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Fluctuations and phase transitions in Larkin-Ovchinnikov liquid-crystal states
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Motivated by a realization of imbalanced Feshbach-resonant atomic Fermi gases, we formulate a low-energy
theory of the Fulde-Ferrell and the Larkin-Ovchinnikov (LO) states and use it to analyze fluctuations, stability,
and phase transitions in these enigmatic finite momentum-paired superfluids. Focusing on the unidirectional LO
pair-density-wave state, which spontaneously breaks the continuous rotational and translational symmetries, we
show that it is characterized by two Goldstone modes, corresponding to a superfluid phase and a smectic phonon.
Because of the liquid-crystalline “softness” of the latter, at finite temperature the three-dimensional state is
characterized by a vanishing LO order parameter, quasi-Bragg peaks in the structure and momentum distribution
functions, and a “charge”-4, paired-Cooper-pairs, off-diagonal long-range order, with a superfluid-stiffness
anisotropy that diverges near a transition into a nonsuperfluid state. In addition to conventional integer vortices and
dislocations, the LO superfluid smectic exhibits composite half-integer vortex-dislocation defects. A proliferation
of defects leads to a rich variety of descendant states, such as the charge-4 superfluid and Fermi-liquid nematics and
topologically ordered nonsuperfluid states, that generically intervene between the LO state and the conventional
superfluid and the polarized Fermi liquid at low and high imbalance, respectively. The fermionic sector of the LO
gapless superconductor is also quite unique, exhibiting a Fermi surface of Bogoliubov quasiparticles associated
with the Andreev band of states, localized on the array of the LO domain walls.
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I. INTRODUCTION

A. Background

1. Imbalanced resonant atomic gases

Experimental progress in trapping, cooling, and coher-
ently manipulating Feshbach-resonant atomic gases opened
an unprecedented opportunity to study degenerate strongly
interacting quantum many-body systems in a broad range of
previously unexplored regimes [1–6]. These include paired
fermionic superfluids (SFs) (with s-wave SFs now readily
realized [7–11], and p-wave SFs under extensive current study
[3,12–16]), the associated Bardeen-Cooper-Schrieffer (BCS)
to Bose-Einstein condensation (BEC) crossover [3,17–25],
Bose-Fermi mixtures [26], bosonic molecular superfluids
[27–30], and many other states and regimes [31] under both
equilibrium and nonequilibrium conditions [24,32,33]. In
addition to the tunability of the Feshbach-resonant interaction
strength (and its effective sign), temperature, and many types
of external perturbation, a species number imbalance in, e.g., a
two-atom hyperfine-state mixture turned out to be an extremely
fruitful experimental knob [34–37].

A nonzero species imbalance frustrates conventional BCS
pairing of a two-species Fermi gas [38–41] and the associated
BCS-BEC crossover [42–46], driving quantum phase tran-
sitions out of a paired superfluid to a variety of interesting
possible ground states and thermodynamic phases [44,46–51].
This rekindled considerable theoretical activity in the context
of species-imbalanced resonant Fermi gases [4,52–72]. The
identification of the number species imbalance with the
magnetization of an electronic system, and the chemical
potential difference with an effective Zeeman energy, connects
these recent atomic gas studies with a large body of research
on solid-state electronic superconductors under a Zeeman
field [73–77], as well as extensively studied realizations in

nuclear and particle physics [78–81]. The obvious advantage
of the current atomic system is the aforementioned tunability,
disorder-free “samples,” and absence of the orbital part of
the magnetic field, which always accompanies a solid-state
charged superconductor in a magnetic field [82]. In these
neutral paired superfluids the orbital field effects can be
independently controlled by a rotation of the atomic cloud [83].

As illustrated in Fig. 1, among many interesting features,
such as the gapless imbalanced superfluid (SFM) [44–47],
ubiquitous phase separation [4,40,44,47], tricritical point
[69,72], etc., observed experimentally [34–37] and stud-
ied extensively theoretically [4,6], the interaction-imbalance
BEC-BCS phase diagram is also predicted [4,44,46,52,70,71]
to exhibit the enigmatic Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [76,77]. First predicted in the context of solid-
state superconductors over 45 years ago [76,77], the FFLO
states has so far eluded a definitive observation, though some
promising solid-state [84] and quasi-one-dimensional atomic
[85] candidate systems have recently been realized.

At its most generic level the FFLO state [86] is a fermionic
superfluid, paired at a finite center-of-mass momentum. Gener-
ically such a state spontaneously “breaks” gauge and trans-
lational symmetry, i.e., it is a periodically paired superfluid
(superconductor), akin to a supersolid [87–90], and thus can
appropriately be called a pair-density wave (PDW) [91,92].
Microscopically, it is driven by Fermi surface mismatch
[76,77] due to an imposed pairing species number (and/or mass
[93]) imbalance. As a compromise between the superfluid
pairing and an imposed imbalance, at intermediate values
of the latter, the superconducting order parameter condenses
at a set of finite center-of-mass momenta determined by
the details of the Fermi surface mismatch and interactions,
thereby self-consistently leading to FFLO pairing between
these imbalanced fermionic species. At sufficiently large
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FIG. 1. (Color online) A mean-field zero-temperature phase
diagram from Refs. [4,44] of an imbalanced Fermi gas, as a
function of the inverse scattering length and normalized species
imbalance P = (N↑ − N↓)/N ≡ �N/N , showing the magnetized
(imbalanced) superfluid (SFM), the FFLO state (approximated as the
simplest FF state, confined to a narrow red sliver bounded by PFFLO

and Pc2), and the imbalanced normal Fermi liquid.

imbalance �Nc2 or equivalently at the upper critical Zeeman
field hc2 (corresponding to the chemical potential difference
�μc2 of the two pairing species) no compromise is possible,
and a transition to the normal state takes place.

2. Mean-field energetic stability of FFLO states

The original predictions by Fulde and Ferrell (FF), and by
Larkin and Ovchinnikov (LO) were followed by extensive
studies of the FFLO states [78–81], although exclusively
confined to their energetics in the BCS limit. Stimulated
by the aforementioned potential realization in imbalanced
resonant Fermi gases, the recent revival of the subject
extended the analysis to the full range of the BCS-BEC
crossover [4,44,52,69,70,94]. As illustrated in Fig. 1, the key
observation is that, despite strong interactions, within a single-
q0 Bogoliubov–de Gennes (BdG) treatment the conventional
FFLO state (as originally proposed by FF and LO) remains
quite fragile, confined to a narrow sliver of polarization in the
BCS regime [4,44].

However, motivated by earlier studies of the BdG equation
[95–97], combined with the finding of a negative domain-wall
energy in an otherwise fully paired singlet BCS superfluid in
a Zeeman field [97,98], recent studies have quite convincingly
argued that a more generic pair-density-wave state (that
includes a larger set of collinear wave vectors) may be
significantly more stable. Analogously to a strongly type-II
superconductor that undergoes a continuous transition into
a vortex state at a lower critical orbital field Hc1 [99–101]
(which is significantly below the thermodynamic field Hc),
in the current system, a Zeeman field h (the chemical
potential imbalance) can drive a nucleation of domain walls
in the superfluid order parameter above the lower critical
Zeeman field hc1 which is below the bulk mean-field value
hc. Thereby, the excess of the majority fermionic atoms
(polarization) in an imbalanced system can be continuously
accommodated by the subgap states localized on the self-
consistently induced domain walls, through a continuous
commensurate-incommensurate (CI) Pokrovsky-Talapov (PT)

FIG. 2. (Color online) An illustration of a continuous
commensurate-incommensurate (CI) transition at hc1 from a fully
gapped (balanced) paired superfluid to an imbalanced Larkin-
Ovchinnikov superfluid. The excess majority atoms are localized
on the domain walls in (zeros of) the LO order parameter, whose
number ndw(h) is then proportional to the imbalance P (h) and grows
continuously with the chemical potential difference (Zeeman energy)
h − hc1.

type of transition [102] from a fully paired s-wave superfluid
to a Larkin-Ovchinnikov-like periodic state of domain walls
[103,104]. This picture, illustrated in Fig. 2, resembles the
soliton mechanism for doping of polyacetylene [105]. The
±� domain-wall description, which is explicitly realized
in one dimension (1D) through exact BdG [95] and Bethe
ansatz [106,107] solutions and via bosonization [108,109], is
complementary, but not qualitatively distinct from the more
familiar single-cosine form of the LO state [77].

The latter, “soft,” pair-density wave is a more appropriate
description near the hc2 transition into the normal state, where
the pair order parameter is naturally small, and a Landau
expansion in the leading harmonic �q is expected to be valid.
On the other hand, clearly, far below hc2 (e.g., near the hc1

transition from the fully paired uniform singlet BCS state) the
periodic soliton state is a quantitatively better description as
it more accurately captures the strong pairing at �, confining
the “normal” regions that accommodate the imposed fermion
imbalance to the narrow gapless domain walls between ±�.
Upon increasing h above hc1 the density of domain walls grows
and the walls eventually overlap at hc2, thereby continuously
interpolating between the two limiting descriptions of the LO
state. This picture is explicitly realized in the exact 1D solu-
tions [95,106–108] and emerges from the numerical BdG stud-
ies [96,97]. Furthermore, the lack of a single-q nesting for d >

1, to which the fragility of the LO state is usually attributed,
is irrelevant when the LO order parameter exhibits a broad
spectrum of q (set by 1/ξ0), as in its soliton form above hc1.

The LO state can be equivalently thought of as a periodically
ordered micro phase separation between the normal and paired
states, which naturally replaces the macro phase separa-
tion [40,81] ubiquitously found in the BCS-BEC detuning-
imbalance phase diagram [4,44,47].

It is clear that the standard (even multiple-wave-vector)
Landau treatments valid near hc2 and analytical BdG analysis
of a single FF plane-wave state (exhibiting no amplitude nodes)
[4] fail to capture the quantitatively important ingredients
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described above. These treatments are therefore not necessarily
quantitatively trustworthy in their prediction of the energetic
range of stability (location of hc1) of the LO state (they are,
however, reliable for the prediction of hc2), and in our view
need to be reexamined.

3. Fluctuation in the FFLO states

The microscopic question of the energetic stability of
FFLO states is certainly an extremely important one and
has dominated most of the research on the subject to date.
However, given the extensive 45-year history of the topic, it
is astounding that the equally basic complementary question
of the nature of the Goldstone modes and their fluctuations
within the FFLO states received so little attention [110,111]
until our study of the problem, reported in a recent Letter [112].
From general symmetry principles the FFLO states’ low-
energy phenomenology is expected to be significantly richer
than that of a homogeneous fully gapped superconductor,
whose low-energy phenomenological (Ginzburg-Landau and
XY model) description long predated the microscopic theory
by BCS [99–101]. That is, in addition to a local superfluid
phase degree of freedom, the low-energy modes include the
phonons (a single scalar one in the case of a uniaxial LO
state) of the periodic superconducting structure, as well as
gapless polarized (single-species) fermionic atoms confined
to a fluctuating periodic array of two-dimensional domain
walls [111,112].

In the isotropic realization (e.g., in cold atoms in an
isotropic trap) of interest to us, the FFLO states spontaneously
break a continuous rotational (in addition to the translational)
symmetry akin to smectic liquid crystals, in contrast to their
solid-state density-wave analogs. Consequently, as was orig-
inally anticipated by Shimahara [110] and was demonstrated
in our recent work [112], to be explored in greater detail
below, their Goldstone modes are qualitatively softer and
therefore exhibit far stronger fluctuations. These can either
completely destabilize the (otherwise energetically stable)
FFLO state, or can qualitatively modify its mean-field form
and properties. This general picture therefore reveals that the
complexity of the FFLO state beyond its mean-field cartoon
requires the understanding of a subtle interplay of super-
fluidity, liquid crystallization, and anisotropic Fermi surface
physics.

With this motivation in mind, in a recent Letter [112]
the questions discussed above were formulated and carefully
explored. Namely, as illustrated in the schematic phase
diagram in Fig. 3, supported by the aforementioned studies
[95,96] and the exact 1D solutions [95,108,109], we assumed
that a striped (unidirectional) FFLO state (which we refer
to as the LO state), characterized by a collinear set of
wave vectors, is energetically (microscopically) stable over an
experimentally accessible portion of the detuning-imbalance
phase diagram. We then formulated the model for the low-
energy Goldstone mode fluctuations and fermionic excitations
in the LO state and used it to study the stability of the state
to quantum and thermal fluctuations, as well as to explore
the fluctuation-driven phenomenology, topological defects,
interesting quantum liquid crystal phases, and associated phase
transitions [112]. In the present paper we present a significantly

FIG. 3. (Color online) A proposed �N/N vs 1/(kFas) phase
diagram for an imbalanced resonant Fermi gas, showing the more
stable LO liquid-crystal phases (discussed in the text and illustrated
in detail in Fig. 4) replacing a portion of the phase-separated regime.

more extensive description of these findings and the details of
the associated calculations.

4. Relation to other systems and studies

Although physically quite distinct, some of our motivations
and findings [112] are closely related to studies in solid-state
realizations, such as the putative FFLO states in heavy-
fermion (CeCoIn5) and organic [κ-(BEDT-TTF)2Cu(NCS)2]
superconductors [113,114], the striped (and spiral) states in
high-Tc superconductors and nickelates and more generally
in strongly correlated doped Mott insulators [115–120], spiral
states in helimagnets [121–123], partially filled high-Landau-
level 2D electron gases [124–126], charge-density waves in
anisotropic metals [127], and others. Among a number of
physical properties special to resonant atomic Fermi gases, one
key qualitatively distinguishing feature in our study is that the
FF and LO states spontaneously break continuous translational
and orientational symmetries of an isotropically trapped Fermi
gas. As first emphasized in Refs. [110,112], this latter property
is responsible for the qualitatively enhanced fluctuations that
lead to the predicted universal power-law correlations (5),(7)
persisting throughout the 3D quasi-long-range-ordered FFLO
phase, rather than just at a critical point. Thus, such FF and LO
states (and their descendants) are qualitatively distinct from
their mean-field forms [76,77], akin to a distinction between,
e.g., a quasi-long-range ordered 2D ferromagnet (a 2D XY
model) and a 3D ferromagnet. In contrast, the aforementioned
states in the solid-state systems by their very definition only
break discrete point-group crystal symmetries, and therefore
exhibit quite tame Gaussian fluctuations inside the phase, with
these periodic states only quantitatively distinct from their
mean-field forms.

However, as we will see, despite enhanced fluctuations the
LO state studied here does lead to a number of interesting
features recently discussed in the literature, such as the
fractional vortex-dislocation defects, charge-4 superfluidity,
Andreev-like midgap states, and many others [113,118].

5. Outline

The rest of the paper is organized as follows. We conclude
the Introduction with the summary of our main results. Then,
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in Sec. II we use a microscopic description of the imbalanced
resonant atomic Fermi gas to derive in the weakly interacting
BCS limit the corresponding Landau theory (along with
microscopic expressions for its parameters) valid near the
hc2 transition to the normal state. In Sec. III we discuss
symmetries of two generic classes of FFLO states, construct
corresponding order parameters, and derive from the Landau
theory the corresponding models for their Goldstone modes.
As we argue, these models provide universal descriptions of
low-energy fluctuations in the FF and LO classes of states,
beyond the limit of validity of their microscopic BCS-limit
derivation. In Sec. IV we complement this derivation (valid
near hc2) by an analysis of an array of fluctuating domain walls,
valid near hc1. In Sec. V we use these low-energy universal
models to analyze quantum and thermal fluctuations in the FF
and LO classes of states, paying particular attention to elastic
nonlinearities that (as we show) are qualitatively important
at a finite temperature. Then in Sec. VI we classify and
discuss the energetics of topological defects in the LO state. In
Sec. VII we use this information to uncover a variety of exotic
“daughter” liquid-crystal phases that emerge as a result of
unbinding different combinations of topological defects and
discuss corresponding phase transitions. In Sec. VIII we extend
the model to include the coupling of the Goldstone modes
to gapless fermionic atoms and comment on their effects. In
Sec. IX we use the local density approximation (LDA) to
put our results in the context of trapped atomic gases and
discuss experimental probes of our predictions. We conclude in
Secs. X, XI, and XII with discussions of experimental probes,
open questions, and a summary of our study. In Appendixes A
and B we provide technical details for the microscopic deriva-
tion of the Ginzburg-Landau expansion near hc2 and finite-size
scaling analysis of smectic fluctuations, respectively.

B. Results

Before turning to the derivation and analysis of the model,
we summarize the key predictions of our work, previously
reported in Ref. [112]. Because our predictions [128] are
based on general symmetry principles, supported by detailed
microscopic weak-coupling calculations, they are generic and
robust to variation in microscopic details. At a very general
level, we demonstrate that (in contrast to the conventional
uniform superfluid and FF states) a unidirectional (striped) LO
superfluid exhibits two Goldstone modes φ and θ . These cor-
respond to two coupled smectic phonons, or equivalently the
superfluid phase φ and a nonlinearly coupled smectic phonon
mode u = −θ/q0, with q0 the wave vector characterizing the
LO state.

Through robust symmetry arguments, complemented by an
explicit microscopic derivation (valid in the BCS regime, near
the LO to normal state transition at hc2), we show that the
low-energy universal (classical) LO Hamiltonian governing
fluctuations of these Goldstone modes is given by

HGM
LO = K

2
(∇2u)2 + B

2

(
∂‖u − 1

2
(∇u)2

)2

+ ρi
s

2
(∇iφ)2.

(1)

This Hamiltonian form, familiar from studies of conventional
smectic liquid crystals, encodes the underlying rotational

invariance through the vanishing of the (∇⊥u)2 modulus and
the specific form of the nonlinear elastic terms in u [129–132].
Here, ‖ , ⊥ refer to axes that are parallel and perpendicular
to the LO ordering wave vector q0, respectively. In the
weak-coupling BCS limit, we derive explicit expressions for
the above Goldstone-mode moduli, K , B, and ρi

s (i = ‖, ⊥),
given by

K ≈ 0.8n�2
BCS

εFq
2
0

ln(h/hc2), (2a)

B ≈ q2
0ρ‖

s ≈ 3.3n�2
BCS

εF

ln(h/hc2), (2b)

ρ⊥
s ≈ 0.8n�2

BCS

εFq
2
0

ln2(h/hc2), (2c)

also given in Eqs. (80) and (81). Among these predictions, we
find that the LO state is a highly anisotropic superfluid, with
the ratio of superfluid stiffnesses given by

ρ⊥
s /ρ‖

s = 3
4

(
�q0

/
�BCS

)2 ≈ 1
4 ln(hc2/h) 	 1, (3)

vanishing on the approach to the upper critical Zeeman field
h → h−

c2, which marks the mean-field transition to the normal
state at which the LO order parameter �q0 vanishes. �BCS is
the zero-field BCS order parameter.

We find the FF state to be even more exotic. In contrast to
other homogeneous superfluids (described by an XY model), its
single superfluid Goldstone mode φ is described by the above
smectic Hamiltonian, with an identically vanishing transverse
superfluid stiffness ρ⊥

s,FF = 0, a reflection of the rotational
invariance of the spontaneous current to an energy-equivalent
ground state. Thus we show that a resonant imbalanced Fermi
gas confined to an isotropic trap gives a natural realization of
a quantum (superfluid) smectic liquid crystal.

As a consequence of the spontaneous breaking of con-
tinuous spatial symmetries (contrasting with its solid-state
realizations, where only discrete point-group (lattice) symme-
tries are spontaneously broken) [113,115,118–121,123–125],
the Goldstone-mode excitations in the FF and LO states are
of qualitatively lower energy. As a result, the fluctuations
in such superfluid smectic states are qualitatively stronger.
Specifically, we find that while they are stable to quantum
fluctuations, in 3D the LO and FF long-range orders are
marginally unstable at any nonzero T , with the LO order
parameter (with Dirichlet boundary conditions; for a more
general case, see Sec. X)

〈�LO(r)〉R = 〈
2�q0e

iφ(r) cos[q0 · r + θ (r)]
〉
R

∼ 1

Rη
cos q0 · r → 0, (4)

vanishing in the thermodynamic limit (a large cloud with
atom number N and cloud size R → ∞), suppressed to zero
by thermal phonon u = −θ/q0 fluctuations, and therefore
strictly speaking homogeneous on long scales. The resulting
superfluid state is thus an “algebraic topological” phase
with no long-ranged translational order; namely, beyond
mean-field theory it is instead characterized by power-law
order-parameter correlations, distinguished from the spatially
short-ranged disordered phase by confined topological defects
(bound dislocations), not by a nonzero LO order parameter. It
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is therefore a 3D analog of the more familiar quasi-long-range-
ordered superfluid film and a 2D easy-plane ferromagnet.

There are a number of interesting consequences of this
finding. For example, as illustrated in Fig. 21, we predict that
in 3D [133] the static structure function S(q) in the LO state
exhibits universal anisotropic quasi-Bragg peaks (akin to a
conventional smectic liquid crystal [134,135]), with nth-order
peak given by

S(q‖,q⊥ = 0) ∼ 1

|q‖ − 2nq0|2−4n2η
, (5)

rather than the true δ-function Bragg peaks of, e.g., a long-
range-ordered pair-density wave in a crystalline environment.
Here the anomalous Caillé exponent [134] is given by

η = q2
0T

8π
√

BK
. (6)

We similarly find that the momentum distribution function
of pairs displays a power-law form around the reciprocal lattice
momenta set of q0,

nk ∼ 1

|kz − nq0|2−n2η
, (7)

as illustrated in Fig. 20. This power law is a reflection of
a striking pair-condensate depletion to zero by the divergent
finite-T LO Goldstone-mode fluctuations even in 3D, akin
to the Landau-Peierls [136,137] behavior of films of a
conventional superfluid and 2D crystals [138–141]. Such static
correlations in the LO state can be computed asymptotically
exactly, as was first done for a conventional smectic liquid
crystal [131,132,134]. This fluctuation-driven 3D power-
law phenomenology is a unique feature of a unidirectional
(collinear wave vectors) FFLO state. It is not exhibited by
crystalline FFLO phases with multiple noncollinear ordering
wave vectors [78,79], which, in contrast, are characterized by
the long-range positional order and a nonzero pair condensate
that is stable to thermal fluctuations.

As with treatments of the LO state, where long-range
order is assumed [113,118], in this algebraic LO phase we
also find an unusual topological excitation—a half vortex
bound to a half dislocation—in addition to integer vortices
and dislocations. These are illustrated in Figs. 8, 9, and 10.

In 2D, at nonzero T the LO state is even more strongly
disordered, at intermediate scales characterized by universal
power-law phonon correlations and concomitant short-range
positional order with Lorentzian structure function peaks,
controlled by a nontrivial exactly calculable fixed point [132].
Asymptotically, however, at arbitrary low temperature the 2D
LO state is unstable to proliferation of dislocations [142]. The
state that results from such dislocated superfluid smectics
is either a charge-4 (paired Cooper pairs) [143] nematic
superfluid [112,119] or a nematic (possibly “fractionalized”)
Fermi liquid [117,126], the latter qualitatively the same as the
deformed Fermi surface state [49].

