider and how the system progresses to equilibrium.

A. Collisional cross section

Experiments realizing the ultra-cold-atom collider were
conducted with 87Rb, which is bosonic, prepared in a single
hyperfine spin state (F = 2, mF = 2). The wave function for
two such colliding atoms is required to be symmetric, hence,
only the even partial-wave terms in Eq. (4) contribute to the
differential cross section. At the collision energies of the
experiment, only the first two even terms contribute, l = 0
and l = 2 (s and d waves). Thus, the differential cross section
reduces to

dσ

d�
= 4h̄2

m2v2
r

[ s wave︷ ︸︸ ︷
4 sin2 δ0 +

d wave︷ ︸︸ ︷
25 sin2 δ2(3 cos2 θ − 1)2

+ 20 cos(δ0 − δ2) sin δ0 sin δ2(3 cos2 θ − 1)︸ ︷︷ ︸
s+d-wave interference

]
. (26)

Taking care to integrate over only half the total solid angle to
avoid double counting, the total cross section σ (vr ) is given
by the sum of the total s- and d-wave cross sections,

σ (vr ) = 32πh̄2

m2v2
r

(sin2 δ0 + 5 sin2 δ2). (27)

Calculation of the collision energy dependence of the phase
shifts δ0 and δ2 is a nontrivial task. The values that we use in our
simulations [Fig. 9(a)] are those calculated by Thomas et al.
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FIG. 9. (a) Numerically calculated s-wave (dotted line) and d-
wave (dashed line) phase shifts of Ref. [32]. (b) s-wave (dotted line),
d-wave (dashed line), and total (solid line) cross sections.

and reported in Ref. [32]. Over the range of collision energies
shown in Fig. 9, the interference between s- and d-wave
scatterings can be important, and a d-wave resonance also
occurs. The d-wave resonance can be seen in Fig. 9(b) by the
peak of the total cross section, attributed to the large d-wave
cross section.

B. DSMC simulations

Using the full energy and angular-dependent-scattering
cross section, our DSMC method can provide an ab initio
prediction for the collider experiments. The full and detailed
comparison with experiments and what information this
reveals about the two-body collisions are beyond the scope
of this paper and will be presented elsewhere (although we
note that the density images shown in Fig. 1 confirm that our
approach provides a visually good match to the experimental
results).

Here, we present the results of column densities calcu-
lated after two equilibrium clouds feq(p ± p0ẑ,r ∓ r0ẑ) have
collided for the cases Tcoll = 200 and 300 μK. Following
the experimental procedure [32], we calculate these column
densities at a quarter of the radial trap period (π/2ωx) after
the clouds reach the center of the trap. At this time, the bulk
of the scattered atoms reach their maximal extent in the radial
direction. Figures 10(a) and 10(c) show a regime of s- and
d-wave interference (Tcoll = 200 μK), while Figs. 10(b) and
10(d) show a d-wave regime (Tcoll = 300 μK). Clearly, the
distribution of scattered atoms deviates from the typical s-wave
halo (e.g., see Ref. [59]).

C. Long-time dynamics: Rethermalization

The idea of using rethermalization of colliding condensates
to perform calorimetry has been proposed in Ref. [60],
however, no direct simulations were made of the thermal-
ization dynamics. More generally, there has been significant
recent interest in how a quantum system rethermalizes [61],
particularly in systems that might be experimentally realized
with ultra-cold-atomic gases (e.g., see Refs. [62,63]). To date,
much of the attention has been focused on integrable or nearly
integrable systems where numerical solutions are available for
small samples of atoms (typically NP < 102). However, in
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FIG. 10. Column densities at time π/2ωx after the clouds reach
the center of the trap. Tcoll = 200 μK [(a) and (c)] is a regime of
s- and d-wave interference, while Tcoll = 300 μK [(b) and (d)] is a
d-wave regime. (c) and (d) only show the scattered atoms. The initial
conditions for the clouds are chosen as in Sec. IV C, and the system
parameters are given in Fig. 5, while the simulation parameters are
γ = 0.2, NT = 105, and Nth = 2. The results were averaged over 200
simulations. Note, we have compared these results to simulations with
NT = 107 also averaged over 200 runs, and we find that the number
of scattered particles and the angular scattering distributions agreed
to within 1%.

such regimes, thermalization is often inhibited or strongly
is effected by constraints (e.g., see Ref. [64]) as well as
being difficult to explore experimentally due to the small atom
number (or requiring many similarly prepared systems to get
a good signal).

Thus, we are motivated to apply the DSMC method to
model the dynamics of colliding ultracold clouds well past
the first collision. As the collisions occur in the trap, the
clouds will oscillate back and forth, recolliding each time, and
thus, are provided with the opportunity to rethermalize. This
system is much larger and classical in nature than the small
quantum systems generically considered for thermalization
studies. However, we believe this is an interesting system: first
as a bridge between quantum and classical thermalization in
ultracold gases that is practical for experimental investigation.
Second, such a system might provide a unique opportunity to
test the Boltzmann equation in a regime where the microscopic
parameters are precisely known and with well-characterized
far-from-equilibrium initial conditions. Few equations in
theoretical physics have evoked as much discussion and con-
troversy as the Boltzmann equation—particularly in reference
to the introduction of irreversibility—such a test could be of
broad interest and should shed light on some long-standing
issues in statistical mechanics.