More generally, while analyzing defect-driven continuous
transitions out of the LO state, we uncover a rich array of
descendant states that generically must intervene between
the LO superfluid and a fully paired conventional (isotropic
and homogeneous) superfluid and a conventional Fermi
liquid. If indeed the 3D LO state is energetically stable, as

argued above, we expect these unusual states to appear in
the region collectively denoted “LO liquid crystals” in the
detuning-polarization phase diagram of Fig. 3. They include a
nonsuperfluid smectic (FL2q

Sm, driven by an unbinding of integer
2π -vortices), a superfluid (SF4

N , driven by a proliferation of
integer a dislocations) and a nonsuperfluid (FLN , driven by
an unbinding of both vortices and dislocations) nematic, and
the corresponding isotropic states, when disclinations also
condense. In addition, we predict a variety of topologically
ordered isotropic and nematic fractionalized Fermi-liquid
states (FL∗

N , FL∗∗
N , FL∗

I , and others), that are distinguished
from their more conventional fully disordered forms by gapped
(bound) half-integer defects. These phases are summarized by
a schematic phase diagram illustrated in Fig. 4. We now turn
to the derivation of these predictions.

II. BCS THEORY OF IMBALANCED RESONANT
FERMI GAS

A. Model

We begin with the one-channel model of two-species,
resonantly interacting Fermi gas, appropriate for the exper-
imentally relevant broad Feshbach resonance [4–6]. In the
grand-canonical ensemble, it is described by a Hamiltonian

H =
∑
k,σ

(εk − μσ )ĉ†kσ ĉkσ + g

V

∑
kqp

ĉ
†
k↑ĉ

†
p↓ĉk+q↓ĉp−q↑, (8)

with the two atomic species (labeling the hyperfine states
σ = ↑,↓) open-channel fermions created by the anticommut-
ing operator ĉ

†
kσ ,

{ĉkσ,ĉ
†
k′σ ′ } = δσ,σ ′δk,k′ , (9)

with the single-particle energy εk = h̄2k2/2m, mass m, and
system’s volume V (henceforth set to 1).

Above we introduced two distinct chemical potentials
μσ = (μ↑,μ↓) to impose numbers of two separately conserved
atomic species, Nσ = (N↑,N↓), or equivalently the total
fermion number N = N↑ + N↓ and the atom species imbal-
ance �N = N↑ − N↓. Equivalently, the two species chemical
potentials μ↑ = μ + h and μ↓ = μ − h are related to the
total-number chemical potential μ and the species-imbalance
chemical potential h, the latter corresponding to the pseudo
Zeeman energy. The imbalanced resonant Fermi gas thermody-
namics as a function of N,�N,T ,as , i.e., the extension of the
BEC-BCS crossover to a finite imbalance, can be computed by
a variety of theoretical techniques, including quantum Monte
Carlo [42], mean-field theory [4,44,45,47,69], the large-Nf

(fermion flavor) [144,145], and ε expansions [146].
The attractive interaction is parametrized by a short-range

s-wave pseudopotential with a strength g < 0. Through a
standard T-matrix scattering calculation [147,148], that gives
the two-atom s-wave scattering amplitude fs(k) = − m

4πh̄2 Tk ,
the pseudopotential parameter g can be related to the
experimentally determined, magnetic-field-dependent [149]
scattering length

m

4πh̄2as

= 1

g
+ 1

V

∑
k

1

2εk

, (10)
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FIG. 4. (Color online) A schematic imbalance-chemical potential (Zeeman energy) h = (μ↑ − μ↓)/2 vs detuning (interaction strength)
−1/kF a phase diagram, illustrating the 3D LO smectic phase (SFSm) and its descendant (described in the text), driven by a proliferation
of various combinations of topological defects. The inset shows the global imbalance-interaction BCS-BEC phase diagram, illustrating the
location of these putative phases.

where the ultraviolet-divergent second term is regularized by a
microscopic momentum cutoff scale � ∼ 1/d set by the range
of the potential, d. This gives (with h̄ = 1 hereafter)

as(g) =
(

4π

mg
+ 2�

π

)−1

≡ m

4π
gR (11a)

= m

4π

g

1 + g/gc

, (11b)

where gR is the effective screened coupling and gc = 2π2

�m
is

the critical coupling g (set by the zero-point energy at scale d)
at which a molecular bound state appears and the scattering
length diverges. The above relation allows a definition of the
model and therefore a reexpression of physical observables in
terms of the experimentally defined (uv-cutoff independent)
scattering length as .

To treat the many-body problem (8), we utilize the standard
mean-field analysis [4,44] (quantitatively valid deep in the
BCS regime, kF as 	 1, but expected to be qualitatively valid
throughout) by first assuming an expectation value

g〈ĉ↓(r)ĉ↑(r)〉 = �(r),

=
∑

q

�qe
iq·r, (12)

corresponding to pair condensation at a superposition of finite
momenta q, with the set of �q and q to be self-consistently

determined. With this mean-field assumption, H , in Eq. (8),
reduces to the standard BCS mean-field form:

H = −
∑

q

|�q|2
g

+
∑

k

(εk − μσ )ĉ†kσ ĉkσ

+
∑
q,k

(
�∗

qĉk+ q
2 ↓ĉ−k+ q

2 ↑ + ĉ
†
−k+ q

2 ↑ĉ
†
k+ q

2 ↓�q
)
, (13)

which can equivalently be obtained using a Hubbard-
Stratonovich transformation and a saddle-point approximation
on the coherent-state path-integral formulation of the problem.

Although the resulting mean-field Hamiltonian is quadratic
in the fermionic operators, its diagonalization for a generic
�(r) (an arbitrary set of Fourier components �q) is only
possible through a numerical self-consistent solution of the
Bogoliubov–de Gennes equations [95,96].

Analytical progress is, however, possible through two
complementary approaches. One is to specialize to a single-
Fourier-component �q FF state [76] that is self-consistently
determined through the q-dependent gap equation (12), equiv-
alent to the ground-state energy minimization. This approach
allows for a computation of the ground-state energy that is fully
nonlinear in �q. However, as emphasized in the Introduction
with regard to learning about a more generic amplitude-
modulated FFLO state this simplifying specialization to a
single Fourier component is only harmless near the normal-
to FFLO-state transition at the mean-field upper critical field
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hc2, where �q is small and physics is well approximated by
the lowest dominant harmonic.

An alternative analytical approach is through the Ginzburg-
Landau expansion, which allows a treatment of a general form
of the superconducting order parameter, (12), but is again
limited to the vicinity of hc2, where �(r) is small, permitting
Taylor expansion of the ground-state energy in terms of it [77].

B. Bogoliubov–de Gennes analysis of the Fulde-Ferrell state

1. Ground-state solution

Specializing to the Fulde-Ferrell (single-harmonic, �q)
state simplifies the mean-field Hamiltonian (8), allowing for a
straightforward diagonalization [4,44,76] of the the associated
Bogoliubov–de Gennes equations. A standard analysis [4]
gives the (fermionic) Bogoliubov quasiparticle operators
α̂kσ ,

α̂k↑ = ukĉ−k+ q
2 ↑ + vkĉ

†
k+ q

2 ↓, (14a)

α̂
†
k↓ = −v∗

k ĉ−k+ q
2 ↑ + u∗

k ĉ
†
k+ q

2 ↓, (14b)

with the orthonormal coherence factors [99–101]

uk = 1√
2

√
1 + εk

Ek

, (15a)

vk = 1√
2

√
1 − εk

Ek

, (15b)

ensuring the canonical anticommutation relations
{α̂kσ ,α̂

†
kσ ′ } = δσ,σ ′ . In terms of these quasiparticles, the

Hamiltonian reduces to a diagonal quadratic form,

HFF =
∑
kσ

[Ekσ�(Ekσ )α̂†
kσ α̂kσ − Ekσ�(−Ekσ )α̂kσ α̂

†
kσ ]

+EFF
GS(�q), (16)

with the ground-state energy given by

EFF
GS =

∑
k

[εk − Ek + Ek↑�(−Ek↑) + Ek↓�(−Ek↓)]

− 1

g
|�q|2. (17)

Here, we defined the excitation energy Ekσ for spin state σ ,

Ek↑ = Ek − h − k · q
2m

, (18a)

Ek↓ = Ek + h + k · q
2m

, (18b)

with

εk ≡ k2

2m
− μ + q2

8m
, (19a)

Ek ≡ (
ε2
k + �2

q

)1/2
, (19b)

and μ = 1
2 (μ↑ + μ↓), h = 1

2 (μ↑ − μ↓) the average and dif-
ference chemical potentials, respectively. The introduction of
� functions in the above expressions divides the momentum
space into three regions, for h > 0 given by (1) k ∈ k1 such
that Ek↑ > 0 and Ek↓ > 0, (2) k ∈ k2 such that Ek↑ < 0,
and (3) k ∈ k3 such that Ek↓ < 0, (it is easy to see that the
Ekσ cannot both be negative), and by construction ensures

a positive-definite excitation spectrum |Ekσ | above the FF
ground state,

|FFq〉 =
∏

k∈Ekσ <0

α̂
†
kσ |BCSq〉 (20a)

=
∏
k∈k3

ĉ
†
k+ q

2 ↓
∏
k∈k2

ĉ
†
−k+ q

2 ↑
∏
k∈k1

(
uk + vkĉ

†
k+ q

2 ↓ĉ
†
−k+ q

2 ↑
)|0〉,

(20b)

with |0〉 the atom vacuum. The first form demonstrates that
the FF ground state can be formally thought of as the Fermi
sea of negative energy Bogoliubov quasiparticles added to the
BCS state |BCSq〉 (which is not the ground state) with the
center-of-mass momentum q. The second form, above, shows
that equivalently the FF ground state corresponds to a finite
center-of-mass momentum (q) BCS state with unpaired atoms
from the two momenta sets k2 and k3, defined above.

This analysis thus suggests a possibility of two distinct FF
states, FFf s1 and FFf s2, that exhibit a single- and two-species
Fermi surfaces, respectively, with their volume difference set
by the imposed species imbalance [62].

2. Analysis near hc2

The energetic stability of the state is controlled by EFF
GS(�q),

which deep in the BCS limit was first computed by Fulde
and Ferrell [76]. Its full behavior throughout the BCS-BEC
crossover generally requires a combination of numerical and
analytical analysis. This led to the prediction of a narrow sliver
of stability of the FF state confined to the BCS side of the
crossover, −1/(kF as) >∼ 0.46 [4,44]. However, as discussed
in the Introduction, given the expected unfavorable nature
of the FF state (lacking the amplitude nodes necessary to
accommodate the imbalanced atoms) this analysis is unlikely
to shed light on the stability of other (e.g., LO-type) states
far below the hc2 transition to them. Nevertheless, because the
transition at the upper critical field hc2 (at least in mean-field
theory) is expected to be continuous and therefore �q small,
growing from 0, EFF

GS(�q) can be analyzed analytically by
Taylor-expanding it in �q.

Taking advantage of the extensive analysis in [4,44], near
hc2 we obtain

EFF
GS ≈ εq |�q|2 + 1

2 Ṽq,q,q,q|�q|4, (21)

where

εq ≈ 3n

4εF

[
−1 + 1

2
ln

v2
Fq

2 − 4h2

�2
BCS

+ h

vFq
ln

vFq + 2h

vFq − 2h

]
,

(22)

and

Ṽq,q,q,q = 3n

4εF

1

v2
Fq

2 − 4h2
, (23)

which agree with the Larkin-Ovchinnikov result [77] obtained
via a direct Landau expansion in �q. Here we used (10) to
eliminate the interaction coupling g in favor of the scattering
length as and then reexpressed the latter in terms of the
BCS superfluid gap �BCS according to −m/(4πas) =
N (εF) ln(8e−2/�BCS), with 3D density of states
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N (ε) = m3/2√ε/(
√

2π2). Near its minimum εq can be
approximated quadratically in q,

εq ≈ ε0 + 1
2J
(
q2 − q2

0

)2 + · · · , (24)

with

ε0 = 3n

4εF
ln

[
2
√

α2 − 1
h

�BCS

]
≡ 3n

4εF
ln

[
h

hc2

]
, (25a)

q0 = 2α
h

vF
, (25b)

J ≈ 1

α2 − 1

3nεF

16k2
Fq

2
0

1

h2
. (25c)

Here, α is a solution of the equation arising from the
minimization of the ground-state energy with respect to the
center-of-mass momentum q [4,44],

α = 1

2
ln

α + 1

α − 1
(26a)

≈ 1.200. (26b)

Combining this value with the point at which ε0(h)
vanishes, we obtain the N-FFLO upper critical transition field
[76,77],

hc2 ≡ hFFLO = �BCS

2
√

α2 − 1
(27a)

≈ 0.754�BCS. (27b)

At this transition point we have

q0 = α√
α2 − 1

�BCS

vF
(28a)

= 1.81
�BCS

vF
= 0.58

ξ0
at the hc2 transition, (28b)

J ≈ α2

α2 − 1

3n

16εF

1

q4
0

(28c)

≈ 0.61
n

εF

1

q4
0

at the hc2 transition, (28d)

where the BCS coherence length is given by its standard
expression ξ0 = vF/(π�BCS).

Near the hc2 transition the FF quartic vertex (23) also
simplifies, giving

Ṽq,q,q,q ≈ 3n

4εF

1

α2 − 1

1

4h2
(29a)

≈ 3n

4εF

0.57

h2
(29b)

≈ 3n

4εF

1

�2
BCS

at the hc2 transition, (29c)

which agrees precisely with perturbative LO result [77].
As we will see shortly, in a single-plane-wave FF state

the transverse superfluid stiffness for a supercurrent flowing
transversely vanishes identically, enforced by a Ward identity.
As mentioned in the Introduction this property is a special
feature of a single-momentum-component FF state and is
guaranteed by the underlying rotational invariance of the
spontaneous current to an energy-equivalent ground state.
Thus, to correctly (even qualitatively) capture a more general
FFLO (e.g., the LO) state requires the inclusion of the multiple

momentum components, as in (12) and an analysis beyond
the lowest-order LO treatment [77]. This unfortunately cannot
be calculated analytically through the Bogoliubov–de Gennes
analysis, although it quite successfully can numerically [95,96]
and through the Ginzburg-Landau expansion to which we now
turn.

C. Ginzburg-Landau expansion near hc2

The analytical treatment of the LO state near hc2 relies on
the Ginzburg-Landau expansion in �q, which is small near
the (in mean-field) continuous hc2 normal to FFLO transition
[77,150]. This expectation is explicitly supported by the exact
1D BdG solution [95] at high fields, where �(x) is indeed well
approximated by a single harmonic, with an amplitude �q that
vanishes continuously near hc2.

Based on these general arguments, near hc2 the Ginzburg-
Landau expansion for the ground-state energy is expected to
take a familiar form,

H ≈
∑

q

εq |�q|2 + 1

2

∑
q1 ,q2 ,q3 ,q4

Ṽq1 ,q2 ,q3 ,q4
�∗

q1
�q2

�∗
q3

�q4
,

(30)

where rotational invariance constrains εq to be a function of the
magnitude of q only, q4 = q1 − q2 + q3, and �q is a Fourier
transform of �(r).

It is straightforward to see that translational and rotational
invariances and the quadratic form (in �q) of the first term
in H guarantee that εq is independent of the type of FFLO
state, and is therefore identical to that of the FF state, (22) [4].
This observation guarantees that all harmonics with magnitude
q0 become unstable at the same imbalance field hc2, hFFLO,
with the degeneracy only lifted by the quartic �q term
in H.

Following the standard prescription and guided by the
seminal (lowest-order) analysis of Larkin and Ovchinnikov
[77], we now derive the quartic vertex function Ṽq1,q2,q3,q4

appearing in Eq.(30). It, together with εq will then allow
us to derive the key elastic moduli (compression modulus,
bending rigidity, and superfluid stiffnesses) characterizing
the Goldstone modes of the striped FFLO states. As first
found in Ref. [112], one key observation is that a derivation
of a generic Ginzburg-Landau form and consequently of a
generic Goldstone-mode theory requires a calculation that
is of higher order than that originally carried out by Larkin
and Ovchinnikov [77]. In particular, as we will see below,
the leading momentum dependence of the quartic coupling
needs to be kept. It corresponds to an induced short-ranged
current-current interaction vij jijj , with the supercurrent given
by the standard expression

ji = 1

m
Re[−�∗(r)i∂i�(r)]. (31)

To derive the generic Ginzburg-Landau form, we use
the imaginary-time fermionic coherent-state path-integral for-
mulation of the BCS problem, by computing the partition
function,

Z = Trace[e−βH [ψ∗
σ ,ψσ ]] (32a)

=
∫

[dψ∗
σ dψσ ]e−Sτ [ψ∗

σ ,ψσ ], (32b)
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where H is the four-Fermi Hamiltonian (8), ψσ (τ,r) Grass-
mann (anticommuting) fields, and the imaginary-time action
is given by

Sτ [ψ∗
σ ,ψσ ] =

∫
dτddr[ψ∗

σ (∂τ + ξ̂σ )ψσ + gψ∗
↑ψ∗

↓ψ↓ψ↑],

(33)

where for notational shorthand we defined a space-time co-
ordinate x ≡ (τ,r) and a single-particle Hamiltonian operator
ξ̂σ = − ∇2

2m
− μσ .

We use the Cooper-pair Hubbard-Stratonovich field �(x)
to decouple the (quartic) pairing interaction g and to integrate
out the fermionic atoms:

Z =
∫

[dψ̄σ dψσ d�̄d�]e−Sτ [ψ∗
σ ,ψσ ,�∗,�] (34a)

≡
∫

[d�∗d�]e−Seff [�∗,�], (34b)

where Sτ = S0 + Sint − 1
g

∫
x |�|2,

S0 =
∫

x

[
ψ∗

σ (∂τ + ξ̂σ )ψσ − 1

g
|�|2

]
, (35a)

Sint =
∫

x
[�ψ∗

↑ψ∗
↓ + ψ↓ψ↑�∗], (35b)

and we defined the Ginzburg-Landau effective action

Seff[�
∗,�] = − ln

[∫
[dψ̄σ dψσ ]e−Sτ [ψ∗

σ ,ψσ ,�∗,�]

]
. (36)

Taylor-expanding Sτ in powers of Sint, we compute Seff in
powers of �. Relegating all technical details to Appendix A
and focusing on the time-independent quartic order [in �(r)]
contribution, given by the connected fourth cumulant S4 =∫

dτH4, we find

H4 = 1

2

∫
r1r2r3r4

V (r1,r2,r3,r4)�∗(r1)�(r2)�∗(r3)�(r4),

(37)

where
V (r1,r2,r3,r4) =

∫
dω

2π
G̃0

↑(r2 − r1,ω)G̃0
↓(r2 − r3, − ω)G̃0

↑(r4 − r3,ω)G̃0
↓(r4 − r1, − ω), (38a)

Ṽ (q1,q2,q3,q4) =
∫

dωddk

(2π )d+1
G̃0

↑(k,ω)G̃0
↓(q1 − k, − ω)G̃0

↑(k − q1 + q2,ω)G̃0
↓(q4 − k, − ω), (38b)

with the noninteracting fermionic Green’s function (in Fourier space) as usual given by

G0
σ (ωn,q) = −〈ψσ ψ∗

σ 〉0 (39a)

= 1

iωn − ξqσ

. (39b)

We focus on the FFLO-type order parameter

�(r) =
∑

qn

�qn
(r) eiqn·r, (40)

with Fourier transform given by

�(q) =
∑

qn

�qn
(q − qn). (41)

We note that to go beyond the mean field, here we included an additional long-scale positional dependence in the Larkin-
Ovchinnikov order parameters �qn

(r) on top of the short-scale mean-field periodic dependence at the LO wave vectors qn

encoded in the plane-wave factor.
Substitution of this form into H4 gives

H4 = 1

2

∑
qni

∫
q̃i

(2π )dδd (q̃1 − q̃2 + q̃3 − q̃4)δqn1 −qn2 +qn3 −qn4 ,0

× Ṽ
(
qn1 + q̃1,qn2 + q̃2,qn3 + q̃3,qn4 + q̃4

)
�∗

qn1
(q̃1)�qn2

(q̃2)�∗
qn3

(q̃3)�qn4
(q̃4), (42)

with q̃i ≡ qi − qni
	 qni

[because �qni
(q̃i) is expected to be sharply peaked around q̃i = 0], allowing us to disentangle the q

sums and integrals, and the corresponding δ function above, without double-counting momentum states.
To lowest order in q̃i , we ignore its dependence on Ṽ , equivalent to the LO treatment [77], with Ṽ (qn1 + q̃1,qn2 + q̃2,qn3 +

q̃3,qn4 + q̃4) ≈ Ṽ (qn1 ,qn2 ,qn3 ,qn4 ), and thereby obtain the quartic vertex that determines which set of reciprocal momenta qni

(satisfying the momentum conservation) minimizes the interaction energy, thereby defining the structure of the FFLO ground
state. As found by LO [77], near hc2 it is the striped state of collinear qni

’s that is energetically favored and is well approximated
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by the lowest pair of harmonics, qni
= ±q. Focusing on this energetically preferred (near hc2) LO state reduces the general form

of H4 in Eq. (43) to

H4 = 1

2

∫
q̃i

(2π )dδd (q̃1 − q̃2 + q̃3 − q̃4)

[ ∑
q1=±q

Ṽ (q1 + q̃1,q1 + q̃2,q1 + q̃3,q1 + q̃4)�∗
q1

(q̃1)�q1 (q̃2)�∗
q1

(q̃3)�q1 (q̃4)

+ 4Ṽ (q + q̃1,q + q̃2, − q + q̃3, − q + q̃4)�∗
q(q̃1)�q(q̃2)�∗

−q(q̃3)�−q(q̃4)

]
. (43)

Taylor-expansion of Ṽ (qn1 + q̃1,qn2 + q̃2,qn3 + q̃3,qn4 + q̃4) in q̃i then gives H4 = H
(0)
4 + H

(2)
4 , with

H
(0)
4 = 1

2

∫
r
[v(0)

++(|�q(r)|4 + |�−q(r)|4) + 4v
(0)
+−|�q(r)|2|�−q(r)|2], (44)

where

v
(0)
++ = Ṽ (q,q,q,q)

=
∫

dωddk

(2π )d+1
G̃0

↑(k,ω)2G̃0
↓(q − k, − ω)2, (45a)

v
(0)
+− = Ṽ (q,q, − q, − q)

=
∫

dωddk

(2π )d+1
G̃0

↑(k,ω)2G̃0
↓(q − k,− ω)G̃0

↓(−q − k,− ω),

(45b)

already computed by LO in their mean-field approximation
and in Ref. [4] from the expansion of the BdG ground-state
energy of the FF state discussed in Sec. II B.

In computing the higher-order H
(2)
4 term that contains the

essential current-current interaction vij jijj discussed in the
previous section, we will neglect contributions from the first set

of terms in Eq.(43) (++ and −− terms), because they lead to j2
q

(positive q current) and j2
−q (negative q current) contributions

whose coefficients are enforced either by rotational invariance
(which for transverse current each are 1/2 of the coefficient
of the jq j−q term, required to keep the smectic phonon field u

soft), or for the longitudinal pieces are small, i.e., higher-order,
subleading corrections to the nonzero quadratic (in �) terms
computed in the previous section.