Our first evidence for thermalization comes from examining
the density profiles of the colliding clouds at times after the first
collision. Some examples of these density profiles are shown in
Figs. 11(a)–11(d) and reveal that, as time passes, the number of
atoms participating in the parametric oscillation of the mother
clouds along the z axis decreases as the collisions convert the
system to a more isotropic form. Indeed, the system clearly
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FIG. 11. Column densities illustrating the long-time dynamics
of rethermalization. (a) At time tωz = 7.04 after the clouds have
passed through each other twice. The colliding clouds are still visible
(density peaks). When the colliding clouds are depleted, the system
continues to evolve through collective oscillations that are illustrated
by the images (b) and (c) at tωz = 18.85 and 19.60, respectively.
The decay of these collective oscillations occurs on a slower time
scale than the depletion of the colliding clouds, and the distribution
does not take on the equilibrium distribution until much later times
as seen in (d) at tωz = 500.02. The trap frequencies are ωz = 2π ×
50 Hz and ωx = ωy = 2ωz, and each of the initial clouds has NP =
106 and T = 600 nK. We use an isotropic differential cross section
with asc = 10 nm. The initial separation is chosen such that there is
insignificant overlap of the clouds. The momenta are chosen to give
Tcoll = 32.4 μK, giving a final equilibrium temperature of T = 6 μK.
Note, for an isotropic trap, the system does not completely thermalize
without mean-field effects, since the breathing mode does not damp
[12].

appears to increase entropy and approaches an equilibriumlike
configuration.

In order to quantify the approach to equilibrium, it is useful
to consider how various moments of the system evolve dy-
namically. In Fig. 12, we show the envelope of the oscillations
in the position spread moment 〈r2〉1/2 = 〈x2 + y2 + z2〉1/2,
characterizing the root-mean square of the distance of the
particles from the trap center. [Note the oscillations of this
moment occur on a much faster time scale and are shown
in an inset to Fig. 12.] These results show that the system
rethermalizes quite rapidly over the first approximately five
trap periods. The number of collisions per particle over the
first approximately three trap periods is shown in the inset
to Fig. 12. The steps in collision number, which are initially
apparent, arise from the periodic recolliding of the clouds.
However, as the system is distributed over modes, these steps
smooth out. These results show that, during this initial rapid
phase of rethermalization, atoms experience �10 collisions,
much greater than the value of 2.7 often quoted in the literature
from the study of Wu and Foot [13].

After this rapid thermalization phase, the relaxation to
equilibrium proceeds more slowly as energy contained within
a few low-frequency collective modes waits to be damped.
We find that two modes are dominant on long time scales.
Most importantly, a mode that oscillates at 2ωx(= 2ωy) is
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FIG. 12. (Color online) Envelope of the oscillations (as seen in
the lower inset) of the root-mean square of r . The rapid decay
of the envelope within the first ten trap cycles is attributed to the
depletion of the colliding clouds, while the slower decay is the decay
of the collective modes. The upper inset shows the mean number of
collisions per atom.

dominated by radial breathing character and is well described
(both frequency and damping) by the analytic predictions given
in Ref. [12]. Also, we note that the rate of relaxation is strongly
dependent on the trapping geometry and collision rate.

In relation to thermalization dynamics, it is interesting to
revisit the role of test particles in the DSMC simulation. In
general, increasing NT has the effect of reducing fluctuations
in a simulation and, hence, the number of trajectories needed to
obtain an ensemble average. However, in order to gain a better
understanding of typical results (and, hence, fluctuations) that
might be expected in experiments, it is necessary to take
NT = NP . To illustrate this, we show some results for a
small amplitude collective-mode oscillation in Fig. 13 for a
system with NP = 104 and various numbers of test particles.
As the number of test particles increases, the results become
increasingly indistinguishable from the ensemble-averaged
results. However, for NT = NP , the individual trajectory
deviates significantly.

We emphasize that our simulations for thermalization in
this section have been performed for the case of purely s-
wave scattering. A detailed study of thermalization, including
higher-order partial waves (e.g., as the collision energy is
scanned across the d-wave resonance), would be needed for
detailed comparison with experiments in this area but is beyond
the scope of this paper. Along these lines, we would like to
note an interesting interplay between the partial waves that has
been shown in the study of the thermalization of mixtures by
Anderlini and Guéry-Odelin [65]. In that paper, they performed
an analytical study of near-equilibrium thermalization of a
two-component mixture and showed that the thermalization
time (unlike the collision rate) depended on the interference
between the scattering partial waves.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have presented a DSMC method for
simulating the dynamics of nondegenerate ultracold gases. The
motivation for our paper was to describe experiments in which
two clouds were collided at high relative velocity. In order to
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FIG. 13. Collective oscillation induced by a small contraction
of the radial trap confinement for a system with ωz = 2π ×
50 Hz, ωx = ωy = 10ωz, NP = 104, and T = 600 nK. The legend
gives NT used, and as this increases, the results for a single run
become increasingly indistinguishable from the ensemble-averaged
result for NT = 107.

simulate this highly nonequilibrium regime, we have adopted
several modern enhancements of the DSMC algorithm (i.e.,
locally adaptive time steps and nearest-neighbor collisions,
introduced in other fields) but not previously used for cold-
atom simulation. We have verified that our algorithm is
accurate by comparison to a range of analytic results and
simplified models. We have also provided some benchmarks of
the performance of our algorithm against a traditional DSMC
algorithm to quantify the computational efficiency.

In order to quantitatively describe the collision experiments,
we have included the full energy dependence of the s- and
d-wave scatterings in the differential cross section. We have
presented examples of the scattered distributions for the regime
of experiments revealing the d-wave shape resonance. We
have also considered the long-time dynamics of the colliding
clouds, allowing them to recollide many times in the trap,
observing how they approach equilibrium. Our paper suggests
that this might be a fruitful system for future experimental
studies to test the accuracy of the Boltzmann equation and to
better understand thermalization.

A future application of this paper will be to produce a
complete dynamical finite-temperature theory. Using a simple
DSMC algorithm, Jackson and co-workers [16–20] have
already implemented the ZNG formalism [21]. In the future,
we intend to perform a similar extension to c-field formalism
[66]. Having efficient procedures for evolving the c-field
equations that describe the low-energy condensed or partially
condensed part of the system [67,68], the algorithm described
in this paper provides the basis for an efficient scheme
for simulating the high-energy incoherent modes. Another
avenue of investigation that we are currently exploring is an
efficient and accurate way to simulate the quantum Boltzmann
equation. That is, to include the effects of Bose-stimulated or
Pauli-blocked collisions.
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FIG. 14. Relative error of the numerical total collision rate in the
case of the equilibrium distribution (15) for the choices of Mc, where
the error bars indicate the standard deviations of 500 averages. Here,
the original DSMC algorithm is implemented with NT = 107 and
bin parameter (23) γ = 0.2. The choice Ma

c is seen to diverge for
low NT as Nc in Eq. (A3) becomes appreciable, which agrees well
with the theoretically calculated error (Ma

c theory) using Eq. (A3).
Using Mb

c removes this divergence, and the error is seen to agree
well with the expected error for this discretization (Mb

c theory). The
final data set (Mb

c no fix) demonstrates the error that arises when M̃c,
having noninteger values after rescaling, is not accounted for (see
Sec. III C 3) [i.e., not including the ceiling function in Eq. (11)]. The
system parameters are given in Fig. 5.

APPENDIX: NUMBER OF TESTED COLLISIONS

The Boltzmann equation describes the evolution of the
continuous distribution f (p,r,t). However, the replacement of
f (p,r,t) with a swarm of test particles introduces fluctuations,
which do not correspond to physical fluctuations when NP �=
NT . As a result, hydrodynamic quantities are required to be
obtained from the averages of mechanical variables, not the
average of their instantaneous values [69].

In these stochastic particle methods, the collisions of test
particles inherently average the instantaneous values of the
collision rate. This leads to a biasing of the total collision rate
when cells have low occupation numbers (see Fig. 14).

The probability distribution of the Nc test particles within
a cell is well approximated by the Poisson distribution [70]
of which the variance is equal to the mean, i.e., δN2

c =
N2

c − Nc
2 = Nc, where δNc = Nc − Nc. Note that, formally,

the correct number of collisions to test (given by elementary
scattering theory and the derivation of the collision probability
from the collision integral (3) via the Monte Carlo integration
[18,37]) is

Ma
c = N2

c

2
. (A1)

However, with Poissonian fluctuations in Nc, we get that the

mean-collision rate is R ∝ Mc ∼ Nc
2 + Nc (but should be

∝Nc
2
). Thus, Poissonian fluctuations can become important

when the number of test particles per cell is small. However,
the effect of fluctuations from the finite-test particle number
can be bypassed (e.g., see Ref. [44]) by instead using the
number of possible pairs of test particles,

Mb
c = Nc(Nc − 1)

2
, (A2)

which we have employed in this paper.
To understand the difference in detail, we note that the

average calculated by the DSMC simulation (denoted by the
asterisks) for Eq. (A1) is

N2
c

∗ = Nc
2 + Nc − P1, (A3)

where P1 is the probability of Nc = 1 (as the simulation
ignores cells with Nc = 1, for which no collisions occur,
and this must be subtracted from the average). While, for
expression (A2),

Nc(Nc − 1)
∗ = Nc

2
, (A4)

which gives the correct total collision rate for the physical
system as seen in Fig. 14.
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