To proceed we focus on the second term in Eq. (43), and
Taylor-expand it to second order in q̃i

Ṽ (q + q̃1,q + q̃2, − q + q̃3, − q + q̃4)

≈ v
(0)
+− + v

(2)
ij (q)

4m2
(q̃1i q̃4j + q̃1i q̃3j + q̃2i q̃4j + q̃2i q̃3j ), (46)

taking advantage of momentum conservation q1 − q2 + q3 −
q4 = 0 to generate four equivalent terms such that the ex-
pression is explicitly real. Here we defined the current-current
coupling matrix

v
(2)
ij = m2

∫
dωddk

(2π )d+1
G̃0

↑(k,ω)2∂iG̃
0
↓(q − k, − ω)∂j G̃

0
↓(−q − k, − ω) (47a)

= g1δij + g2q̂i q̂j , (47b)

where

g1 = N (εF)k2
F

2v4
Fq

4
0

α1

(
2h

vFq0

)
(48a)

≈ 2.07
N (εF)k2

F

2v4
Fq

4
0

at the hc2 transition, (48b)

g2 = N (εF)k2
F

2v4
Fq

4
0

α2

(
2h

vFq0

)
(48c)

≈ −5.75
N (εF)k2

F

2v4
Fq

4
0

at the hc2 transition, (48d)

are computed in Appendix A. Conversion of this Fourier-space expression into real space gives

H
(2)
4 ≈ 1

2

∫
r

4v
(2)
ij

[
1

m
Re[−�∗

qi∂i�q(r)]
1

m
Re[−�∗

−qi∂j�−q(r)]

]
(49a)

≈ 1

2

∫
r

4v
(2)
ij j i

qj
j
−q (49b)
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≈ 1

2

∫
r

2v
(2)
ij ( jq + j−q)i( jq + j−q)j (49c)

≈ 1

2

∫
r

8v
(2)
ij jijj , (49d)

where we reconstructed the j i
qj

j
q and j i

−qj
j
−q transverse pieces (by rotational invariance) and defined the total supercurrent

j = (jq + j−q)/2.
It is important to note already at this stage that the positivity of g1 > 0 in Eq. (48) generates a positive transverse superfluid

stiffness ρ⊥
s and therefore a well-defined LO state. Furthermore, we note that (as we will see in Sec. III) the fact that g2 and

even g1 + g2 are negative does not cause any stability difficulties as they lead to O((�q0/�BCS)4) corrections to the longitudinal
superfluid stiffness ρ

‖
s , a correction that is subdominant near hc2. However, the opposite signs do suggest that below hc2, ρ⊥

s

grows, while ρ
‖
s decreases with decreasing chemical potential difference h. It is thus conceivable that the anisotropy ratio ρ⊥

s /ρ
‖
s

(starting at 0 just below hc2) may actually grow above 1, i.e., that the superfluid anisotropy may reverse, something that would
have striking experimental consequences.

Putting the ingredients derived above together, we finally obtain the sought-after Ginzburg-Landau Hamiltonian

HGL = J [|∇2�|2 − 2q2
0 |∇�|2] + r|�|2 + 1

2λ1|�|4 + 1
2λ2 j2 + · · · , (50)

where as just derived, deep in the BCS limit (large positive
detuning, kFas 	 1) and near the hc2 transition to the polarized
normal state the model parameters are given by

J ≈ 0.61n

εFq
4
0

, (51a)

q0 ≈ 1.81�BCS

h̄vF
, (51b)

r ≈ 3n

4εF
ln

[
9h

4hc2

]
, (51c)

hc2 ≈ 3

4
�BCS, (51d)

λ1 ≈ 3n

4εF�
2
BCS

, (51e)

λ2 ≈ 1.83nm2

εF�
2
BCSq

2
0

. (51f)

Based on the discussion following Eq. (49), we approx-
imated the anisotropic tensor coupling v

(2)
ij , Eq. (47), by an

isotropic one of strength set by the transverse part of v
(2)
ij ,

namely, g1, with the difference a subleading correction near
hc2. More generally (away from the weak-coupling BCS limit)
these couplings can be taken as phenomenological parameters
to be determined experimentally.

III. THEORY OF GOLDSTONE MODES IN STRIPED
FFLO STATES

A. Landau theory

The general form of the Ginzburg-Landau model (50)
derived in the previous section has a much broader range
of applicability, even if our derivation and microscopic
predictions for the associated coupling constants in Eq. (51)
only apply in the BCS regime, near hc2. Independent of the
microscopics, the key ingredient of HGL is that it captures the
imbalanced atomic Fermi system’s energetic tendency to pair
at a finite momentum, and thereby forms a pair-density wave

characterized by a reciprocal lattice vector with magnitude
q0 and spontaneously chosen orientation. More generally, we
expect the quadratic [in �(r)] part of HGL,

H0
GL = �∗ε̂�, (52)

to be characterized by a more generic differential kernel
[specialized to a quadratic form, ε̂ = J (−∇2 − q2

0 )2 + r −
Jq4

0 in (50)], exhibiting a minimum at a finite momentum with
a magnitude q0 and an arbitrary orientation. However, it can be
shown [151] that this generalization adds little new physics to
the Lifshitz-like normal- to FFLO-state (PDW) transition and
to the emerging Goldstone-mode theory, which is our main
interest. We will therefore work directly with the simpler form
in (50).

With the minimum in the dispersion ε̂(q) located at a finite
momentum magnitude q0, for r < rc (which in the mean-field
BCS approximation is given by rc = Jq4

0 ≈ 0.61n/εF, or
equivalently at h < hc2 ≈ 3

4�BCS) the gap in ε̂(q) closes and
HGL in (50) develops an instability to a nonzero superconduct-
ing (pairing) order parameter �(r) = ∑

qn
�qn

eiqn·r at a set of
nonzero wave vectors qn with a magnitude of the fundamental
given by the dispersion minimum q0.

As with other crystallization problems, the nontrivial
question of the choice of the set of the momenta qn is
determined by the details of the interaction (terms higher
than quadratic order in �) and will not be addressed here.
Instead, motivated by the LO findings and by the more recent
analyses [77,95–98], we will focus on the unidirectional
pair-density-wave (Cooper-pair stripe) order, characterized by
a collinear set of qn’s. That is, we will assume that such states
are energetically stable, will develop their Goldstone-mode
low-energy description, and will analyze their stability to
fluctuations.

As we will see below, within this unidirectional pair-
density wave class of FFLO states, the FF and LO states
are representatives of two qualitatively distinct universality
classes and therefore must be treated separately. Although (as
argued in the Introduction) it is the latter that is expected to
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be significantly more stable, for completeness and potential of
other microscopic realizations (where FF states may be stable)
we will treat both universality classes.

The low-energy properties of the FF and LO states are de-
scribed by a periodically spatially modulated order parameter
�(r), that in its simplest form, quantitatively valid near hc2, is
well captured with a single ±q pair of ordering momenta,

�FFLO(r) = �+(r) eiq·r + �−(r) e−iq·r, (53)

where �±(r) are two complex scalar order parameters, the
dominant Fourier coefficients of �(r),

�±(r) = �0
±(r) eiφ±(r), (54)

and amplitudes �0
± distinguishing between the FF and LO

states. We first focus on the amplitudes of these two order
parameters, for now ignoring the corresponding Goldstone
modes φ±. Taking �±(r) as spatially independent (to be
justified a posteriori), we use the Ginzburg-Landau theory
(50) to determine their magnitudes. To this end we find

HLandau = r̃(|�+|2 + |�−|2) + 3

4
λ1(|�+|2 + |�−|2)2

+ 1

2

(
λ2

q2

m2
− 1

2
λ1

)
(|�+|2 − |�−|2)2, (55)

where r̃ = r − Jq4
0 + J (q2 − q2

0 )2. The quadratic coupling r̃

dictates that the most unstable momentum mode is q = q0,
which condenses when r̃ becomes negative, i.e., r falls
below rc = Jq4

0 , corresponding to h = hc2. Since the first
and second terms are “rotationally invariant” in the �+-�−
space, i.e., O(4) invariant, it is the last term that breaks this
symmetry down to the physical U(1) ⊗ U(1) and thereby de-
termines the relative size of these critical ±q0 momenta order
parameters, �±.

Clearly, for λ1 > λ2
2q2

0
m2 , HLandau is minimized by the FF

state with only one of the two order parameters nonzero, e.g.,
with �FF

− = 0, and

�FF
+ =

√
|r̃|

λ1 + λ2q
2
0/m2

for λ1 > λ2
2q2

0

m2
. (56)

In the opposite limit of λ1 < λ22q2
0/m2, the last quartic term

in HLandau instead selects the LO state, with the two order
parameters equal and nonzero,

�LO
+ = �LO

− =
√

|r̃|/(3λ1) for λ1 < λ2
2q2

0

m2
(57a)

= 1

3
�2

BCS ln(h/hc2) (57b)

≡ �LO
q0

(h). (57c)

As first found by LO [77] and discussed in the previous
section, in the current system the microscopics dictates that it
is the latter, LO state that is the more stable one.

B. Symmetries and order parameters

The fundamental FFLO order parameter (53) that charac-
terizes the FF and LO states clearly distinguishes these two
symmetry-distinct states.

1. The Fulde-Ferrell state

The FF state is characterized by a single (independent)
nonzero complex order parameter,

�FF(r) = �q0e
iq0·r+iφ, (58)

which is a plane wave with the momentum q0 and a single
Goldstone mode

φ = φ+, (59)

corresponding to the local superconducting phase. The state
carries a nonzero, uniform spontaneously directed supercur-
rent

jFF = 1

m

∣∣�q0

∣∣2(q0 + ∇φ), (60)

and thereby breaks the time-reversal and rotational symmetry,
chosen spontaneously along q0, as well as the global gauge
symmetry, corresponding to the total atom conservation.
Although the FF order parameter itself is not translation-
ally invariant, under translation by an arbitrary vector a it
transforms by a multiplication by a global phase eiq0·a. It
is therefore invariant under a modified transformation of an
arbitrary translation followed by a gauge transformation. Thus,
in the FF state all gauge-invariant observables and therefore
the state are translationally invariant; namely, the FF state is
a uniform orientationally ordered (polar) superfluid. Under an
infinitesimal rotation of the FF current axis q0 → q0 + δq0,
its phase transforms as φ → φ + δq0·r, costing zero energy.
Thus the underlying rotational symmetry of the FF state
requires the corresponding Goldstone-mode Hamiltonian of
the superconducting phase φ = φ+ to be invariant under such a
transformation, which for an infinitesimal rotation corresponds
to a phase shift linear in r transverse to q0. A generic
Goldstone-mode Hamiltonian that is well known to satisfy
these properties is that of a smectic [112,129], to harmonic
order given by

HFF
0 = 1

2 K̃(∇2
⊥φ)2 + 1

2ρ
‖
s (q̂0 · ∇φ)2. (61)

Its key qualitative feature is the strict (symmetry-enforced)
vanishing of the (∇⊥φ)2 stiffness, with ⊥ designating axes
transverse to the spontaneous current (r̂‖ ≡ ẑ ≡ q̂0) axis.
Thus, despite its uniform density (i.e., it is an orientationally
ordered superfluid, rather than a density wave) the FF state
is characterized by a smectic Goldstone-mode Hamiltonian,
which is qualitatively distinct from that of a conventional
uniform and isotropic superfluid, described by an XY model,

HXY = 1
2ρs(∇φ)2. (62)

Namely, as is evident from Eq. (61) the FF state is infinitely
anisotropic, characterized by an identically vanishing trans-
verse superfluid stiffness

ρFF
s,⊥ = 0, (63)

a reflection of its underlying rotational symmetry that is
spontaneously broken by the ground-state supercurrent jFF.
Its longitudinal superfluid stiffness ρs,‖ is nonzero, measuring
the energetic cost of a deviation from the ground-state current
magnitude of j 0

FF = 1
m

|�q0 |2q0.
In the next section (after discussing the LO state), we

will support these symmetry-based arguments by an explicit
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derivation from the generic Ginzburg-Landau theory (50) for
the FF state.

2. The Larkin-Ovchinnikov state

As illustrated through the Landau analysis, the LO state
is described by a nonzero (standing-wave-like) pair-density-
wave order parameter. That is, taking the magnitudes of the
two order parameters �+ = �− = �q0 in (53) to be the same

(as dictated by the last quartic term for λ1 < λ2
2q2

0
m2 ) the LO

order parameter reduces to a physically appealing form,

�LO(r) = 2�q0e
i 1

2 (φ++φ−) cos
[
q0 · r + 1

2 (φ+ − φ−)
]

(64a)

= 2�q0e
iφ cos[q0 · r + θ ], (64b)

which is a product of a superfluid and a unidirectional
density-wave order parameter, respectively characterized by
two Goldstone modes

φ = 1
2 (φ+ + φ−), (65a)

θ = 1
2 (φ+ − φ−). (65b)

In a qualitative contrast to the FF state and to a conventional
superfluid or a superconductor, the LO state’s density and
other physical quantities are periodic along q̂0, exhibiting
periodic uniaxial stripe order. The position of the associated
pair-density wave is characterized by the smectic phonon

u = −θ/q0, (66)

giving physical interpretation to the second Goldstone mode
θ as the phase of the pair-density wave.

We also note that unlike a conventional smectic [129]
[e.g., in liquid-crystal materials, where one instead is dealing
with a real mass density ρ(r) not a pair-condensate wave
function], here, because �(r) is complex, the phases of �±
are independent (though interacting) Goldstone modes [152].

The mean-field LO order parameter �LO thus simultane-
ously exhibits the off-diagonal long-range order (ODLRO)
(superfluid) and the smectic (unidirectional density-wave) or-
ders. It thus spontaneously breaks the rotational, translational,
and global gauge symmetries, and is therefore realizes a form
of a paired supersolid. However, it is distinguished from a
conventional purely bosonic supersolid [87–90], where homo-
geneous superfluid order and periodic density wave coexist, by
the vanishing of the (“charge”-2 two-atom) zero momentum
(q = 0) superfluid component in the LO condensate [91].

The supercurrent in the LO state is given by

jLO = 2
∣∣�q0

∣∣2
m

∇φ[1 + cos(2q · r + 2θ )] (67a)

≈ 2
∣∣�q0

∣∣2
m

∇φ, (67b)

where in the last form we neglected its periodic contribution.
As expected, in contrast to the FF state (60), the supercurrent
vanishes in the LO ground state where ∇φ = 0.

Similarly to the FF state, the underlying rotational sym-
metry of the LO state strongly restricts the form of the
Goldstone-mode Hamiltonian. Under an infinitesimal rotation
of q0, which defines the spontaneously chosen orientation of
the pair-density wave, the phase of the LO state transforms
according to

θ → θ + δq0 · r. (68)

Hence the θ = −q0u sector of the LO Goldstone-mode
Hamiltonian must be invariant under this symmetry and must
therefore be described by a smectic form [129–131]. On the
other hand, because a rotation of the LO state leaves the super-
conducting phase φ unchanged, the φ sector of the Hamiltonian
generically does not experience any such restriction. We thus
expect it to be described by a generic anisotropic XY model
form, with the full harmonic Goldstone-mode Hamiltonian
given by

HLO
0 = K

2
(∇2

⊥u)2 + B

2
(∂‖u)2 + 1

2
ρ⊥

s (∇⊥φ)2 + 1

2
ρ‖

s (∂‖φ)2.

(69)

Thus, unlike the FF state, the LO state is characterized by
nonzero, but unequal, superfluid stiffnesses ρ⊥

s �= ρ
‖
s .

Another feature of the LO state is that in addition to the
primary order parameter, �LO (64), it is characterized by a
uniform charge-4 superconducting order parameter and by a
neutral 2q0-smectic secondary order parameter,

�(4)
sc = �2

LO ≈ 2�2
q0

ei2φ, (70a)

�
(2q)
Sm = |�LO|2 ≈ 2

∣∣�q0

∣∣2 cos[2q · r + 2θ ], (70b)

where we neglected the subdominant contributions. As we will
see in subsequent sections, these order parameters become
particularly important when the primary order parameter �LO

vanishes either due to divergent fluctuations (as, e.g., for T > 0
in two and three dimensions) or via a disordering transition
driven by unbinding of topological defects.

C. Goldstone-mode Hamiltonian

To support the above symmetry-based arguments, we will
now use the Ginzburg-Landau theory (50) to explicitly derive
the Goldstone-mode Hamiltonians for the FF and the LO states.

1. The Fulde-Ferrell Hamiltonian

To this end we use �FF(r) inside the HGL (50), but in
contrast to the earlier mean-field calculation that determined
the value of �q0 , focus on the spatially dependent Goldstone
mode φ(r). However, we will neglect the spatial dependence
of the amplitude �q0 , valid in the ordered phase, where its
deviations from the average condensate value are gapped,
controlled by a finite susceptibility.

Working out the gradients of �FF(r) under these conditions
and using the expression for jFF inside HGL, we find

HFF = J |�q0 |2[(∇2φ)2 + [2q · ∇φ + (∇φ)2]2] +
[
J |�q0 |2

(
q2 − q2

0

)+ λ2

2m2
|�q0 |4

]
[2q · ∇φ + (∇φ)2] (71a)

= 1

2
K̃(∇2φ)2 + 1

2
ρ‖

s

[
∂‖φ + 1

2
q−1

0 (∇φ)2

]2

. (71b)
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Here, we dropped constant pieces, used the FF amplitude
�q0 (computed in the previous section), defined a longitudinal
derivative ∂‖ ≡ q̂0 · ∇, and in going to the final form (71b)
chose q according to

q2 = q2
0 − λ2

2m2J
|�q0 |2 (72a)

≈ q2
0 near hc2, (72b)

in order to eliminate the terms linear in the fluctuation-current
nonlinear form

δj‖ = ∂‖φ + 1
2q−1

0 (∇φ)2 (73)

as a standard minimization condition for the FF ground-state
current jFF. This condition is closely analogous to the choice
of an order parameter magnitude to eliminate terms linear in
fluctuations. As expected from the earlier mean-field analysis,
near hc2 (where �q0 is small) this corresponds to the choice
of q ≈ q0. However, as usual with a magnitude of an order
parameter (here the spontaneous current jFF), the nonuniversal
magnitude of q (proportional to jFF) will be modified by
fluctuations. Ultimately it is determined by the requirement
that the coefficient of the term linear in δj‖ vanishes.

Within this derivation, the Goldstone-mode moduli in HFF

are given by

K̃ = 2J
∣∣�q0

∣∣2, (74a)

ρ‖
s = 8Jq2

0

∣∣�q0

∣∣2, (74b)

but more generally are two independent parameters char-
acterizing the energetics of the single Goldstone mode of
the FF state. The Hamiltonian form HFF (valid beyond
its weak-coupling microscopic derivation) is familiar from
studies of conventional smectic liquid crystals [129–131],
with the rotational invariance encoded in two ways. First, to
the quadratic order in ∇φ it reduces to the harmonic form
H0

FF (61), invariant under an infinitesimal rotation of the FF
current state. Namely, by the strict vanishing of the (∇⊥φ)2

superfluid stiffness, ρ⊥
s = 0 (resulting in the softer transverse

Laplacian energetics, (∇2
⊥φ)2), it exhibits a vanishing energy

cost for transverse (to q0) current fluctuations, with the
stiffness for the change in current magnitude (along q0)
controlled by ρ

‖
s . Second, HFF is an expansion in a fully

rotationally invariant longitudinal current fluctuation δj‖ (73),
whose nonlinearities ensure that it is fully rotationally invariant
even for large reorientations in q0 [129–131] that defines the FF
ground state.

To see the latter we note that under a rotation of q0 = q0ẑ
by an angle α in the ẑ-x̂ plane,

q0ẑ → q = q0(ẑ cos α + x̂ sin α) (75)

generates a nontrivial, spatially dependent phase

φ0(r) = z(cos α − 1) + x sin α, (76)

even though the system is clearly in its ground state. Simple
algebra demonstrates that the fully nonlinear form of the
longitudinal current δj‖ ensures that it and the corresponding
energy HFF vanish for φ0(r), as required by the rotational
invariance.

One might question the necessity of keeping nonlinearities
in HFF (71b). As we will see shortly, because of the vanishing
transverse superfluid stiffness in the FF state, the fluctuations
in the purely harmonic description H0

FF (61) are infrared
divergent in three and lower dimensions. Consequently these
nonlinearities are in fact absolutely essential for a well-defined
description of such a state.

2. The Larkin-Ovchinnikov Hamiltonian

The derivation of the Larkin-Ovchinnikov Goldstone-mode
Hamiltonian follows a similar route to that for the FF state of
the previous section, with many common features, but also
some essential qualitative differences in the results. To this
end, we insert the LO order parameter �LO(r) inside HGL

(50), use the earlier mean-field values of the amplitude �q0 ,
Eq. (57) (that vanishes at hc2 and grows as |hc2 − h|β below
hc2), ignoring its subdominant spatial dependence, and track
the resulting energetics of two spatially dependent Goldstone
modes φ(r) and θ (r) = −q0u(r). We thereby obtain

HLO = J |�q0 |2
[
(∇2φ+)2 + [2q0 · ∇φ+ + (∇φ+)2]2 + (∇2φ−)2 + [2q0 · ∇φ− − (∇φ−)2]2] + λ2|�q0 |4

2m2
(∇φ+ + ∇φ−)2 (77a)

=
∑
α=±

[
1

4
K(∇2uα)2 + 1

4
B

[
∂‖uα − 1

2
(∇uα)2

]2 ]
+ 1

8
ρ⊥

s q2
0 (∇u+ − ∇u−)2 (77b)

= 1

2
K(∇2u)2 + 1

2
B

[
∂‖u − 1

2
(∇u)2

]2

+ 1

2
ρ‖

s (∂‖φ)2 + 1

2
ρ⊥

s (∇⊥φ)2 + Hsubdom
LO , (77c)

where we dropped the constant and fast-oscillating parts that
average away upon spatial integration of the energy density,
introduced two phonon fields

u± = ∓φ±/q0, (78)

and chose q = q0 in order to eliminate the term linear in the
nonlinear, rotationally invariant strain tensor [the analog of δj‖
in (73)]

u±
qq = q̂ · ∇u± − 1

2 (∇u±)2 (79)

whose nonlinearities in u± ensure that it is fully rotationally
invariant even for large rotations. We also defined the bend K

and the compressional B smectic elastic moduli

K = 4Jq2
0 |�q0 |2 (80a)

≈ 0.8n�2
BCS

εFq
2
0

ln(h/hc2), (80b)

B = 16Jq4
0 |�q0 |2 (80c)

≈ 3.3n�2
BCS

εF
ln(h/hc2), (80d)
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and identified the longitudinal, ρ
‖
s , and transverse, ρ⊥

s , super-
fluid stiffnesses given by

ρ‖
s = B/q2

0 = 9.8n

εF

�2
q0

q2
0

(81a)

≈ 3.3n�2
BCS

εFq
2
0

ln(h/hc2), (81b)

ρ⊥
s = 4λ2

m2

∣∣�q0

∣∣4 (81c)

≈ 7.3n

εF

�2
q0

q2
0

(
�q0

�BCS

)2

(81d)

≈ 0.8n�2
BCS

εFq
2
0

ln2(h/hc2). (81e)

A nonzero transverse superfluid coupling ρ⊥
s (minimized by

a vanishing supercurrent j ∝ ∇φ+ + ∇φ−) removes the two
independent rotational symmetries, orientationally locking
the two incommensurate (u±) smectics. As argued above
based on symmetry, (69), this leads to the superconducting
phase combination φ = 1

2 (φ+ + φ−) of a conventional XY (as
opposed to soft smectic) gradient type, (77c).

Within the superconductor context, this coupling of ∇φ±
(XY- rather than smectic stiffness of the φ Goldstone mode)
is straightforward to understand. The LO state effectively cor-
responds to two FF states, each carrying a supercurrent along
q + ∇φ+ and −q + ∇φ−. A superfluid stiffness measures the
nonzero kinetic energy cost of a total current j. The latter
results from either a transverse orientational misalignment of
∇φ±, measured by the ρ⊥

s , or a mismatch between the ∇φ+
and ∇φ− magnitudes (even if directed along ±q, respectively),
measured by the ρ

‖
s . These two distinct LO-state distortions

are schematically illustrated in Fig. 5.
As advertised in the Introduction we thus find from (81)

that the LO state is a highly anisotropic superfluid (though
less so than the FF state, where ρ⊥

s = 0), with

ρ⊥
s

ρ
‖
s

= 3

4

(
�q0

�BCS

)2

≈ 1

4
ln

(
hc2

h

)
	 1, (82)

a ratio that vanishes for h → h−
c2.

Because (in contrast to the FF state) the ρ⊥
s is indeed

nonzero for h < hc2, the nonlinearities in ∇φ and the soft term
(∇2φ)2 [contained in the Hsubdom

LO of (77c)] are subdominant on
long scales, and can (and will) therefore be neglected [153].

We stress that, while the detailed expressions for the moduli
above are specific to the weak-coupling BCS limit near hc2,
the general form of HLO, (77c), including the structure of the
symmetry-enforced nonlinearities in the u (smectic) sector, is
valid beyond our microscopic derivation, and holds throughout
the LO phase. Specifically, as argued in the previous section
based on symmetry, in contrast to the superconducting φ

sector, the vanishing of the (∇⊥u)2 coupling is a reflection
of the underlying rotational invariance of the LO striped state.
Thus the soft transverse elastic form of the smectic sector
and the form of the nonlinear strain tensor uqq [analogous to
δj‖ (73)] are strictly protected by this symmetry. As we will
see in Sec. V (and is well known for conventional smectic
liquid crystals [129–131]), because of this harmonic elastic

FIG. 5. (Color online) An illustration of longitudinal and trans-
verse (to q) LO nonzero supercurrent configuration controlled by
the corresponding superfluid stiffnesses ρ‖

s ,ρ⊥
s . Because there is no

change in the effective period associated with the transverse current
excitation, it is qualitatively energetically “cheaper,” scaling as �4

q0
,

as compared to the longitudinal excitation that scales as �2
q0

. As
indicated in Eq. (82), the ratio therefore vanishes as h approaches the
transition into a nonsuperfluid phase at hc2.

softness, in the presence of thermal fluctuations these smectic
nonlinearities are qualitatively important at long length scales
for the description of the FF and LO states.

D. Quantum dynamics

The bosonic Hamiltonian density HGL (50) determines the
classical thermodynamics and equal-time finite-temperature
correlation functions of the FFLO system [154], which in the
ordered state reduces to HFF/LO, in (71b) and (77c).

The dynamics is controlled by the Lagrangian density.
Focusing on quantum thermodynamics, the partition function
Z = Trace[e−βH [�̂†,�̂]] is formulated in a standard way as a
path integral over coherent states labeled by the c fields �(τ,r)
and �∗(τ,r),

Z =
∫

[d�∗d�]e−S[�∗,�], (83)

with τ = it the imaginary time 0 � τ < β ≡ 1/kBT (h̄ ≡ 1).
The coherent-state action S[�∗,�] is given by

S[�∗,�] =
∫ β

0
dτ

∫
ddrL[�∗,�], (84)

with the Lagrangian density given by

L = �∗∂τ� + H[�∗,�]. (85)
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Using the density-phase representation

� = (n0 + δn+)1/2eiq·r+iφ+ + (n0 + δn−)1/2e−iq·r+iφ− ,

(86)

with δn± the fluctuating Cooper-pair density about its ground
state value n0 = |�q0 |2, and at low energies neglecting the
subdominant terms (e.g., fast-oscillating pieces or spatial de-
pendence of gapped amplitude fields) the Lagrangian density
reduces to

L = iδn+∂τφ+ + iδn−∂τφ− + H[δn±,φ±]. (87)

Integrating these Berry’s phase terms [155,156] over the
“massive” (nonzero compressibility χ0) δn± fluctuations, we
obtain

L = χ0

2
(∂τφ+)2 + χ0

2
(∂τφ−)2 + H[φ+,φ−], (88)

with H given by the HLO in the LO ground state, and the FF
state treated similarly usingHFF. For the LO state, this analysis
then predicts the existence of two anisotropic low-frequency
modes with dispersions

ωφ(k) =
√(

ρ⊥
s k2

⊥ + ρ
‖
s k2

z

)/
χ0, (89a)

ωu(k) =
√(

Kk4
⊥ + Bk2

z

)/
χ0, (89b)

that can be read off from the analytical continuation of the
Lagrangian into real time, t = −iτ . These modes respectively
correspond to the zeroth sound (the Bogoliubov mode as in
a conventional superfluid) and the smectic phonon, unique to
the LO state. In cold atomic gases, these should in principle be
measurable via the Bragg spectroscopy technique [157–159].

With the Goldstone-mode Lagrangian in hand, we can now
calculate the effects of quantum and thermal fluctuations as
well as equilibrium correlation and response functions [155].

IV. LARKIN-OVCHINNIKOV STATE NEAR hc1

As emphasized earlier the general form of the action
for the description of the LO state, Eq. (88), is expected
to hold universally throughout the ordered state. However,
its derivation above and therefore the expressions for the
associated couplings Eqs. (51), (80), and (81) are limited to
the weak-coupling BCS regime and near the high-chemical-
potential imbalance (Zeeman field) normal- to FFLO-state
transition at hc2.

An estimate of these couplings outside 1D throughout the
FFLO phases can only be done numerically. However, in the
complementary, low-chemical-potential imbalance (Zeeman
field) regime, just above the transition from the fully paired
superfluid (BCS-BEC) state to the LO state at hc1, qualitative
estimates are possible based on an analysis of a “dilute gas”
of fluctuating ±� domain walls. We carry out this analysis
below by focusing on the LO state, treating it as a periodic
array of fluctuating domain walls in �(r), akin to the lyotropic
phases in soft condensed matter [129,130].

A. Macro- vs microphase separation: Stability of the LO state

Implicit in our analysis below is the assumption that as
the domain-wall surface energy becomes negative [95–98]

for h > hc1, their interaction remains repulsive, and so the
domain walls proliferate continuously as a periodic array inside
the LO state. Under this assumptions (which warrants further
study) the domain-wall density ndw and the associated species
imbalance P ∝ ndw [≈ q0(h)] is then set by a balance between
the negative surface energy and the domain-wall repulsion,
growing continuously as a function of h − hc1 according to the
Pokrovsky-Talapov commensurate-incommensurate (CI) tran-
sition phenomenology [102]. This behavior is clearly exhibited
in 1D [95,108] through an exact solution and bosonization
methods, and has been argued to persist in higher dimensions
[95–98]. The CI route for a transition to the LO state contrasts
sharply with the Landau theory [4,44,77] of two independent
order parameters �0,�q , which always predicts a first-order
BCS-LO transition. The latter corresponds to the case of an
attractive domain-wall interaction, and therefore proliferate
discontinuously above hc1, leading to the ubiquitous phase
separation found in mean-field theory [4,44]. It is currently
unclear what dimensionless microscopic parameter, analogous
to Abrikosov’s κ (distinguishing between type-I and type-II
superconductors) [99,100], controls these two alternatives of
the macrophase separation (a first-order transition) and the
microphase-separated LO state [a continuous transition out of
the gapped superfluid (SF) state] [103].

B. SF-LO transition at hc1

The phenomenology of the domain-wall proliferation above
hc1 and the associated (fully gapped, singlet) SF to LO
transition can be captured by a domain-wall energy functional,
extended to a general dimension d:

E[ndw]/Ld−1 =
∫

z

[
ε0

dw − hmN (h)ξdw
]
ndw

+ 1

2

∫
z,z′

V (z − z′)ndw(z)ndw(z′) (90a)

=
∫

z

mN (h)ξdw(hc1 − h)ndw

+ 1

2

∫
z,z′

V (z − z′)ndw(z)ndw(z′), (90b)

where ε0
dw is the domain-wall surface energy at h = 0,

V (z) is the domain-wall interaction energy per unit of area,
and ndw(z) = ∑

i δ̃(z − zi) [δ̃(z) and zi are the profile of
width ξdw and the position (along z) of the ith domain
wall]. Here, we used an approximate relation between the
domain-wall 1D density ndw(h) and the magnetization density
m(h) = n↑ − n↓,

m(h) ≈ mN (h)ξdwndw(h), (91)

where mN (h) is the magnetization density (per d-dimensional
volume) of the normal state, which is approximately nucleated
in the zeros of the (locally BCS-like) gap function, i.e.,
on the domain wall of width ξdw; mNξdw is the fermion
number imbalance per unit area (Ld−1) per domain wall. In
the Pauli (weak-imbalance) limit, we expect the former to
be approximately given by kd−1

F h/hc1, through a string of
relations: mNξdw ≈ χP hξ0 ≈ (nhc1/εF)(h̄vF/�BCS)(h/hc1) ≈
kd−1

F h/hc1 ≈ kd−1
F (using n ≈ kd

F). This is indeed the case in
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the noninteracting Fermi-gas limit, where mN (h) is given as
the solution of

mN (h) = n

2

[
(μ̂ + ĥ)

3
2 �(μ̂ + ĥ) − (μ̂ − ĥ)

3
2 �(μ̂ − ĥ)

]
,

(92)

with the normalized chemical potential μ̂ ≡ μ/εF determined
in terms of the normalized chemical-potential difference
(Zeeman energy) ĥ ≡ h/εF by the number-density equation

1 = 1
2

[
(μ̂ + ĥ)

3
2 �(μ̂ + ĥ) + (μ̂ − ĥ)

3
2 �(μ̂ − ĥ)

]
. (93)

The set above reduces to the Pauli expression mN ≈ χP h for
weak h 	 μ [χP = 3n/(2εF)] and mN ≈ n for large h � μ.
In either case the h dependence of mN (h) is weak around
hc1 and therefore can be neglected, along with other weak h

dependences, such as the soliton width ξdw(h).
Ignoring fluctuations [160], the domain-wall interaction

V (z) ≈ V0e
−|z|/ξdw is expected to be short ranged with the

scale set by the soliton width ξdw. Thus, for low soliton density
ndwξdw 	 1, its strength is a strong function of z − z′, whose
typical value is given by the domain-wall spacing itself, 1/ndw.
Thus, just above hc1 a good approximation for the above energy
density is given by

ε(ndw) ≈ mN (h)ξdw(hc1 − h)ndw + ξdw

2
V (ndw)n2

dw

≈ mN (h)ξdw(hc1 − h)ndw + ξdw

2
V0e

− 1
ξdwndw n2

dw.

(94)

A minimization then gives the domain-wall density ndw(h) and
[through Eq. (91)] the imbalance density m(h) as a function of
chemical-potential difference h:

ndw(h) ≈ ξ−1
dw

{
1

ln[h0/(h−hc1)] for ndwξdw 	 1,

(h − hc1)/h0 for ndwξdw � 1,
(95)

where ξdw ≈ ξ0 and h0 ≈ V0/(ξdwmN ) ≈ V0/(χP hc1ξ0) ≈
�BCS [since V0 ≈ kd−1

F hc1 ≈ kd−1
F �BCS is the energy lost per

fermion per unit of area (with separation 1/kF); for a 1D exact
solution, one indeed has hc1 = 2�BCS/π , consistent with this
estimate].

Note that for large imbalance (high domain-wall density)
the interaction part reduces to a simple quadratic dependence
on ndw and thus gives the expected linear growth of the density
with h − hc1 (second line above). In contrast, for low density
the interaction is exponentially weak and domain walls enter
the state as a quickly growing (with a divergent slope) function
of h − hc1, though not as discontinuously as in a first-order
transition. These limits are illustrated in Fig. 2.

1. LO elastic moduli at T = 0

For h > hc1 a 1D lattice of domain walls, i.e., the LO
state, forms. Because of the underlying rotational invariance
its elasticity is generically given by that of a smectic,
Eq. (77c). The energy of the deviation δndw from the minimum
domain-wall density ndw(h), Eq. (95), is a quadratic function
of δndw, given by

ε(δndw) ≈ ε0 + 1
2ε′′(ndw(h))(δndw)2 (96a)

≈ ε0 + 1
2B(h)(∂zu)2, (96b)

where the smectic bulk modulus is given by

B(h) ≈ ndw(h)2ε′′(ndw(h)) (97a)

≈ (h − hc1)ndw(h)kd−1
F . (97b)

Here, to deduce B(h) we used the relation between the
density ndw and the displacement field δndw = −ndw(h)∂zu,
the relation mN ≈ kd−1

F /ξdw, and went to the continuum
limit via

∫
ndw(h)dz · · · = ∑

i · · ·. As expected, B(h) grows
strongly just above hc1, but quickly asymptotes to B(h �
hc1) ≈ �BCSk

d−1
F /ξ0 ≈ n�BCS/εF, in scale consistent with its

form found below hc2, Eq. (80).
A detailed estimate of the bend modulus K is more difficult

in this regime. However, we can take advantage of the relation
in Eq. (80) to deduce K via the K ≈ B/q2

0 mean-field relation.
Thus we find

K(h) ≈ B(h)/ndw(h)2 (98a)

≈ �BCSk
d−1
F ξ0 ≈ εFk

d−2
F for h � hc1. (98b)

From these, we deduce the key smectic penetration length

λ(h) =
√

K(h)/B(h) (99a)

≈ 1/ndw(h) (99b)

≈ ξ0 for h � hc1. (99c)

2. LO elastic moduli at T > 0

Because the microscopic repulsive domain-wall interaction
is short ranged (exponentially weak at long scales), sufficiently
close to hc1 (where solitons are dilute) thermal fluctuations
always qualitatively modify the above T = 0 predictions.
To understand this we first derive the Helfrich [102,161]
interaction between two (d − 1)-dimensional fluctuating,
curvature-dominated (tensionless) domain walls, separated by
an average distance z. The corresponding energy functional
of the instantaneous local domain-wall separation u(x) is
given by

Edw[u(x)] = 1

2
κ

∫
dd−1x(∇2

⊥u)2, (100)

where the curvature modulus is related to that of the smectic
via κ = K/ndw. The average transverse domain-wall spacing
is determined by the root-mean-squared fluctuations, given by

〈u2〉 ≡ z2
T = T

κ

∫
dd−1qx

q4
x

(101a)

∼ T

κ
x5−d

T . (101b)

This gives the thermal collision length xT as a function of
separation,

xT ≈
( κ

T

)1/(5−d)
z

2/(5−d)
T . (102)

To deduce the entropic (Helfrich) interaction, we note that
domain walls separated by distance z reduce each other’s
fluctuation entropy by an amount s0 (of order 1) per collision.
For a pair of domain walls of linear extent Lx there are
(Lx/xT )d−1 collisions, and thus the entropic part of the free
energy is raised (relative to the infinite separation) by

δFT ≈ T s0

(
Lx

xT

)d−1

, (103)
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leading to the Helfrich curvature-controlled interaction

VH (z) ≈ Ld−1
x

T α

κβ

1

zγ
(104a)

≈ Lx

T 4/3

κ1/3

1

z2/3
for the 2D LO smectic state,

(104b)

with

α = 4

5 − d
, (105a)

β = d − 1

5 − d
, (105b)

γ = 2d − 2

5 − d
. (105c)

Clearly, asymptotically close to the hc1 transition, where
the domain-wall array is sufficiently dilute, the above thermal-
fluctuation-induced steric interaction VH (z) always dominates
over the short-range microscopic interaction. The crossover
density nT

dw is set by a separation 1/nT
dw ≡ zT

dw at which these
are comparable, given by

nT
dw ≈ 1

ξdw ln
(
V0κβξ

γ

dw

/
T α
) . (106)

The corresponding Zeeman field range is hc1 < h < hT ≈
hc1 + T α/(kd−1

F ξ
γ

dwκβ), with the energy density in this regime
given by

εT (ndw) ≈ mN (h)ξdw(hc1 − h)ndw + VH (ndw)ndw (107a)

≈ mN (h)ξdw(hc1 − h)ndw + T α

κβ
n

γ+1
dw . (107b)

A minimization then gives ndw(h),

ndw(h,T ) ≈ (mNξdwκβ)1/γ

T α/γ
(h − hc1)1/γ

for hc1 < h < hT , (108a)

≈ k
(5−d)/2
F κ1/2

T 2/(d−1)
(h − hc1)

5−d
2d−2

for hc1 < h < hT . (108b)

As expected it shows that a fluctuation-enhanced Helfrich
domain-wall repulsion leads to a significantly slower [than
the T = 0, Eq. (95)] power law, and 1/γ increase in the
domain-wall density and therefore of the species imbalance
P (h). Correspondingly, for this low range of Zeeman field
h < hT , this enhances the smectic bulk modulus, B(h,T )
through Eq. (97b).

For h > hT the microscopic exponential interaction takes
over and the growths of ndw(h) and B(h,T ) cross over to that
of the T = 0 result, Eq. (95).

V. GOLDSTONE-MODE FLUCTUATIONS

A. Gaussian fluctuations

As an estimate of the role of Goldstone-mode fluctuations,
we first study them at the Gaussian level, namely, we approxi-
mate the Goldstone-mode action S[u,φ] at the quadratic level,
S0[u,φ] = S0

Sm[u] + S0
sc[φ] by dropping the nonlinearities in

HLO, (77c). Combining with (88) and focusing on the LO

state (leaving the straightforward extension for the FF state for
later), the LO harmonic action is given by

S0
LO =

∫ β

0
dτ

∫
dzdd−1r⊥

[
κ

2
(∂τu)2 + B

2
(∂zu)2 + K

2
(∇2

⊥u)2

+ χ

2
(∂τφ)2 + 1

2
ρ‖

s (∂zφ)2 + 1

2
ρ⊥

s (∇⊥φ)2

]
, (109)

where (for later mathematical convenience) we generalized
the model to d dimensions, with a single LO modulation-
ordering axis ẑ ≡ r̂‖ along q0 and d − 1 space r⊥ transverse
to q0, and introduced κ = 2q2

0χ0, χ = 2χ0. The harmonic
(imaginary-time-ordered) correlations of the decoupled modes
u(τ,r),φ(τ,r) can be easily computed exactly for two-point
correlation functions giving

Gu(τ,r) = 〈u(τ,r)u(0,0)〉0

= 1

β

∑
ωn

∫ �⊥ ddk

(2π )d
e−iωnτ+ik·r

κω2
n + Bk2

z + Kk4
⊥

, (110a)

Gφ(τ,r) = 〈φ(τ,r)φ(0,0)〉0

= 1

β

∑
ωn

∫ � ddk

(2π )d
e−iωnτ+ik·r

κω2
n + ρ

‖
s k2

z + ρ⊥
s k2

⊥
. (110b)

The averaging above was done with the Euclidean probability
distribution e−S0

LO/Z0, using the harmonic action above, and
ωn = 2πn/β is the standard Matsubara frequency. � is the
uv cutoff for the Goldstone-mode action, set by the inverse
coherence length 1/ξ ≈ q0. While the full expression above
can be computed asymptotically in terms of special functions
or numerically, it is more revealing to analyze these in special
limits of interest. The simplest measure of fluctuations is
given by the root-mean-squared (rms) fluctuations of these
Goldstone modes, given by Gu(0,0) = 〈u2〉,Gφ(0,0) = 〈φ2〉.

1. T = 0 quantum fluctuations

At zero temperature, the Matsubara summations in the
above expressions reduce to frequency integrals over ω in
d dimensions giving

〈u2〉Q0 =
∫ �⊥ dωddk

(2π )d+1

1

κω2 + Bk2
z + Kk4

⊥

≈ �d−1
⊥

(2π )d
√

κB
for d > 1, (111a)

〈φ2〉Q0 =
∫ � dωddk

(2π )d+1

1

κω2 + ρ
‖
s k2

z + ρ⊥
s k2

⊥

≈ �d−1
⊥

(2π )d
√

κρ
‖
s

for d > 1. (111b)

Because of the integrand’s anisotropies, the details of above
expressions are sensitive to microscopic ultraviolet (uv) and
infrared (ir) cutoffs. However, the key unambiguous finding
above is that in any physical dimension of interest here (d > 1)
quantum Goldstone-mode fluctuations in the LO state are
finite, set by the short (uv) length scale and therefore are
qualitatively unimportant within the ordered LO state. That
is, the LO state has a nonzero range of stability to quantum
fluctuations, and therefore at T = 0 is well approximated by its
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mean-field form [162]. Quantum fluctuations will, of course,
give quantitative corrections to the properties of the LO state
and will be important near quantum transitions to other putative
phases.

The above findings are consistent with known results for
mathematically related systems. The action (109) for the d-
dimensional T = 0 LO quantum phonon is isomorphic to a
classical Hamiltonian of a generalized (d + 1)-dimensional
columnar liquid crystal [129,130], characterized by two spatial
stiff directions (z and τ ) and d − 1 transverse soft r⊥ axes.
The latter is known (by simple power counting) to exhibit
long-range order down to d + 1 = 5/2 dimensions, which is
consistent with our finding for 〈u2〉, above. Similarly, (110c) is
also consistent with the well-known property of the XY model
exhibiting long-range order down to d + 1 = 2 dimensions.
Thus, at T = 0 we conclude, as advertised in the Introduction,
that a (d + 1)-dimensional superfluid smectic, i.e., the LO
ground state, is stable to quantum fluctuations for d > 1.

2. T > 0 thermal fluctuations

At nonzero T the Goldstone modes u and φ exhibit classical
thermal fluctuations. By the identification of the corresponding
sectors with the well-studied smectic and anisotropic XY
models, we can conveniently take advantage of the large body
of literature on these systems [129,130,134]. However, for
completeness we will work out some of the key findings.

Returning to the full expressions for the harmonic correla-
tion functions (110a) and (110c) at nonzero T , we separate out
the dominant classical ωn=0 = 0 contribution,

〈u2〉T0 =
∫ �⊥

L−1
⊥

ddk

(2π )d
T

Bk2
z + Kk4

⊥
(112a)

≈
⎧⎨
⎩

T

2
√

BK
Cd−1L

3−d
⊥ , d < 3,

T

4π
√

BK
ln q0L⊥, d = 3,

(112b)

〈φ2〉T0 =
∫ �⊥

L−1
⊥

ddk

(2π )d
T

ρ
‖
s k2

z + ρ⊥
s k2

⊥
(112c)

≈

⎧⎪⎨
⎪⎩

T√
ρ

‖
s ρ⊥

s

CdL
2−d
⊥ , d < 2,

T

2π
√

ρ
‖
s ρ⊥

s

ln q0L⊥, d = 2,
(112d)

where we neglected the subdominant quantum contribution
(worked out above), defined a constant Cd = Sd/(2π )d =
2πd/2/[(2π )d�(d/2)], with Sd the surface area of a
d-dimensional sphere, and introduced an infrared cutoff by
considering a system of finite extent L⊥ × Lz, with Lz the
length of the system along the ordering (z) axis and L⊥
transverse to z. Unless it has a huge aspect ratio, such that
Lz ∼ L2

⊥/λ � L⊥, any large system (L⊥,Lz � λ) will have
λLz 	 L2

⊥.
The key observation here is that the smectic phonons exhibit

fluctuations that diverge, growing logarithmically in 3D and
linearly in 2D with system size L⊥. The superconductor phase
fluctuations φ exhibit well-known 2D logarithmic divergences
[138,139,141]. Because (aside from the superfluid stiffness
anisotropy) these are the same as in an ordinary superconductor
and in the bulk 3D case will be finite, indicating a long-range

off-diagonal order, we will focus on the smectic phonon
fluctuations special to the LO (and FF) states.

The expression for the root-mean-squared phonon fluctua-
tions in (112b) leads to the emergence of important crossover
length scales ξ⊥,ξz, related by

ξ⊥ = (ξz

√
K/B)1/2 (113a)

≡
√

ξzλ, (113b)

that characterize the finite-temperature LO state. These are
defined as scales L⊥,Lz at which phonon fluctuations are large,
comparable to the LO period a = 2π/q0. That is, setting

〈u2〉T0 ≈ a2 (114)

in Eq. (112b), we find

ξ⊥ ≈
⎧⎨
⎩

a2
√

BK
T

∼ K
T q0

, d = 2,

ae4πa2
√

BK/T ∼ ae
cK
T q0 , d = 3,

(115a)

where in the second form of the above expressions we took
the simplest approximation for the smectic anisotropy length
λ = √

K/B to be λ = a ∼ 1/q0, and introduced an order-1
Lindemann constant c [163] that depends on the somewhat
arbitrary definition of “large” phonon rms fluctuations.

The thermal connected correlation function of LO phonons,

Cu(r⊥,z) = 〈[u(r⊥,z) − u(0,0)]2〉0, (116)

is also straightforwardly worked out, in 3D giving the
logarithmic Caillé form [134]

C3D
u (r⊥,z) = 2T

∫
d2q⊥dqz

(2π )3

1 − eiq·r

Kq4
⊥ + Bq2

z

= T

2π
√

KB
g3D

T

(
zλ

r2
⊥

,
r⊥
a

)

= T

2π
√

KB

[
ln
( r⊥

a

)
− 1

2
Ei

( −r2
⊥

4λ|z|
)]

(117a)

≈ T

2π
√

KB

{
ln
(

r⊥
a

)
, r⊥ � √

λ|z|,
ln
(

4λz
a2

)
, r⊥ 	 √

λ|z|, (117b)

where Ei(x) is the exponential-integral function. As indicated
in the last form, in the asymptotic limits of r⊥ � √

λz and
r⊥ 	 √

λz this 3D correlation function reduces to logarithmic
growth with r⊥ and z, respectively.

In 2D we instead have [142]

C2D
u (x,z) = 2T

∫
dqxdqz

(2π )2

1 − eiq·r

Kq4
x + Bq2

z

= T

2π
√

KB
g2D

T

(
zλ

x2
,
x

a

)

= 2T

B

[( |z|
4πλ

)1/2

e−x2/(4λ|z|) + |x|
4λ

erf

( |x|√
4λ|z|

)]
(118a)

≈ 2T

B

{( |z|
4πλ

)1/2
, x 	 √

λ|z|,
|x|
4λ

, x � √
λ|z|,

(118b)

where erf(x) is the error function.
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This divergence of smectic phonon fluctuations at nonzero
temperature has immediate drastic implications for the prop-
erties of the LO (and FF) states. As emphasized in the
Introduction, the most important of these is that the thermal
average of the Landau LO order parameters (64) vanishes in
the thermodynamic limit,

〈�LO(r)〉0 = 2�q0〈eiφ cos[q0 · r + θ ]〉0

= 2�q0e
− 1

2 〈φ2〉0− 1
2 q2

0 〈u2〉0 cos(q0 · r)

= 2�̃q0 (L⊥) cos(q0 · r), (119)

with the thermally suppressed order parameter amplitude given
by

�̃q0 (L⊥) = �q0e
− 1

2 φ2
rms

{
e−L⊥/ξ⊥ , d = 2,(

a
L⊥

)η/2
, d = 3,

(120a)

→ 0 for L⊥ → ∞, (120b)

where φ2
rms ≡ 〈φ2〉0. Here we used results for the phonon and

phase fluctuations, (112b) and (112d) and defined the Caillé
exponent

η = q2
0T

8π
√

BK
. (121)

We also neglected the subdominant quantum phonon fluctua-
tions and included all finite (quantum and thermal) supercon-
ducting phase fluctuations inside the nonzero Debye-Waller
factor e− 1

2 φ2
rms . Thus, in qualitative contrast to its mean-field

description, at long scales (longer than ξ⊥,z) a LO state is
characterized by a uniform superconducting order parameter
and density.

To further characterize a finite-temperature LO state, we
compute the Cooper-pair momentum distribution function,

nLO
k =

∫
r,r′

〈�∗
LO(r)�LO(r′)〉eik·r−ik·r′

(122a)

≈
∑

qn=nq0

∣∣�qn

∣∣2 ∫
r,r′

〈ei(φr−φ′
r)eiqn(ur′−ur)〉eik·(r−r′)+iqn(z−z′)

(122b)

≈
∑

qn=nq0

V |�0|2
∫

r
e− 1

2 Cφ (r)e− 1
2 q2

nCu(r)ei(k−qn ẑ)·r,

(122c)

where V is the system’s volume and we generalized the LO
order parameter to include high harmonics qn. To lowest order
we neglected the subdominant coupling between the superfluid
phase and the LO phonons and ignored the nonlinear effects,
approximating u and φ as Gaussian fields. The asymptotic
form of nLO

k can then be readily obtained analytically. As we
saw above, in the 3D superfluid phase, φ exhibits only finite
fluctuations about an ordered state, with

C3D
φ (r � ξ ) ≈ T

2ξ

√
ρ

‖
s ρ⊥

s

, (123)

where we took the coherence length ξ as the short-scale cutoff.
These phase fluctuations then simply give a finite Debye-
Waller factor suppression of the momentum distribution
function amplitude, corresponding to the usual fluctuation-
driven condensate depletion, with a fraction of atoms pushed
out of the q0 condensate.

In contrast, the 3D LO phonon fluctuations diverge loga-
rithmically, (117b), strongly modifying nk from its mean-field
δ-function form. We thus find nk to exhibit a power-law peak
around the ordering wave vector q0 (and its harmonics qn),
reminiscent of (1+1)D Luttinger liquids and two-dimensional
crystals [136–138,141],

nLO
k ≈

∑
qn �=0

nqn

|kz − nq0|2−n2η
for d = 3, (124)

where for simplicity we specialized to k = kzẑ. The
form-factor amplitude is approximately given by nqn

≈
V |�qn

|2e
− T

4ξ

√
ρ
‖
s ρ⊥

s .
An additional characterization of the LO state is through

a structure function S(q), a Fourier transform of the density
correlation function, that in 3D is given by

SLO(q) =
∫

d3r〈δρ(r)δρ(0)〉e−iq·r (125a)

≈
∫

d3r〈|�LO(r)|2|�LO(0)|2〉e−iq·r (125b)

≈
∑
qn

∣∣�qn

∣∣4 ∫
r
〈ei2qn(u0−ur)〉0e

−i(q−2qn ẑ)·r (125c)

≈
∑

n

|�qn
|4

|qz − 2nq0|2−4n2η
for d = 3, (125d)

where we approximated phase and phonon fluctuations by
Gaussian statistics (in 3D valid up to weak logarithmic correc-
tions [131]) and replaced atomic density fluctuations by (twice)
the LO condensate density. The latter neglects a contribution
from the imbalanced atoms, without qualitatively modifying
the result (since atomic density is locked to the condensate
density) and is furthermore quantitatively subdominant for
h 	 hc2, where the imbalance is low. As for nk, we find
that the logarithmically divergent 3D phonon fluctuations lead
to a structure function with highly anisotropic (qz ∼ q2

⊥/λ)
quasi-Bragg peaks (see Fig. 21) replacing the true Bragg peaks
characteristic of the mean-field long-range periodic order.
These predictions are a reflection of the well-known [129,130]
and experimentally tested [135] behavior of conventional
smectic liquid crystals.

In two dimensions, the LO order is even more strongly
suppressed by thermal fluctuations. The linear growth of
the 2D phonon fluctuations leads to exponentially short-
ranged correlations in the LO order parameter and in the
density. Because it is the soft smectic Goldstone mode that is
responsible for these interesting properties they are necessarily
also shared by the FF state [110].

As discussed in the Introduction, another fascinating con-
sequence of the thermal vanishing of 〈�LO〉, (120b), is that the
leading nonzero Landau order parameter characterizing the
LO state is the translationally invariant charge-4 (four-atom
pairing) superconducting order parameter �sc, introduced in
(70a). Thus in the presence of thermal fluctuations the LO
phase corresponds to an exotic state in which the off-diagonal
order is exhibited by pairs of Cooper pairs, i.e., a bound quartet
of atoms, rather than by the conventional two-atom Cooper
pairs [119]. In 2D and 3D this higher-order pairing is driven
by arbitrary low-T fluctuation, rather than by a fine-tuned
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FIG. 6. Feynman graph that renormalizes the elastic moduli K

and B of the LO superfluid.

attractive interaction between Cooper pairs, and therefore has
no mean-field description. We will discuss these and other
fluctuation-induced phases as well as transitions between them
in Sec. VII.

B. Nonlinear elasticity: Beyond Gaussian fluctuations

1. Perturbation theory

As is clear from the derivation of the previous section,
the restoration of the translational symmetry [a uniform LO
state with a vanishing 〈�LO(r)〉, etc.] by thermal fluctuations
is a robust prediction of the quadratic theory that cannot
be overturned by the left-out nonlinearities. However, the
asymptotic form of the correlation functions computed within
the harmonic approximation only extends out to the nonlinear
length scales ξ⊥,z, beyond which the divergently large LO-
phonon fluctuations invalidate the neglect of the nonlinear
phonon operators

Hnonlinear = − 1
2B(∂zu)(∇u)2 + 1

8B(∇u)4. (126)

These will necessarily qualitatively modify predictions (117b),
(118b), (124), and (125) on scales longer than the crossover
scales ξNL

⊥,z, which we compute next.
To see this, we use a perturbative expansion in the nonlinear

operators (126) to assess the size of their contribution to, e.g.,
the free energy. Following a standard field-theoretic analysis,
these can be accounted for as corrections to the compressional
B and bend K elastic moduli, with the leading contribution to
δB summarized graphically in Fig. 6 and given by

δB = −1

2
T B2

∫
q
q4

⊥Gu(q)2 (127a)

≈ −1

2
T B2

∫ ∞

−∞

dqz

2π

∫
L−1

⊥

dd−1q⊥
(2π )d−1

q4
⊥(

Kq4
⊥ + Bq2

z

)2

≈ −1

8

Cd−1T

3 − d

(
B

K3

)1/2

L3−d
⊥ B. (127b)

Here, we neglected the subdominant contribution from quan-
tum fluctuations, i.e., used the thermal equal-time correlator
Gu(q), focused on d � 3 (which allowed us to drop the
uv-cutoff- (�-) dependent part that vanishes for � → ∞),
and cut off the divergent contribution of the long-wavelength
modes via the infrared cutoff q⊥ > 1/L⊥ by considering
a system of a finite extent L⊥. Clearly the anharmonicity
become important when the fluctuation corrections to the
elastic constants (e.g., δB above) become comparable to the
bare microscopic values. The divergence of this correction as
L⊥ → ∞ signals the breakdown of the conventional harmonic

elastic theory on length scales longer than a crossover scale
ξNL
⊥

ξNL
⊥ ≈

{
1
T

(
K3

B

)1/2
, d = 2,

ae
c
T

(
K3

B

)1/2

, d = 3,
(128)

which we define here as the value of L⊥ at which |δB(ξNL
⊥ )| =

B. Within the approximation of the smectic screening length
λ = a, these nonlinear crossover lengths reduce to the phonon
disordering lengths (115) and (113b), defined by a Lindemann-
like criterion. Clearly, on scales longer than ξNL

⊥,z the pertur-
bative contributions of nonlinearities diverge and therefore
cannot be neglected. Their contributions are thus expected to
qualitatively modify the harmonic predictions of the previous
section.

2. Renormalization group analysis in d = 3 − ε dimensions

To describe the physics beyond the crossover scales ξNL
⊥,z—

i.e., to make sense of the infrared-divergent perturbation theory
found in Eq. (127b)–requires a renormalization group analysis.
This was first performed in the context of conventional liquid
crystals and Lifshitz points in a seminal work by Grinstein and
Pelcovits (GP) [131]. For completeness, we complement GP’s
treatment with Wilson’s momentum-shell renormalization
group (RG) analysis, extending it to an arbitrary dimension
d, so as to connect to the behavior in 2D, which has an exact
solution [132].

To this end we integrate (perturbatively in Hnonlinear) short-
scale Goldstone modes in an infinitesimal cylindrical shell of
wave vectors, �e−δ� < q⊥ < � and −∞ < qz < ∞ (δ� 	 1
is infinitesimal). The leading perturbative momentum-shell
coarse-graining contributions come from terms found in direct
perturbation theory above, but with the system size diver-
gences controlled by the infinitesimal momentum shell. The
thermodynamic averages can then be equivalently carried out
with an effective coarse-grained Hamiltonian of the same form
(77c), but with all the couplings infinitesimally corrected by
the momentum shell. For smectic moduli B and K this gives

δB ≈ − 1
8gBδ�, (129a)

δK ≈ 1
16gKδ�, (129b)

where the dimensionless coupling is given by

g = Cd−1�
3−d
⊥ T

(
B

K3

)1/2

(130a)

≈ T

2π

(
B

K3

)1/2

, (130b)

and in the second form we approximated g by its value
in 3D. Because it is only the smectic nonlinearities that
are qualitatively important, no other stiffnesses experience
corrections that accumulate at long scales. Equations (129)
show that B is softened and K is stiffened by the nonlinearities
in the presence of thermal fluctuations, making the system
effectively more isotropic.

For convenience we then rescale the lengths and the
remaining long-wavelength part of the fields u<(r) according
to r⊥ = r ′

⊥eδ�, z = z′eωδ�, and u<(r) = eφδ�u′(r′), so as to
restore the ultraviolet cutoff �⊥e−δ� back up to �⊥. The
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FIG. 7. (Color online) Renormalization group flow for a LO
state in d < 3 dimensions, illustrating that at low T it is a “critical
phase” displaying universal power-law phenomenology, controlled
by a nontrivial infrared stable fixed point.

underlying rotational invariance ensures that the graphical
corrections preserve the rotationally invariant strain operator
[∂zu − 1

2 (∇⊥u)2], renormalizing it as a whole. It is therefore
convenient (but not necessary) to choose the dimensional
rescaling that also preserves this form. It is easy to see that
this choice leads to

φ = 2 − ω. (131)

The leading (one-loop) changes to the effective coarse-grained
and rescaled action can then be summarized by differential RG
flows

dB(�)

d�
=
(

d + 3 − 3ω − 1

8
g(�)

)
B(�), (132a)

dK(�)

d�
=
(

d − 1 − ω + 1

16
g(�)

)
K(�). (132b)

From these we readily obtain the flow of the dimensionless
coupling g(�),

dg(�)

d�
= (3 − d)g − 5

32
g2, (133)

whose flow for d < 3 away from the g = 0 Gaussian fixed
point encodes the long-scale divergences found in the direct
perturbation theory above. As summarized in Fig. 7 for d < 3,
the flow terminates at a nonzero fixed-point coupling g∗ =
32
5 ε (with ε ≡ 3 − d), which determines the nontrivial long-

scale behavior of the system (see below). As with treatments
of critical points [164], but here extending over the whole
LO phase, the RG procedure is quantitatively justified by the
proximity to d = 3, i.e., smallness of ε.

We can now use a standard matching calculation to
determine the long-scale asymptotic form of the correlation
functions on scales beyond ξNL

⊥,z. Namely, applying above
coarse-graining RG analysis to a computation of correlation
functions allows us to relate a correlation function at long
length scales of interest to us (which, because of infrared
divergences is impossible to compute via a direct perturbation
theory) to that at short scales, evaluated with coarse-grained
couplings, B(�),K(�), . . . . In contrast to the former, the latter
is readily computed via a perturbation theory that because
of the shortness of the length scale is convergent. The result
of this matching calculation to lowest order gives correlation
functions from an effective Gaussian theory,

Gu(τ = 0,k) ≈ T

B(k)k2
z + K(k)k4

⊥
, (134)

with moduli B(k) and K(k) that are singularly wave-vector
dependent, the latter determined by the solutions B(�) and
K(�) of the RG flow equations (132a) and (132b) with initial

conditions the microscopic values B and K , e.g., as given by
the BCS predictions, Eq. (80).

2D analysis. In d = 2, at long scales g(�) flows to a
nontrivial infrared stable fixed point g∗ = 32/5, and the
matching analysis predicts correlation functions characterized
by anisotropic wave-vector-dependent moduli,

K(k) = K(k⊥ξNL
⊥ )−ηK fK

[
kzξ

NL
z

/
(k⊥ξNL

⊥ )ζ
] ∼ k

−ηK

⊥ ,

(135a)

B(k) = B(k⊥ξNL
⊥ )ηB fB

[
kzξ

NL
z

/
(k⊥ξNL

⊥ )ζ
] ∼ k

ηB

⊥ . (135b)

Thus, on scales longer than ξNL
⊥,z these qualitatively modify the

real-space correlation function asymptotics of the harmonic
analysis in the previous section. In Eqs. (135) the universal
anomalous exponents are given by

ηB = 1
8g∗ = 4

5ε

≈ 4
5 for d = 2, (136a)

ηK = 1
16g∗ = 2

5
ε

≈ 2
5 for d = 2, (136b)

determining the z − r⊥ anisotropy exponent via (134) to be

ζ ≡ 2 − (ηB + ηK )/2 (137a)

= 7
5 for d = 2, (137b)

as expected reduced by thermal fluctuations down from its
harmonic value of 2. The k⊥ − kz dependence of B(k),K(k)
is determined by universal scaling functions fB(x),fK (x)
that we will not compute here. The underlying rotational
invariance (special to a LO state realized in an isotropic trap)
gives an exact relation between the two anomalous ηB,K

exponents [165],

3 − d = ηB

2
+ 3

2
ηK, (138a)

1 = ηB

2
+ 3

2
ηK for d = 2, (138b)

which is obviously satisfied by the anomalous exponents
Eqs. (136b), and (136a), computed here to first order in
ε = 3 − d [165].

Thus, as advertised in the Introduction, we find that
a finite-temperature 2D LO state is highly nontrivial and
qualitatively distinct from its mean-field perfectly periodic
form. In addition to a vanishing LO order parameter and
associated fluctuation-restored translational symmetry, it is
characterized by a universal nonlocal length-scale-dependent
modulus, Eq. (135). Consequently its Goldstone-mode theory
and the associated correlations are not describable by a local
field theory, which is an analytic expansion in local field
operators. Instead, in 2D, on length scales beyond ξNL

⊥,z, thermal
fluctuations and correlations of the LO state are controlled by
a nontrivial fixed point, characterized by universal anomalous
exponents ηK,B and scaling functions fB,K (x) defined above.

Above we obtained this nontrivial structure from an RG
analysis and estimated these exponents within a controlled
but approximate ε expansion. Remarkably, in 2D an exact
solution of this problem was discovered by Golubovic and
Wang [132]. It predicts an anomalous phenomenology in
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qualitative agreement with the RG predictions above, and gives
exact exponents

η2D
B = 1/2, (139a)

η2D
K = 1/2, (139b)

ζ 2D = 3/2. (139c)

3D analysis. In d = 3, the nonlinear coupling g(�) is
marginally irrelevant, flowing to 0 at long scales. Despite this,
the marginal flow to the Gaussian fixed point is sufficiently
slow (logarithmic in lengths) that (as usual at a marginal
dimension [164]) its power-law-in-� dependence leads to
a universal, asymptotically exact logarithmic wave-vector
dependence [131]

K(k⊥,kz = 0) ∼ K

∣∣∣∣1 + 5g

64π
ln(1/k⊥a)

∣∣∣∣
2/5

, (140a)

B(k⊥ = 0,kz) ∼ B

∣∣∣∣1 + 5g

128π
ln(λ/kza

2)

∣∣∣∣
−4/5

. (140b)

This translates into equal-time LO order parameter corre-
lations given by

n(z,r⊥ = 0) = 〈�∗
LO(r)�LO(0)〉 (141a)

∼ e−c1(ln z)6/5
cos(q0z) (141b)

(with c1 a nonuniversal constant) as discovered in the context
of conventional smectics by Grinstein and Pelcovits [131].
Although these 3D anomalous effects are less dramatic and
likely to be difficult to observe in practice, theoretically
they are quite significant as they represent a qualitative
breakdown of the mean-field and harmonic descriptions, which
respectively ignore interactions and thermal fluctuations.

We conclude this section by noting that all of the above anal-
ysis is predicated on the validity of the purely elastic model,
Eq. (77c), which neglects topological defects, such as vortices
and dislocations. If these unbind (as they undoubtedly do in 2D
at any nonzero temperature [142]), then our predictions above
only hold on scales shorter than the separation ξv ,ξd between
these defects.

VI. TOPOLOGICAL DEFECTS IN A
LARKIN-OVCHINNIKOV STATE

We now turn to the discussion of the topological defects,
followed in the subsequent section by an analysis of phases
and transitions accessible by their unbinding. As discussed
in Sec. III, the LO superfluid is distinguished by two inde-
pendent order-parameter components �±q0 , corresponding to
±q0 finite center-of-mass momentum pairing [152]. These
complex order parameters �±q0 = |�q0 |eiφ± in turn lead to
two independent phase Goldstone modes φ± [or equivalently
φ,θ = −q0u (65)], controlled by a long-scale Hamiltonian,
which at harmonic level is given by

H 0
LO =

∫
dzdd−1r⊥

[∑
σ=±

(
ρ

‖
s

4
(∂zφσ )2 + K

4q2
0

(∇2
⊥φσ )2

)

+ ρ⊥
s

8
(∇⊥φ+ + ∇⊥φ−)2

]
(142a)

=
∫

dzdd−1r⊥

[
B

2
(∂zu)2 + K

2
(∇2

⊥u)2 + 1

2
ρ‖

s (∂zφ)2

+ 1

2
ρ⊥

s (∇⊥φ)2

]
, (142b)

with the couplings given in Eqs. (80) and (81) and in obtaining
Eq. (142) we dropped the subdominant higher-gradient (K)
term in φ. The analysis of this Hamiltonian in the absence of
topological defects was discussed in the previous section. We
now use it to understand the energetics of defects beyond that
“spin-wave” approximation.

As in an ordinary superfluid, because φ± are compact phase
fields (φ± and φ± + 2π are physically identified), in addition
to their smooth configurations, there are vortex topological
excitations, corresponding to non-single-valued configurations
of φ±(r). These are defined by two corresponding integer-
valued closed line integrals enclosing a vortex line:∮

d �� · �∇φ± = 2πn±, (143)

that we collectively designate by a two-component integer-
valued vector �Nv = (n+,n−), with n± ∈ Z. These integer
vector defects �Nv are associated with the fundamental group
�1 of the torus U(1) ⊗ U(1) [166] that characterizes the
low-energy manifold of Goldstone modes of the LO state.
In this respect the LO superfluid has similarities to other
U(1) ⊗ U(1) systems, such as easy-plane spinor-1 condensates
[167] and two-gap superconductors, e.g., MgB2 [168].

In a differential form, the line defects are equivalently
encoded as

∇ × ∇φ± = m±, (144)

with vortex line topological charge density given by

m±(r) = 2π
∑

i

∫
ni

± t̂i(si)δ
3(r − ri(si)) dsi, (145)

where si parametrizes the ith vortex line (or loop), ri(si) gives
its positional conformation, t̂i(si) is the local unit tangent, and
vortex “charges” ni

± are independent of si , since the charge of
a given line is constant along the defect. Furthermore,

∇ · m(r) = 0 (146)

enforces the condition that vortex lines cannot end in the bulk
of the sample; they must either form closed loops or extend
entirely through the system.

A. Vortices and dislocations

As with the Goldstone modes in (64), where it was more
convenient to work with the more physical sum and dif-
ference modes φ(r) = 1

2 (φ+ + φ−) and θ (r) = 1
2 (φ+ − φ−),

Eqs. (65) and (142b), we consider topological defects associ-
ated with singularities in φ(r) and θ (r) [166], defined by∮

d �� · �∇φ = 2πnv, (147a)∮
d �� · �∇θ = 2πnd. (147b)

Given the definitions of φ,θ , the corresponding vortex (v)
and dislocation (d) defect “charges” nv,d are related to the
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FIG. 8. (Color online) A 2π -vortex defect in a LO state. The
2D arrows indicate the corresponding complex condensate LO wave
function �v

LO(r), with orientations characterizing the phase φ(r).

integer-valued n± according to

nv = 1
2 (n+ + n−), (148a)

nd = 1
2 (n+ − n−), (148b)

and therefore admit half-integer and integer topological
“charges”, collectively designated by a vortex flavor vector
�N = (nv,nd ). The minimal values of n+ = ±1, n− = ±1 lead

to four fundamental defects (eight counting the overall ± signs
of each)

�Nv = (±1,0) ↔ �Nv,v = (±1,±1), (149a)
�Nd = (0,±1) ↔ �Nv,−v = (±1, ∓ 1), (149b)

�Nv-d, = (±1/2,±1/2) ↔ �Nv,0 = (±1,0), (149c)
�N ∗

v-d, = (±1/2, ∓ 1/2) ↔ �N0,v = (0,±1), (149d)

where the first two defects �Nv, �Nd are ordinary 2π -vortices in
φ+ and in φ−, which respectively correspond to a 2π -vortex
in φ superimposed on defect-free LO layers (Fig. 8) and an
integer a dislocation in the periodic LO smectic state.

As illustrated in Fig. 9 for a 2D state, the latter of these two
corresponds to a LO state with an edge dislocation of a smectic
layer, or equivalently, two missing adjacent ± domain walls,
with no additional phase winding in φ. In 2D the LO order
parameter in the presence of these point defects is given by

�v
LO = 2eiϕ(y,z) cos(q0z) for �Nv = (1,0), (150a)

�d
LO = 2 cos[q0z + θd (y,z)] for �Nd = (0,1), (150b)

where ϕ(y,z) = tan−1(z/y) is the azimuthal coordinate angle
creating the singular vortex, and θd (y,z) = ϕ(y,x) + θ0(y,x)
the corresponding dislocation angle with a nonsingular part
θ0(y,x) accounting for smectic anisotropic elasticity. As
can be seen from their form in terms of the �Nv = (n+,n−)
description, these two seemingly simpler integer defects
in Eqs. (149a) and (149b) are actually composites of the
fundamental �Nv,0 = (1,0) and �N0,v = (0,1) defects.

The �Nv,−d = (±1/2,±1/2), �Nv,−d = (±1/2, ∓ 1/2)
defects are half-integer vortex-dislocation composites, where

FIG. 9. (Color online) An integer a-dislocation defect in the LO
layered structure, with no defects in its superfluid phase.

a ±π -vortex is bound to half of a single domain wall, an a/2
dislocation, illustrated in Fig. 10. In terms of the two coupled
phase fields φ+,φ− these half-integer defects correspond to
an integer vortex in one but not both φ± phases. In 2D the LO

FIG. 10. (Color online) Two complementary forms illustrating a
half-integer vortex-dislocation (π,a/2) defect in the LO state. The
2D arrows indicate the corresponding complex condensate LO wave
function �v−d

LO (r), with orientations characterizing the phase φ(r).
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order parameter in the presence of such a half-integer defect
is given by

�
v,−d
LO = 2eiϕ(y,z)/2 cos[q0z + ϕ(y,z)/2] for �Nv = (1/2,1/2).

(151)

In contrast to a conventional uniform superfluid or a
standard smectic density wave, here the product form of the
pair-density-wave LO order parameter (64) allows this com-
posite half-integer defect. Namely, although the superfluid and
the smectic density-wave order-parameter components each
change by a minus sign (wind by a phase of π ), the product LO
order-parameter �LO, Eq. (64), remains single-valued in the
presence of such (±1/2,±1/2) and (±1/2, ∓ 1/2) fractional
composite defects.

B. Energetics

The energy cost of these vortices and dislocations can be
computed with straightforward extensions of standard analyses
[130,142].

1. 2π -vortex: �Nv = (1,0)

The 2π -vortex in the LO superfluid is obtained via a
solution of the Euler-Lagrange equation for φ(r),

ρ‖
s ∂

2
z φv + ρ⊥

s ∇2
⊥φv = 0, (152)

under the condition of a 2π -vortex line singularity,

∇ × ∇φv = 2π

∫
t̂(s)δ3(r − r(s)) ds, (153)

located at r(s) with a unit tangent t̂(s). The smectic layers
remained undistorted at long scales, u = 0 (equivalently
φ+ = φ−). The solution displays a qualitatively standard form,
but with distortions associated with a large anisotropy ratio
ρ‖/ρ⊥, that, as we demonstrated dramatically diverges at the
upper critical field hc2. This is reflected in the anisotropy of
the mass current flow around a vortex line running within
the LO (smectic, xy) layers (a mass flow with velocity
component along the smectic layer normal, q̂0 = ẑ), illustrated
in Fig. 11. For concreteness we look at two straight vortex line
configurations.

2π -vortex line ||q0. For a straight vortex line running along
q0 (z axis) the above equations reduce to

∇2
⊥φv = 0, (154a)

∇ × ∇φv = 2π ẑδ2(r⊥), (154b)

which gives φv(r) = ϕ(x,y), where ϕ(x,y) = tan−1(y/x) is
the azimuthal coordinate angle within a smectic layer (xy
plane). The corresponding superfluid “velocity” vv = ∇φv for
such a 2π -vortex line directed along q̂0 = ẑ (flowing in the xy
⊥ plane) is isotropic, given by a standard ϕ̂/r⊥ form:

v‖
v = 1

r2
⊥

(−y,x,0). (155)

Integrating the kinetic energy density Eq. (142b) in a system
of dimensions L⊥ × L⊥ × Lz, we readily find the energy to
be given by the familiar 3D (linear-logarithmic) form,

E‖
v = πρ⊥

s Lz ln (L⊥/a) , (156)

FIG. 11. (Color online) Anisotropic superfluid flow around a
2π -vortex near hc2, predicted to be characterized by an anisotropic
superfluid ratio ρ‖

s /ρ
⊥
s that diverges at hc2.

diverging linearly with the vortex line’s length Lz and
logarithmically with the system’s in-plane extent L⊥.

2π -vortex line ⊥ q0. In contrast, a vortex line directed along
the smectic layers (taken here to be along the x axis, with flow
confined to the anisotropic y-z plane), characterized by

∇ × ∇φv = 2π x̂δ(y)δ(z), (157)

is described by φ(r) = ϕ(
√

ρ
‖
s y,
√

ρ⊥
s z) = tan−1( z

y

√
ρ⊥

s

ρ
‖
s

) and

a velocity field

v⊥
v =

√
ρ

‖
s ρ⊥

s

ρ
‖
s y2 + ρ⊥

s z2
(0, − z,y), (158)

illustrated in Fig. 11.
As expected from the superfluid-stiffness anisotropy near

hc2, where ρ⊥
s /ρ

‖
s 	 1, the superflow around a vortex falls off

much more slowly across the LO layers (along z) than within
them (along r⊥). This leads to (near hc2 a highly) anisotropic
ellipticlike superflow with the major axis oriented along the
LO layers normal (along q0) and a velocity flow that is not
everywhere tangent to the equipotential flows, as illustrated in
Fig. 11.

Substituting this flow inside the Hamiltonian (142b), the
corresponding vortex energy is then readily shown to be given
by

E⊥
v = π

√
ρ

‖
s ρ⊥

s L⊥ ln
[(

ρ‖
s L

2
⊥ + ρ⊥

s L2
z

)1/2
/a
]
. (159)

In 2D it reduces to a familiar logarithmic form by replacement
of the L⊥ factor by the sample thickness.
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2. a-dislocation: �Nd = (0,1)

An integer dislocation defect in the LO superfluid is sim-
ilarly obtained via a solution of the Euler-Lagrange equation
for u = −θ/q0, obtained by minimizing Eq. (142b), with a
condition of φ = 0 (equivalently φ+ = −φ−):

B∂2
z ud − K∇4

⊥ud = 0, (160)

and the singularity and continuity conditions

∇ × vd = md , (161a)

∇ · md = 0, (161b)

with the singular strain

vd = ∇ud, (162)

and the dislocation “charge” density

md (r) = a
∑

i

∫
ni

d t̂i(si)δ
3(r − ri(si)) dsi . (163)

As for the vortex, si parametrizes the ith dislocation loop, ri(si)
is the conformation of that loop, t̂i(si) is its local unit tangent,
and ni

d is the number of excess layers associated with the
dislocation. Note that ni

d is independent of si , since the charge
of a given dislocation line is constant along the line defect.

The dislocation solution is most straightforwardly obtained
in Fourier space, where the equations reduce to

qzv
z
d + λ2q2

⊥q⊥ · vd = 0, (164a)

iq × vd = md , (164b)

and the general solution is given by

vd = iq × md

q2
+ iqχ (q), (165)

with χ (q) a smooth elastic distortion around the dislocation
line that is obtained via the Euler-Lagrange equation (160) and
is given by

χ = −qz(1 − λ2q2
⊥)

�Sm
q q2

εzij qim
d
j . (166)

The superfluid phase remains uniform at long scales, φ = 0
(equivalently φ+ = −φ−). Here we defined the inverse of the
LO phonon propagator,

�Sm
q ≡ q2

z + λ2q⊥, (167)

with λ = √
K/B a length characterizing the LO domain-wall

deformations. Insertion of the above expression for vd into the
original elastic Hamiltonian Eq. (142b) gives the Coulomb-
gas-like Hamiltonian that determines the energy of an arbitrary
dislocation configuration,

Hd = 1

2

∫
q

[
Kq2

⊥
�Sm

q
P ⊥

ij (q) + Ecδij

]
md

i (q)md
j (−q), (168)

where P ⊥
ij (q) = δ⊥

ij − q⊥
i q⊥

j /q2
⊥ is the in-(xy) plane transverse

projection operator, with ⊥ indicating projection onto the
smectic layers. Here we also added the dislocation core energy
determined by its short-scale (a = 2π/q0) configuration, at
which the above continuum analysis no longer applies. A
simplest estimate (up to possibly nontrivial dimensionless

factors set by λ/a, which can only be determined through
a microscopic calculation) of this core energy density Ec is
given by K .

In 3D, two limiting dislocation line configurations are the
screw and edge dislocations,

mscrew
d (r) = aẑδ2(r⊥), (169a)

medge
d (r) = ax̂δ(y)δ(z), (169b)

running perpendicular to and along smectic layers, respec-
tively. Within the above harmonic continuum approximation,
the long-scale elastic contribution [the first term in (168)]
to the energy of a screw dislocation vanishes identically
[because of P ⊥

ij (q)], physically because of the smectic’s soft
in-plane curvature elasticity and due to the absence of long-
scale compressional distortion in a screw dislocation, as can
be readily verified. Thus its energy is determined by short-scale
core energetics inaccessible to harmonic elastic analysis.

For a single edge dislocation along x̂ (169b) �md (q) =
ax̂2πδ(qx), giving for the elastic part of the energy

E
3D edge
d,el = L⊥a2

∫
q

Kq2
⊥

�Sm
q

(
1 − q2

x

/
q2

⊥
)
2πδ(qx) (170a)

= L⊥a2
∫

dqydqz

(2π )2

Kq2
y

q2
z + λ2q4

y

(170b)

= Ka

2λ
L⊥, (170c)

where the factor of L⊥ came from the regularized identity
2πδ(qx)δ(qx) = L⊥δ(qx). Although the first “elastic”
contribution in Eq. (168) no longer vanishes, the above energy
is dominated by the short cutoff scale a and therefore in
principle indistinguishable from the core energy. Thus, based
on this analysis we can only provide an estimate of the 3D
dislocation energies,

E3D screw
d ≈ KLz, (171a)

E
3D edge
d ≈ Ka

λ
L⊥ ≈ (BK)1/2aL⊥ ≈ KL⊥, (171b)

diverging linearly with its length.
Correspondingly, as first demonstrated by Toner and Nelson

[142], in two dimensions the energy of a smectic edge dislo-
cation is constant, i.e., system-length independent, given by

E2D
d ≈ a

√
BK ≈ K. (172)

As we will see in the next section, this observation has crucial
implications for the instability of a finite-temperature 2D LO
state [142].

3. Half-integer vortex-dislocation defect: �Nv-d = (1/2,1/2)

As discussed above [112], on general grounds a LO (but
not a FF) superconductor allows half-integer defects that are a
composite of a π -vortex and an a/2 dislocation, illustrated in
Fig. 10. The form and the energy associated with this defect
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requires a solution of Euler-Lagrange equations for φ±,

−ρ‖
s ∂

2
z φ± + K

q2
0

∇4
⊥φ± − 1

2
ρ⊥

s ∇2
⊥φ± − 1

2
ρ⊥

s ∇2
⊥φ∓ = 0,

(173)

with singularity conditions

∇ × ∇φ+ = 2π x̂δ(y)δ(z), (174a)

∇ × ∇φ− = 0, (174b)

for concreteness taken to be a straight vortex line in φ+ running
parallel to LO layers, along the x̂ axis, and φ− = 0.

Solving these equations gives the defect’s shape from which
the energy is readily computed:

Eπ-a/2 ≈ 1
4L⊥

[
π

√
ρ

‖
s ρ⊥

s ln
[(

ρ
‖
s L

2
⊥ + ρ⊥

s L2
z

)1/2/
a
]+ K

]
.

(175)

Because the energy scales as a square of the defect’s topolog-
ical charge nv,d , as expected, the above energy of the half
vortex-dislocation defect is one-quarter of the sum of the
energies of the unit vortex and dislocation.

C. Dual description: Coupled XY-smectic models

In characterizing phases in terms of topological defects, it
is often useful to have a continuum field-theoretic description
of defects and of the corresponding transitions associated with
their unbinding. Such a description, which complements the
LO Goldstone model (142), is obtained through a duality
transformation that we develop here. In 3D the analysis is
somewhat complicated and results in two coupled U(1) gauge
theories, whose derivation and analysis we leave to a future
presentation [151]. Here, for simplicity we will exclusively
focus on two dimensions.

To this end, starting with HLO, (142b), allowing for singular
configurations of φ (vortices) and u (dislocations) discussed
in the previous section, and integrating out the smooth parts
of Goldstone modes, we obtain a Coulomb-gas description of

a finite density of topological defects,

HXY -Sm
CG = 1

2

∫
q

[√
ρ⊥

s ρ
‖
s

�XY
q

|mq,v|2 + Kq2
⊥

�Sm
q

|mq,d |2
]

+
∑

ri

(
Ev

c n
2
ri ,v

+ Ed
c n2

ri ,d

)
, (176)

where

�XY
q = q2

⊥

√
ρ⊥

s /ρ
‖
s + q2

z

√
ρ

‖
s /ρ⊥

s , (177a)

�Sm
q = q2

z + λ2q4
⊥. (177b)

Here, mq,v,mq,d are the Fourier transforms of the vortex and
dislocation densities mv(r) = ∑

i 2πnv
ri
δ2(r − rv

i ), md (r) =∑
i and

ri
δ2(r − rd

i ), with nv,d
ri

= 1
2 (n+

ri
± n−

ri
), and n±

ri
∈ Z the

independent elementary integer defects, defined in the previous
section. We also introduced the vortex and dislocation core
energy Ev,d

c to account for short-scale core physics not
accounted for by the above continuum description. Although
by time-reversal symmetry the core energies of the elementary
defects n± are identical, those of the vortex and dislocation
composites will generically be distinct with Ev

c �= Ed
c .

To obtain a continuum description of these integer-valued
fields, it is convenient to decouple interaction of these defects
using a Hubbard-Stratonovich transformation by introducing
a pair of dual real fields (corresponding potentials) φ̃,θ̃ with
the Hamiltonian

H̃ [φ̃,θ̃ ,nv,d ] = H̃0[φ̃,θ̃ ] + i

∫
r
(φ̃(r)mv(r) + q0θ̃ (r)md (r))

+
∑

ri

(
Ev

c n
2
ri ,v

+ Ed
c n2

ri ,d

)
, (178)

where

H̃0[φ̃,θ̃ ] = 1

2

∫
q

[
�XY

q√
ρ⊥

s ρ
‖
s

|φ̃q|2 + �Sm
q q2

0

Kq2
⊥

|θ̃q|2
]
. (179)

The thermodynamics is characterized by a partition func-
tion

Z =
∫

[dφ̃dθ̃ ]
∏
rv,d
i

∑
n

v,d
ri

e
−H̃ [φ̃,θ̃ ,nv,d

ri
] (180a)

=
∫

[dφ̃dθ̃ ]e−H̃0[φ̃,θ̃ ]
∏
rv,d
i

∑
n

v,d
ri

e
i2πnri,v φ̃(ri,v )+i2πnri,d θ̃ (ri,v )−Ev

c n2
ri ,v

−Ed
c n2

ri ,d , (180b)

where we chose to measure all energies in units of kBT .
The summation over vortex and dislocation charges nv,d

ri
can

be readily done in the dilute defect limit, corresponding to
large core energies Ec. In this limit the summations can
be limited to nine lowest-order terms, corresponding to no
vortices present, �N0-0, one vortex of either species and sign at
a site, �N±1,0, �N0,±1, or two vortices of distinct species existing
at a single site, �N±1,±1. Equivalently, in terms of �N vortex-
dislocation nomenclature, these respectively correspond to

�N : (0,0), ±(π,a/2), ±(π,−a/2), ±(2π,0), ±(0,a).

(181)

This gives

Z ≈
∫

[dφ̃dθ̃ ]e−H̃0[φ̃,θ̃ ]

[
1 + 2

∑
r1

(
e− 1

4 Ev
c − 1

4 Ed
c cos[π (φ̃ + θ̃)]

+ e− 1
4 Ev

c − 1
4 Ed

c cos[π (φ̃ − θ̃)]

+ e−Ev
c cos(2πφ̃) + e−Ed

c cos(2πθ̃ )
)]

. (182)

All other vortex configurations (for example, two
defects of either species existing on distinct sites)
are not included as they correspond to higher-order
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contributions, suppressed at low fugacity. After reexpo-

nentiating, this equation leads to a generalized sine-
Gordon model for the coupled φ̃,θ̃ fields, with the dual
Hamiltonian

H̃ = 1

2

∫
q

⎡
⎣ �XY

q√
ρ⊥

s ρ
‖
s

|φ̃q|2 + �Sm
q q2

0

Kq2
⊥

|θ̃q|2
⎤
⎦−

∫
r

[gπ,a/2 cos(πφ̃) cos(πθ̃) + g2π,0 cos(2πφ̃) + g0,a cos(2πθ̃ )], (183)

where the couplings are gπ,a/2 = 4
a2 e

− 1
4 Ev

c − 1
4 Ed

c , g2π,0 =
2
a2 e

−Ev
c , and g0,a = 2

a2 e
−Ed

c , and we converted the sum over
r1 into an integral over r via a lattice constant a.

In the opposite limit of a small core energy Ev,d
c , the defect

density is high and the summation over the integer charges n±
r

can be carried out utilizing the Poisson summation formula,
which leads to a replacement of the, e.g., cos(2πφ̃) potentials
above by the Villain potential, defined by

e−βVV [φ̃] =
∑

n

ei2πnφ̃−Ecn
2

(184a)

=
∑

p

e− 1
4Ec

(2πφ̃−2πp)2

. (184b)

The latter can be approximated by a single harmonic with an
effective coupling g

v,d
eff = 1/(2Ev,d

c a2).
The resulting generalized sine-Gordon model is convenient

for analyzing the effects of defects on the LO state, particularly
for the computation of their screening on long scales, unbind-
ing, and for the analysis of the resulting disordered state. From
the form (183) it is clear that (aside from an inconsequential
anisotropy) the dual vortex sector described by φ̃ has a standard
sine-Gordon form. In contrast, the dual dislocation sector
described by θ̃ is qualitatively modified by the highly nonlocal
and qualitatively anisotropic smectic kernel �Sm

q [169].
We next turn to a detailed discussion of the implication

of these defects for possible phases and transitions associated
with the LO state.

VII. PHASES AND PHASE TRANSITIONS:
LARKIN-OVCHINNIKOV LIQUID CRYSTALS

We now turn to a discussion and characterization of a
class of phases emerging from the Larkin-Ovchinnikov state
by a partial disordering of it. Because these phases partially
break spatial symmetries, we will refer to them collectively as
LO liquid crystals. We first discuss general symmetry-based
possibilities and then explore their concrete realization in terms
of fluctuation-driven proliferation of topological defects.

A. Landau’s order parameters and spontaneously
broken symmetries

A conventional characterization of phases is through the
Landau classification, where phases are distinguished by
nonvanishing order parameters and corresponding symmetries
that they break. From this prospective a zero-temperature
LO (smectic pair-density wave) superfluid (SFSm) breaks
three symmetries: the translations Tq0 along q0 (ẑ), the
rotations Rq0 about the axis transverse to q0 [of the full 3D
Euclidean group E(3)], and the U(1) symmetry associated with
atom conservation. The corresponding nonvanishing order

parameter that transforms nontrivially under this group of
symmetries is the LO pair-density wave (64).

By considering all possible basic combinations of spon-
taneously broken subsets of these symmetries, we uncover
five additional atomic liquid-crystal phases, which are de-
scendants of the smectic LO state [170]. To enumerate these
systematically we begin with the zero-temperature LO state,
where all three of these symmetries are broken and partially
restore them by progressively disordering the state. Restoring
the translational symmetry Tq0 , while keeping U(1) and Rq0 ,
leads to a state with orientational and off-diagonal orders,
which is a nematic superfluid, SFN . By analogy with the
conventional (nonsuperfluid) nematics the resulting state can
be characterized by a complex traceless symmetric second-
rank tensor Qij .

Subsequently disordering the orientational order and
thereby also restoring the rotational symmetry Rq0 leads to
an isotropic superfluid, SFI , that exhibits a finite species
imbalance. Symmetrywise, the resulting SFI state is isomor-
phic to the polarized superfluid SFM predicted [4,44] and
observed to appear at a nonzero imbalance on the BEC side
of the BCS-BEC crossover. In contrast (as a descendant of
the LO state expected to be stabilized by Fermi surfaces
imbalance) here the SFI state is realized in an imbalanced
superfluid on the BCS side, something that has been searched
for dating back to Sarma [75], but has not been possible within
mean-field treatments, which instead predict an instability to
phase separation [4,40,44].

As summarized by Tables I and II the additional
three phases, smectic, nematic, and isotropic Fermi liquids,
FLSm,FLN,FLI are the nonsuperfluid counterparts of the
three discussed above, obtained by first restoring the U(1)
symmetry by disordering the off-diagonal long-range order.
The fully disordered FLI state is simply the normal state of
the polarized Fermi gas, albeit strongly interacting. Together
these intermediate fluctuation-induced phases (along with a
number of other possible ones that we discuss below) naturally
interpolate between the fully gapped singlet (homogeneously
and isotropic) BCS superconductor at zero imbalance and low
temperature, and the normal polarized Fermi liquid at large
imbalance and/or high temperature.

TABLE I. Five phases that naturally emerge as disordered
descendants of the LO (superfluid smectic, SFSm) state.

FLSm −→ FLN −→ FLI

↑U(1) ↑U(1) ↑U(1)
SFSm −→ SFN −→ SFI
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TABLE II. A summary of LO liquid-crystal Fermi liquid (FL)
and superfluid (SF) phases, and corresponding order parameters
and broken symmetries, indicated by ×’s. Unbroken symmetries are
marked by check marks. The subscripts I,N, Sm respectively indicate
the isotropic, nematic, and smectic orders.

Phases U(1) Tq0 Rq0

FLI

√ √ √
FLN

√ √ ×
FLSm

√ × ×
SFI × √ √
SFN × √ ×
SFSm × × ×

B. Larkin-Ovchinnikov liquid crystals via topological
defect unbinding

A complementary way to characterize phases and phase
transitions between them is in terms of topological defects
proliferation [141]. For conventional phases and transitions
(e.g., 3D XY or Ising models) this is simply a complemen-
tary description that is sometimes convenient. However, for
topological phases, where the Landau order parameter is
unavailable or just insufficient to distinguish two phases, this
defect-proliferation approach is indispensable and therefore
superior to soft-spin description of the order parameter.
One prominent and familiar example is the description of
the low-temperature quasi-long-range-ordered phase of the
2D XY model and its disordering. In this case, both the
low- (“ordered”) and high-temperature (disordered) phases
exhibit a vanishing XY order parameter, and are respectively
only topologically (not symmetry) distinguished by bound
and unbound vortex defects and by the associated behavior
of the correlation functions (power law and exponential,
respectively) [141].

With this in mind, we characterized the LO and its
descendant states in terms of a proliferation of the four types of
topological defects �N = (0,a),(2π,0),(π,±a/2), introduced
and analyzed in Sec. VI.

As discussed above, at T = 0 the LO phase is characterized
by long-range off-diagonal and translational order and is
thereby distinguished by a nonzero LO order parameter �LO.
In this ground state all of the above topological defects are
absent, confined into topologically neutral pairs.

1. 3D phases and transitions

Although, (as we explicitly demonstrated in Sec. V) at
nonzero temperature the LO order parameter vanishes in 3D
(and in 2D), the 3D LO phase is distinguished from its more
disordered descendants by the absence of unbound topological
defects, in direct analogy with the quasi-long-range-ordered
state of the 2D XY model. Thus, in this same sense at nonzero
T the 3D LO smectic is a topologically ordered (but phonon,
elastically disordered) phase.

Upon increasing temperature or decreasing the stiffnesses
(e.g., by tuning the strength of the Feshbach-resonant interac-
tions, or by adjusting the fermionic species imbalance), one or
more of the four topological defects will proliferate, thereby
leading to a transition of the LO smectic SFSm (PDW) into one
of its descendants. The actual sequence of defect unbinding
is determined by the relative energetics, given by Eqs. (159),
(171), and (175). Lacking a reliable calculation (throughout
the T -P -1/kFa phase diagram) of the dependences of the
stiffnesses on the experimentally tunable parameters (T ,
imbalance P , interactions 1/kFa, and the number of atoms),
the phase diagram can only be qualitatively mapped out
in terms of the three effective stiffnesses K,ρ

‖,⊥
s . In the

thermodynamic limit (L⊥,z → ∞, not necessarily relevant to
atomic traps; see below), the relative defect energetics is quite
unambiguous:

Ed
(0,a) ∼ KL 	 Ev-d

(π,a/2) ∼ ρs

4
L ln L + K

4
L 	 Ev

(2π,0) ∼ ρsL ln L for L⊥,z ∼ L → ∞, (185)

where for simplicity we ignored anisotropies in ρi
s . Based on

this energetics one may be tempted to conclude that in this
limit (unless preempted by a first-order transition) it is the
integer dislocation loop defects that proliferate first and the
LO smectic preferentially disorders into a nematic superfluid,
SFN . However, in contrast to the 2D Kosterlitz-Thouless (KT)
mechanism [141], the 3D disordering transitions take place
when the relevant stiffness, renormalized by quantum and
thermal fluctuations, is continuously driven to zero at the
transition, or takes place at a finite (rather than a vanishing)
fugacity. For a thermal transition this roughly corresponds to
a transition temperature set by the corresponding stiffnesses,

ρs =
√
ρ

‖
s ρ

⊥
s and K,B.

Lacking a detailed quantitative theory of such 3D transitions
we can only construct a qualitative phase diagram, which
we display in Fig. 4. It summarizes all basic phases that
naturally appear upon disordering of the LO smectic superfluid

by unbinding the four fundamental types of topological
defects discussed above. One important physical input is
the observation that increasing the Zeeman energy h (or
equivalently, the species imbalance m = n↑ − n↓) toward the
normal Fermi liquid state, FLI at hc2, predominantly leads
to a suppression of the superfluid stiffness and therefore to
a destruction of the SF order. Conversely, a reduction of the
Zeeman field (and species imbalance) toward a conventional
isotropic and homogeneous superfluid SFI at hc1 primarily
leads to a reduction of the elastic moduli of the smectic
pair-density wave by increasing its period 1/q0 and thereby
weakening the interaction between the LO domain walls [see
Eq. (97b)]. Thus lowering of h is expected to predominantly
suppress, i.e., melt the positional smectic order.

Thus, starting with the LO SFSm state and decreasing
h leads to the unbinding of the integer dislocations (0,a),
and a transition to an orientationally ordered, i.e., a nematic
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charge-4 superfluid, SF4
N . The latter charge-4 feature of SF4

N

naturally appears as the remaining secondary order parameter
�(4)

sc = �2
LO once the LO positional order �LO is destroyed

by unbinding of integer dislocation loops. General arguments
predict a subleading singularity ∼(h − hN-Sm)1−α of �(4)

sc (h) at
the continuous transition hN-Sm between SF4

N and SFsc. Since
in contrast, the “charge”-2 SF nematic order vanishes in the LO
state, a direct transition to it from the LO state can generically
only proceed through a first-order transition.

Conversely, we expect that increasing h starting with the LO
SFSm will lead to a suppression of ρs , a proliferation (2π,0),
and a transition to a 2q-smectic Fermi liquid, FL2q

Sm, a non-
superfluid periodic state with a wave vector that is twice that
of the LO state. Alternatively, as suggested by the energetics in
Eq. (185), it may be that the lower-energy half-vortex disloca-
tion defects (π,a/2) [or the (π, − a/2), but not both] unbind
first, in which case a transition to a nematic Fermi liquid, FL∗∗

N

[with the restored translational and U(1) charge symmetries]
takes place. The resulting state is qualitatively distinct from
the more conventional nematic (orientationally ordered) FLN

phase in which both (π,a/2) and (π, − a/2) are proliferated.
Both are also distinct from the nematically ordered FL∗

N state,
in which only integer dislocations (0,a) and integer vortices
(2π,0) are unbound. One can envision a number of other
states and phase transitions at low h by further considering
the disordering of the nematic superfluid SF4

N by unbinding
various patterns of disclinations and π -vortices. We leave a
more detailed analysis of these to a future study.

2. 2D phases and transitions

The nature of the phase diagram changes qualitatively in
two dimensions at nonzero temperature. Based on the work
of Ref. [142] (in the context of conventional smectic liquid
crystals) and from the analysis in Sec. VI B, which shows a
finite energy cost of a 2D smectic dislocation, we conclude that
at any nonzero T in 2D, the dislocations proliferate, thereby
destroying the LO (SFSm) phase. It is replaced by a homoge-
neous, but quasi-orientationally-ordered, charge-4 superfluid
nematic, SF4

N . Upon rotation this superfluid will display
1/4 “charge” vortices (

∮ ∇φ · dl = πh̄/2m), that, because of
its nematic order we expect to form a uniaxially distorted
hexagonal lattice. Upon changing T , h, and kFa, the nematic
superfluid can then undergo further disordering transitions
toward a polarized Fermi liquid and an isotropic (e.g., BCS)
superfluid. In particular, we expect two Kosterlitz-Thouless
transitions associated with the loss of 2D superfluid and ori-
entational (nematic) quasi-long-range orders. Because �q and
therefore

√
ρs

⊥ρs
‖∼�3

q vanishes strongly near hc2, we expect the
superfluid KT transition to precede the nematic-isotropic one.

C. Fractionalized phases and topological order

In the discussion above, we argued for the existence of
at least three topologically distinct Fermi liquid phases that
naturally emerge from disordering of the LO (SFSm) phase by
unbinding different combinations of allowed defects. Because,
as demonstrated above, the conventional vortex (2π,0) and a
conventional dislocation (0,a) are composites of the funda-
mental defects (π,±a/2) the nonsuperfluid states FL∗

N ,FL∗∗
N

and their isotropic cousins FL∗
I ,FL∗∗

I (in which disclinations
are also unbound) are expected to be “fractionalized’ ’ [171],
topologically distinct from their conventional Fermi liquid
analogs, where (π,±a/2) are also unbound.

These phases are analogous to the putative phase-disordered
fractionalized states obtained by unbinding double (hc/e)
vortices, studied extensively by Sachdev, and by Balents,
Senthil, Fisher, and collaborators [171–173] in the context
of high-temperature superconductors. The resulting nonsuper-
fluid phase is distinguished from a conventional Fermi liquid
by a gapped vison, a Z2 defect that is a remnant of the
fundamental hc/2e vortex after the composite hc/e (double)
vortices proliferate. These states are also characterized by
fractionalized charge-neutral spin-1/2 bosonic and charge-e
spinless fermionic excitations.

The states FL∗
N ,FL∗∗

N also bear a close relation to the
collective-mode fractionalization discussed by Sachdev and
others [174–176] in the context of quantum paramagnetic
phases, emerging from disordering a collinear spin-density
wave. As with the [U(1) ⊗ U(1)]/Z2 LO state, where the
order parameter is a product of the superfluid and smectic
order parameters, Eq. (64), there too the order parameter is of
[S2 ⊗ U(1)]/Z2 product form, encoding spatial modulation of
the spin density, and therefore admits half-integer (visonlike)
defects.

As we have seen in the previous section, a characterization
of both the conventional and the fractionalized (topologically
ordered but otherwise disordered) phases can be faithfully
formulated directly in terms of distinct patterns of proliferation
of the four types of vortex and dislocation defects, listed in
Eq. (149). It can also equivalently be done in terms of a
dual sine-Gordon [and in 3D U(1) gauge-theory] model H̃ ,
Eq. (183). We now present a complementary effective Ising
gauge theory description that can sometimes be convenient.
In the absence of an underlying rotational invariance (which
otherwise has been our focus throughout) and for simplicity
ignoring anisotropy of the striped LO state, all the phases
and transitions can be captured by a Euclidean action [in
space-time �x = (τ,r)]

S = −tφ
∑
〈�x,�x ′〉

σ�x,�x ′ cos(φ�x − φ�x ′) − tθ
∑
〈�x,�x ′〉

σ�x,�x ′ cos(θ�x − θ�x ′ )

−Kσ

∑
�

∏
σ�x,�x ′ , (186)

where the Ising gauge field σ�x,�x ′ couples to the U(1) ⊗ U(1)
bosonic (rotor) matter fields eiφ�x ,eiθ�x , and its nonzero Z2 flux
through a plaquette encodes the presence of a half-integer
(π,a/2) defect. The gauge field σ�x,�x ′ encodes the local Ising
redundancy of splitting the LO order parameter (64) into a
charge-2 boson, b

†
r = e−iφr , that creates a zero-momentum

Cooper pair (diatomic molecule) and a neutral boson, ρ
†
q,r =

e−iθr , that creates a density wave at a LO wave vector q.
Formally, the gauge field σ can be introduced as a Hubbard-
Stratonovic field that decouples the LO order parameter �q =
bρq into its charge- and density-wave parts. The variety of
phases and transitions between them are summarized in the
phase diagram Fig. 4 and a flowchart Fig. 12.

In this formulation, the LO superfluid (SFSm) is a state at
large tφ,tθ and arbitrary Kσ , in which both b and ρq are Bose
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FIG. 12. A flowchart of superfluid (SF) and nonsuperfluid (FL)
phases, exhibiting smectic (Sm) and nematic (N ) conventional orders
as well as topological orders (indicated by ∗ and ∗∗), induced by a
proliferation of various combinations of topological defects (0,a),
(2π,0), and (π,±a/2).

condensed, and σ is gapped through a Higg’s mechanism.
In this state, gapped 2π -vortices in φ and θ respectively
correspond to the (2π,0) superconducting vortex and the (0,a)
integer dislocation that we discussed in the previous section.

For small tφ and large tθ , 2π -vortices in φ proliferate,
driving b normal and restoring the Uφ(1) (atom conservation)
symmetry, while keeping ρq condensed. A large Kσ forces
a vanishing Ising flux with σ = 1, which corresponds to a
gapped vison. The resulting nonsuperfluid state is deconfined
in the sense that it exhibits a gapped bosonic b excitation
carrying an Ising charge and thereby acquiring a phase
π upon encircling a vison. In our earlier notation this is
the nonsuperfluid periodic state we dubbed FL2q

Sm, in which
(2π,0) vortices have proliferated, but dislocations remain
bound. Lowering Kσ drives visons gapless, corresponding
to a proliferation of the (π,a/2) fractional defects that
induces a transition to the homogeneous but orientationally
ordered (nematic) nonsuperfluid state, FLN . We note that
condensation of (π,a/2) in the presence of unbound (2π,0)
defects automatically also leads to a proliferation of (π, − a/2)
defects and therefore (aside from the nematic conventional
order) the resulting FLN is fully disordered.

In the opposite regime of large tφ and small tθ , 2π vortices
in θ proliferate, driving ρq “normal” (homogeneous state) and
restoring the Uθ (1) translational symmetry, while keeping b

condensed. For large Kσ the vison remains gapped and the re-
sulting superfluid homogeneous state exhibits gapped density
excitations ρq , carrying an Ising charge and nontrivial statistics
with the vison. The resulting state is the charge-4 nematically
ordered superfluid SF4

N . Upon reducing Kσ visons proliferate,
driving a transition to FLN through this alternate route.

In contrast to lowering Kσ , the transitions out of the FL2q

Sm
and SF4

N states at large Kσ can be driven by respectively
lowering tφ and tθ and thereby unbinding the second set of
integer defects, (0,a) and (2π,0), respectively. Since visons
remain gapped, the resulting nonsuperfluid nematic state is
the topologically ordered FL∗

N , qualitatively distinct from
FLN . The deconfinement transition FL∗

N -FLN is then driven
by lowering Kσ through a condensation of visons and is in the
inverted Ising universality class.

A naive attempt at a generalization of the above Ising gauge
theory action (186) to the rotationally invariant smectic form
suggests a replacement of the tθ operator by a gauge-invariant
lattice Laplacian. However, on general grounds, without fine-
tuning, such an Ising lattice form appears to preclude a
fully rotationally invariant formulation necessary for a fully
rotationally invariant LO (superfluid smectic) state.

Finally, we note that the above orientationally ordered state
can further disorder into isotropic states by proliferation of
disclinations. We leave a more detailed study of these phases
and the corresponding transitions to future research.

VIII. FERMIONS

So far all of our discussion following the defining micro-
scopic model in Sec. II has been confined to the bosonic sector
of the Larkin-Ovchinnikov state. The resulting low-energy
quantum thermodynamics is encoded in the Hamiltonian HLO,
Eq. (77c) [and the Lagrangian LLO, Eq. (88)] for the superfluid
phase φ and smectic phonon u Goldstone modes. In contrast
to the fully gapped superconductors where this is sufficient at
low energies, the gapless nature of the LO state also requires
the inclusion of gapless fermionic excitations for a complete
description of the state. While a detailed analysis of these is
beyond the scope of the present paper, below we comment on
a few key features of the fermionic sector of the LO state.

A. Gapless fermionic excitations in the Larkin-Ovchinnikov
state near hc2

As we have seen in our discussion of the Goldstone modes,
there are two complementary descriptions of the FFLO states,
respectively valid near hc2 and hc1. Just below hc2 at the contin-
uous FL-FFLO phase the pairing order parameter �(r) is small
with a weak sinusoidal modulation, and the momentum-space
description is most appropriate. The corresponding mean-field
many-body wave function for, e.g., the FF state is given by
Eq. (20). It is of the BCS form with a range of k over which
the energy of the corresponding Bogoliubov quasiparticles is
driven negative by the Zeeman field. These therefore form
a Fermi sea with all the phenomenology associated with the
gapless fermionic excitations at the Fermi surface.

For a more general FFLO state defined by a set of reciprocal
lattice vectors qn, no exact analytical solution of the BdG
Hamiltonian is available. The periodic �(r) couples all particle
(atoms) and hole states connected by the reciprocal lattice qn,
leading to an anomalous �(r)-dependent band structure of
Bogoliubov quasiparticles.

However, some progress can be made for a purely
sinusoidal LO state with only ±q reciprocal lattice vectors.
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As discussed earlier a BCS-like mean-field Hamiltonian for
such a state is given by

H LO =
∑
k,σ

(εk − μσ )ĉ†kσ ĉkσ +
∑

k

(�∗
qĉ−k↓ĉk+q↑

+�∗
−qĉ−k↓ĉk−q↑ + H.c.). (187)

The difference from the FF BCS Hamiltonian, analyzed
exactly in Sec. II is in the appearance of both q and −q Fourier
components of �(r), taken to be equal for the simplest cosine
LO form. These couple each creation operator ĉ

†
−k↓ to two

fermionic atom annihilation operators ĉk+q↑ and ĉk−q↑, with
each in turn coupling to another set of two operators at different
k’s, thereby generating an infinite-dimensional space that
needs to be diagonalized. Focusing on the three-dimensional
subspace for each k, the Hamiltonian can be rewritten in the
following Bogoliubov–de Gennes form:

H LO =
∑

k

�̂
†
k

⎛
⎜⎝

ξk+q↑ �q 0

�∗
q −ξ−k↓ �∗

−q

0 �−q ξk−q↑

⎞
⎟⎠�̂k +

∑
k

ξ−k↓

=
∑

k

�̂
†
kĤBdG�̂k +

∑
k

ξ−k↓, (188)

with the three-component generalization of the Nambu spinor
given by

�̂k ≡

⎛
⎜⎜⎝

ĉk+q↑
ĉ
†
−k↓

ĉk−q↑

⎞
⎟⎟⎠, (189)

and ĤBdG the corresponding Bogoliubov–de Gennes Hamil-
tonian matrix. The nontrivial eigenstates encode that the
excitation in the LO state is a linear combination of a hole
(−k,↓), an atom (k + q,↑), and an atom (k − q,↑).

Although it appears that the problem reduces to a diagonal-
ization in this three-dimensional subspace, in fact (in contrast
to the single-Fourier-component FF state, where ĤBdG is block
diagonal) there is a coupling between the bottom component
of a spinor �̂k and the top component of the spinor �̂k′=k−2q,

�̂k−2q =

⎛
⎜⎝ ĉk−q↑

ĉ
†
−k+2q↓

ĉk−3q↑

⎞
⎟⎠. (190)

This leads to the aforementioned infinite-dimensional space
to diagonalize, corresponding to the band structure of the
Bogoliubov quasiparticles, analogous to a system with a
diagonal periodic potential.

Despite these complications, for a large enough q (such
that q2/2m � �q , well satisfied near hc2 where q ≈ 1/ξ )
an approximate treatment is possible because the coupling
is dominated by the degenerate particle-hole states near the
Fermi surface, which reduces the problem to only a pair of
states for every value of k. For positive (negative) k the pair is
the top (bottom) two components of the spinor �̂k, leading to
a Cooper pair with q (−q) the center-of-mass momentum.

Diagonalizing the BdG Hamiltonian then leads to two sets
of the Bogoliubov quasiparticle operators α̂kσq,α̂kσ−q:

α̂k↑q ≈ uk,qĉk+ q
2 ↑ + vk,qĉ

†
−k+ q

2 ↓, (191a)

α̂
†
−k↓q ≈ −v∗

k,qĉk+ q
2 ↑ + u∗

k,qĉ
†
−k+ q

2 ↓, (191b)

α̂k↑−q ≈ uk,−qĉk− q
2 ↑ + vk,−qĉ

†
−k− q

2 ↓, (191c)

α̂
†
−k↓−q ≈ −v∗

k,−qĉk− q
2 ↑ + u∗

k,−qĉ
†
−k− q

2 ↓, (191d)

with the corresponding four branches of the excitation spec-
trum Ekσqi

:

Ek↑q ≈ (
ε2
k + �2

q

)1/2 − h + k · q
2m

, (192a)

Ek↓q ≈ (
ε2
k + �2

q

)1/2 + h − k · q
2m

, (192b)

Ek↑−q ≈ (
ε2
k + �2

q

)1/2 − h − k · q
2m

, (192c)

Ek↓−q ≈ (
ε2
k + �2

q

)1/2 + h + k · q
2m

, (192d)

with εk = k2

2m
− μ + q2

8m
and the coherence factors uk ,vk ,

approximately given by the FF expressions in Eq. (15). In
the first (second) pair of equations, Eqs. (191a) and (191b)
[Eqs. (191c) and (191d)], the particle-hole hybridization is via
�qe

iq·r (�qe
−iq·r), as for the FF state.

As demonstrated for the FF state in Sec. II it is clear from
the spectra Ekσ±q, Eq. (192), that the LO state exhibits k
regions of both gapped and gapless fermionic excitations,
with closing of the gap driven by a combination of the
Zeeman (imbalance) energy h and the Doppler shift k · q.
For pairing driven by �qe

iq·r (�qe
−iq·r), the gapless states

appear at the minimum of the Ek↑q (Ek↑−q) located in a wedge
−θm < θ < θm around k ‖ −q (k ‖ q), where for positive h,
Ek↑q (Ek↑−q) is driven negative. The LO ground state thus
takes the form given in Eq. (20), exhibiting Fermi pockets
of Bogoliubov quasiparticles, with a Fermi surface of gapless
excitations defined by Ek̃Fσ,±q = 0, as illustrated in Fig. 13.

In the complementary wedge of k around k · q = 0, i.e.,
running along the LO stripes given by the nodes of the LO order
parameter, the superconducting gap remains finite, growing to

q

FIG. 13. An illustration of Fermi pockets (full curve) of the
gapless Bogoliubov quasiparticles characteristic of the Larkin-
Ovchinnikov ground state. The periodic array of domain walls in
�LO(z), the associated wave vector q, and the Fermi surface of the
underlying normal state (dashed circle) are also indicated.
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its maximum value �q − h > 0 (suppressed by h) as

Egap ≈ Emax
gap − qkz

2m
≈ Emax

gap − qkF

2m

√
1 − k2

⊥/k2
F. (193)

The quadratic k⊥ dispersion along the stripes is characterized
by an enhanced effective mass meff ≈ mεF/�BCS � m.

While above analysis gives some understanding of the LO
states, it is approximate and does not address the detailed na-
ture of more generic LO-like states. These may be understood
by self-consistently diagonalizing the BdG equations in real
space. An estimate of the mean-field BCS-LO and LO-FL
phase boundaries requires a computation of the total energy as
was done in Ref. [4] for the FF state. A complete solution for
the LO state requires a numerical analysis [95–97].

B. Gapless fermionic excitations in the Larkin-Ovchinnikov
state near hc1

The above calculation of the LO quasiparticle spectrum
near hc2 can be complemented by a treatment valid near hc1.
At low h, the LO order parameter �LO(z) is given by a periodic
(period 2π/q) array of ±�0 ≈ ±�BCS domain walls of width
ξ [95–98], rather than a single harmonic.

The form of the quasiparticle excitations is determined by a
two-component Nambu wave function �ψ = (ψ↑(x,z),ψ↓(x,z))
satisfying the BdG equation(

p̂2

2m
− εF �(z)

�(z) − p̂2

2m
+ εF

)(
ψ↑
ψ↓

)
α

= Eα

(
ψ↑
ψ↓

)
α

, (194)

where p̂ ≡ −i∇ and we took the order parameter to be real
(characteristic of the mean-field LO state) stripe domain walls
lying in the x plane, with the normal along ẑ, and approximated
the chemical potential by a Fermi energy εF, valid deep in the
BCS regime. In a matrix form, the BdG equation is given by[(

p̂2

2m
− εF

)
σz + �(z)σx

]
�ψ(x,z) = E �ψ(x,z). (195)

For a striped LO state we can utilize translational invariance
along the stripes x, taking �ψ(x,z) = �ψk⊥ (z)eik⊥·x, with �ψk⊥ (z)
satisfying[(

p̂2
z

2m
− ε̃F(k⊥)

)
σz + �(z)σx

]
�ψk⊥ (z) = Ek⊥

�ψk⊥ (z),

(196)

with ε̃F(k⊥) = εF − k2
⊥/2m the effective 1D Fermi energy.

The low-energy spectrum is determined by the excitations
near the Fermi energy,

�ψk⊥(z) ≈ �φ+
k⊥(z)eik̃Fz + �φ−

k⊥(z) e−ik̃Fz (197)

with k̃2
F/2m ≡ ε̃F(k⊥) and the envelope wave functions �φ±

k⊥(z)
satisfying[(

±ṽFp̂z + p̂2
z

2m
− ε̃F

)
σz + �(z)σx

]
�φ±

k⊥(z) = Ek⊥
�φ±

k⊥(z).

(198)

For ε̃F(k⊥) sufficiently large, so that we can linearize around
the Fermi points ±k̃F by neglecting the quadratic correction to

the dispersion, Hp2 = p̂2
z

2m
σz, we obtain

[(∓iṽF∂z − ε̃F)σz + �(z)σx] �φ±
k⊥(z) = Ek⊥

�φ±
k⊥(z). (199)

For a single “− to +” domain wall, the solution can be readily
found [177,178] and exhibits two normalizable Andreev zero-
energy bound states,

�φ±
k⊥(z) = A

(
1
∓i

)
e
− 1

ṽF

∫ z

0 �(z′)dz′
(200a)

≈ 1√
2ξ̃

(
1
∓i

)
e−|z|/ξ̃ , (200b)

where ξ̃ ≡ ṽF/�0 is the effective coherence length (setting
the width of the bound state) and in the second line we
approximated the − to + domain wall by a step function
�(z) = �0sgn(z) valid for z � ξ̃ . For the opposite-sign − to
+ domain wall, �(z) = −�0sgn(z), the normalizable Andreev
zero modes are given by identical expressions, but with the
reversed sign in front of the i in the second component of the
Nambu spinor.

The minimum excitation gap is determined by the nonlinear

correction to the free spectrum, the perturbation Hp2 = p̂2
z

2m
σz,

which we incorporate through a degenerate perturbation theory
in the two-component degenerate subspace of Andreev zero
modes, �φ±

k⊥(z). A simple computation gives the off-diagonal

matrix elements H± = 〈 �φ+|Hp2 | �φ−〉 ≈ 1
2mξ̃ 2 , splitting the

Andreev zero modes to E±
k⊥ = ±Ek⊥ , with

Ek⊥ ≈ 1

2mξ̃ 2
= �2

0

4ε̃F(k⊥)
for k2

⊥/2m 	 εF, (201a)

= �2
0

4(εF − k2
⊥/2m)

≈ �2
0

4εF
+
(

�0

2εF

)2
k2
⊥

2m
. (201b)

The maximum of the gap can be estimated through a
variational solution of Eq. (198) for the nondegenerate case
of ṽF = ε̃F = 0, giving

ξmin ≈ ξ0(�0/εF)1/3, (202a)

Emax
gap ≈ �0(�0/εF)1/3 (202b)

for the width of the state localized on the domain wall and the
maximum of the gap.

For a periodic array of domain walls with period a = 2π/q0

(the LO state), the coupling between the Andreev states
localized on each domain wall splits their energy into bands
separated by gaps and dispersing with −π/a < kz � π/a.
The eigenstate for the bottom of the band, kz = k̃F, can be
obtained by generalizing the single domain-wall zero-energy
state, Eq. (200), to a periodic array �LO(z). The solution for the
bottom of the Andreev band is simply a sum of two periodic
arrays of states, localized on − to + (at z = 0) and on + to −
(at z = a/2) domain-wall arrays, respectively,

�φ±
k⊥(z) = 1√

4Nξ̃

[(
1
∓i

)
e
− 1

ṽF

∫ z

0 �LO(z′)dz′ +
(

1
±i

)
e

1
ṽF

∫ z

a/2 �LO(z′)dz′
]

. (203)
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FIG. 14. Lowest-order Feynman diagram of a fermionic contri-
bution that corrects the superfluid stiffness.

For a nonzero chemical-potential difference h (Zeeman
energy) to impose the spin imbalance, the spin-up excitation
spectrum (201b) simply uniformly shifts down by h. When
h exceeds the minimum gap Emin

gap = �2
0/4εF, Eq. (201),

it generically induces Fermi pockets (Fig. 13) of the Bo-
goliubov quasiparticles centered around ±q out to k±

⊥ =
± 2εF

�0

√
2m(h − �2

0/4εF) [179]. As expected (from the fact that
these are different regimes of the same LO phase) the spectrum
outlined above is in qualitative agreement with that near hc2,
found in the previous section.

C. Fermion–Goldstone-mode coupling in the
Larkin-Ovchinnikov state

As discussed above, the LO state is characterized by a
simultaneous presence of gapless Goldstone modes (particu-
larly soft for the fully rotationally invariant geometry of an
isotropic trap) and gapless fermions. Consequently, for a com-
plete description a coupling between these must be included
(see Figs. 14–16). These can in principle be derived from the
microscopic BCS Hamiltonian evaluated inside the LO state
beyond a conventional mean-field treatment. Alternatively, the
fermion–Goldstone-mode couplings can be simply deduced
based on symmetry considerations. The leading ones include
the coupling of the supercurrent and of the LO phonon to the
quasiparticle current and number density, and are given by

Hjs,j ∼ ∇φ · ψ†i∇ψ + H.c., (204a)

Hjs,n ∼ (∇φ)2ψ†ψ, (204b)

Ha-p ∼ (
∂zu + 1

2 (∇u)2
)
ψ†ψ + (∇u · ψ†i∇ψ)2 + H.c.

(204c)

Because atom number conservation is effectively “broken” in
the superfluid LO state, these couplings must be supplemented
by the anomalous (number-violating) operators, such as, e.g.,
(∇φ)2ψψ + H.c. The effects of these interactions on the
fermionic and collective bosonic (φ,u) spectral functions
require a detailed analysis, which parallels studies of gauge
fields [180–185], Goldstone modes [117], and critical modes

FIG. 15. Lowest-order Feynman diagram of a fermionic contri-
bution that corrects the smectic compressional modulus.

FIG. 16. Lowest-order subdominant Landau-damping contribu-
tion to the superfluid stiffness coming from finite fermion density.

[186,187] coupling to electrons in gapless superconductors and
metals. A preliminary analysis suggests that in the LO state
these derivative couplings (enforced by the underlying gauge
and spatial symmetries) only lead to a finite renormalization
of the model’s parameters as well as Landau-like damping
of the Goldstone modes. In addition to the above symmetry-
dictated couplings, the presence of gapless fermions can
generate Berry’s phase terms [155], which can qualitatively
modify the conventional LO phonon dynamics derived in
Sec. III D. We leave a detailed study of these interesting
questions to future research.

IX. LARKIN-OVCHINNIKOV STATES IN A TRAP

The primary experimental application of our results is to
polarized paired superfluidity in trapped degenerate atomic
gases. It is thus crucial to extend our bulk analysis to take
into account the effect of the trapping potential Vt (r), which
in a typical experiment is well approximated by a harmonic-
oscillator potential. While a full analysis of the effect of the
trap is beyond the scope of this paper, in the present section
we study this problem within the well-known local density
approximation (LDA). We note that several recent studies (e.g.,
Refs. [4,44,52,55–58,60,61]) have also addressed polarized
superfluidity in a trap.

A. The local density approximation

Much like the WKB approximation, the LDA corresponds
to using expressions for the bulk system, but with an effective
local chemical potential μ(r) = μ − Vt (r) in place of μ. The
validity of the LDA relies on the smoothness of the trap
potential, with the criterion that Vt (r) varies slowly on the
scale of the longest physical length λ (the Fermi wavelength,
scattering length, effective range, etc.) in the problem, i.e.,
[λ/Vt (r)]dVt (r)/dr 	 1. Its accuracy can be equivalently
controlled by a small parameter that is the ratio of the single-
particle trap level spacing δE to the smallest characteristic
energy Ec of the studied phenomenon (e.g, the chemical
potential, condensation energy, etc.), by requiring δE/Ec 	 1.
Within the LO state the longest length is clearly the LO period
a = 2π/q0, which near hc2 is bounded by the coherence length
(this near unitarity can be as short as the interatomic spacing
∼R/N1/3, where R is the trapped condensate radius and N is
the total number of atoms), and thus 	R. Thus, in this regime,
away from hc1 (where for a continuous BCS-LO transition the
period a is expected to diverge) the effects of the trap can be
safely treated within the LDA.
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The generalization of the model of an imbalanced resonant
Fermi gas to a trap is straightforward:

H =
∫

d3r

(
ψ̂†

σ

−∇2

2m
ψ̂σ + [Vt (r) − μσ (r)]ψ̂†

σ ψ̂σ

+ gψ̂
†
↑ψ̂

†
↓ψ̂↓ψ̂↑

)
, (205)

where ψ̂σ (r) is a fermionic field operator with a Fourier
transform ĉkσ . Henceforth, to be concrete, we shall focus on
an isotropic harmonic trap (although this simplification can
easily be relaxed) with

Vt (r) = 1

2
mω2

t r
2 (206a)

≡ μ
r2

R2
, (206b)

the latter expression defining the cloud size R. Within the LDA
[valid for a sufficiently smooth trap potential Vt (r); see above],
locally the system is taken to be well approximated as uniform,
but with a local chemical potential given by

μ(r) ≡ μ − 1

2
mω2

t r
2 (207a)

= μ

(
1 − r2

R2

)
, (207b)

where the constant μ is the true chemical potential (a Lagrange
multiplier) enforcing the total atom number N . The spatially
varying spin-up and spin-down local chemical potentials are
then

μ↑(r) = μ(r) + h, (208a)

μ↓(r) = μ(r) − h, (208b)

with the chemical-potential difference h uniform.
Consequently, within the LDA the system’s energy density

is approximated by that of a uniform system, (17), with the
spatial dependence (via the trap) entering only through μ(r).
The ground-state energy is then simply a volume integral
of this loacal energy density. Thus, the phase behavior of a
uniform system as a function of chemical potential μ translates
into a spatial cloud profile through μ(r), with the critical
phase boundaries μc corresponding to critical radii defined by
μc = μ(rc,h) [4,44]. As first predicted in [44], this leads to a
shell-like cloud structure that has subsequently been observed
experimentally [34–37].

Within the LDA, we can furthermore deduce the effects
of the trap on the structure of the LO state. We turn to this
analysis next.

B. Trap-induced elastic distortion

As discussed earlier, the Larkin-Ovchinnikov state breaks
translational symmetry and like other crystals thereby exhibits
a rigidity to stress. Confinement in a trap induces a variation
in the chemical potential that (as observed experimentally in
the BCS superfluid [34–37]) has the effect of expelling the
imbalance (polarization) to the edge of the cloud (see Fig. 17).
Since in the LO state the BCS order parameter domain walls
“carry” the imbalance (the imbalanced fermions are confined
to domain walls in �LO(z), where their cost is minimum),
in the LO state the increased imbalance is accommodated by

FIG. 17. (Color online) The collinear Larkin-Ovchinnikov state,
compressed by an isotropic trap, Vt (r) (on the right), showing the
enhanced imbalance (P ∼ −∂zu) confined to the edge of the trap.

the increase in the density of domain walls. Thus, the trap
confinement introduces an effective longitudinal stress that
acts to compress the LO state [increase its local wave vector
q0(r)], where the chemical potential is reduced. This tendency
is captured by introducing a local longitudinal stress σ (r) into
the LO phonon Hamiltonian,

H 0
u =

∫
dzd2r⊥

[
B

2
(∂zu)2 + K

2
(∇2

⊥u)2 − σ (r)∂zu

]
.

(209)

This trap-phonon coupling arises by repeating our derivation
in Secs. II and III with the trap potential Vt (r), treating it
within the LDA. The effective local chemical potential μ(r)
enters through many contributions, but the leading-order effect
comes from a position-dependent wave vector generalization
of Eq. (25),

q0(r) = 2α
h

vF(r)
(210a)

= q0 [1 − Vt (r)/μ]−1/2 (210b)

≈ q0

(
1 + Vt (r)

2μ

)
. (210c)

Here, consistent with the LDA applicability, we utilized
the Vt (r)/μ 	 1 limit. Since δq0/q0 ≈ −∂zu ≈ −σ/B, we
deduce that the local stress is given by

σ (r) ≈ −1

2

B

n0μ
n(r)Vt (r) (211a)

≈ −σ0
r2

R2

(
1 − r2

R2

)
, (211b)

where σ0 = B/2 is the trap-induced stress scale, and we
inserted an additional factor of n(r)/n0 to crudely account
for the breakdown of LDA-based analysis near the cloud edge,
where the atom density n(r) vanishes at R. As expected on
physical grounds, σ (r) is a function that vanishes at the trap
center and is peaked on its outer shell set by R (Fig. 18). With
this, the distortion u0(r) is given by a standard form:

u(r) =
∫

d3r ′Gz(r − r′)σ (r ′), (212)

in terms of a Green’s function Gz(r) = ∂zG(r) that is a
derivative of the smectic Green’s function, with

Gz(r) =
∫

d3q

(2π )3

iqze
iq·r

Kq4
⊥ + Bq2

z

(213a)

= −1

8πBλ|z|e
− r2⊥

4λ|z| . (213b)
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FIG. 18. (Color online) Possible alternative forms of the LO state
confined in a tight isotropic trap. The form on the right trades off the
cost of the curvature energy for the dislocation energy.

From this the trap-induced imbalance distortion, δP (r) is
straightforwardly computed:

δP (r) ≈ −P∂zu(r) (214a)

= P

∫
r′

∂zGz(r − r′)σ (r ′) (214b)

≈ P

μn0
n(r)Vt (r) ≈ P

r2

R2

(
1 − r2

R2

)
, (214c)

with the final unnecessary crude approximation by construc-
tion of σ (r) and its coupling to u recovering the expected
result.

C. Trap-induced LO 3D-2D dimensional crossover

A microscopically accurate account of the trap inside the
LO state, and in particular its coupling to the Goldstone
modes with appropriate boundary conditions (beyond the
crude treatment above) is not currently available. Perhaps
a numerical analysis (e.g., numerical solution of the BdG
equations or full quantum Monte Carlo simulation) [52,56,70]
can provide the desired description.

However, lacking such first-principles analysis, we are
constrained to proceed phenomenologically, working directly
with the effective Goldstone-mode theory of u. Expanding
the LO state about the trap-distorted state u0(r) discussed
above, the distortion δu(r) is again governed by the smectic
Hamiltonian (142b). Although some of the effects of the
trap will enter through the position-dependent elastic moduli
B(r),K(r), we expect that the leading effects of the trap
are incorporated through the physically motivated boundary
conditions on u(r). Because atom density vanishes at the edge
of the cloud, the LO inner shell is expected to be surrounded
by an outer shell of a fully polarized normal cloud lacking
any positional order. Thus, we expect the Neumann boundary
condition,

n̂t · ∇u = 0 (215)

(n̂t is the unit normal to the cloud’s boundary), to be the most
appropriate to supplement the Euler-Lagrange equation for
u(r). However, the appearance of a fourth derivative along
r⊥, Eq. (142b), requires that this boundary condition be
supplemented by additional ones on the domain-wall normal
∇⊥u.

Given the cylindrical form of smectic elasticity, Eq. (142b),
analytical implementation of such spherically symmetric

boundary conditions is quite challenging. However, because
our goal here is more modest, a qualitative understanding of
the trap-induced dimensional crossover can be obtained by
simply using the cloud size scale R to cut off long scales
appearing in a bulk analysis. Technically, our analysis amounts
to instead working with periodic boundary conditions and
a cylindrical trap. The calculational convenience of such
boundary conditions is that they do not modify the form of
the eigenmodes (still Fourier modes), and enter only through
a restriction on the allowed eigenvalues qz = 2πnz/Lz,q⊥ =
2πn⊥/L⊥, with nz,⊥ ∈ Z. Thus, length scales associated with
the trap and finite cloud size, Lz,L⊥, crudely enter through
the minimum allowed momentum eigenvalues (roughly set by
the cloud size Rz,⊥) and thereby capture the spatial extent
of the lowest phonon eigenmode even for correct boundary
conditions.

A key observation that emerges from such treatment is
that because of the “infinite” anisotropy of the bulk smectic
modes in Eq. (142b), with z ∼ r2

⊥/λ (or equivalently qz ∼
λq2

⊥), the dimensional crossover is qualitatively different
from that in systems with more conventional, scalingwise
isotropic elasticity. That is, examining the smectic bulk
propagator Gq = 1/(Bq2

z + Kq4
⊥), it is clear that unless

Lz ≈ L2
⊥/λ � L⊥, the phonon fluctuations will not be con-

trolled by bulk modes. That is, as illustrated in Fig. 19, for any
reasonably shaped trap (even a quite anisotropic one, other than
an extremely anisotropic trap with Lz ≈ L2

⊥/λ), fluctuations
will be controlled by the (d − 1)-dimensional “zero” modes
u0(r⊥), which are uniform along the z axis, representing
compression-free LO undulations. Indeed this is allowed
because of the expected Neumann boundary condition on
u(z,r⊥), which allows a zero-energy-cost rigid displacement
along z of the LO domain walls.

FIG. 19. (Color online) Illustration of the qz = 0 (z-independent)
phonon modes, even in an isotropic trap (indicated by a blue circle)
dominating over the (scalingwise) anisotropic qz ∼ λq2

⊥ bulk smectic
modes (indicated by an ellipse).
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To demonstrate this expectation, we account for these zero
modes by using a generalized mode expansion of u(r) that
explicitly includes the z-independent modes:

u(r) = 1

LzL
2
⊥

[∑
qz,q⊥

u(qz,q⊥)eiq·r +
∑
q⊥

u0(q⊥)eiq⊥·r⊥

]
.

(216)

In terms of these the Hamiltonian becomes

H 0
u = 1

2LzL
2
⊥

∑
qz,q⊥

[(
Bq2

z + Kq4
⊥
)|uq|2 + Kδqz,0q

4
⊥
∣∣u0

q⊥

∣∣2],
(217)

and can be used to calculate smectic phonon fluctuations. For
example, using H 0

u and equipartition, local root-mean-squared
(rms) fluctuations are given by

〈u2(r)〉 = 1

LzL
2
⊥

∑
qz,q⊥

T

Bq2
z + Kq4

⊥
+ 1

LzL
2
⊥

∑
q⊥

T

Kq4
⊥

(218a)

=
∫

qz,q⊥

T

Bq2
z + Kq4

⊥
+ 1

Lz

∫
q⊥

T

Kq4
⊥

(218b)

≈ T

4π
√

BK
ln(
√

Lzλ/a) + T

8π3K

L2
⊥

Lz

(218c)

≈ T

8π3K

L2
⊥

Lz

for Lz < L2
⊥/λ, (218d)

where in the second line we approximated mode sums by
integrals in a standard way. Indeed as summarized by (218d),
by comparing the two (bulk and zero-mode) contributions to
u2

rms, as anticipated on general grounds above it is clear that for
isotropic (and even highly anisotropic) traps, the zero-mode
second contribution dominates as long as Lz < L2

⊥/λ.
Applying this to a spherically symmetric trap with Lz ∼

L⊥ ≈ R 	 R2/λ, we conclude that indeed fluctuations are
controlled by the zero-mode LO phonons. We thus conclude
that all the correlation-function properties of the LO state
will be even more anomalous, characterized by a (d − 1)-
dimensional zero-mode action that at a harmonic level is given
by

S0
u =

∫ β

0
dτdd−1r⊥

[
κ

2
(∂τu0)2 + K

2
(∇2

⊥u0)2

]
. (219)

More detailed implication of these observations, particularly
in contexts of specific experimental geometries, remain to be
explored. We hasten to add, however, that by equipartition,
the finite-temperature LO thermodynamics will nevertheless
be dominated by bulk modes, simply due to their bulk-to-
surface dominance.

X. EXPERIMENTAL IMPLICATIONS

There are a large number of experimentally observable
effects that emerge from our study. A comprehensive treatment
of these requires further extensive studies, which lie outside
the scope of the present paper. Here we simply sketch out
a few of the most important experimental signatures of our
predictions.

A. Larkin-Ovchinnikov order parameter

As discussed in the Introduction and in Sec. V, at finite
temperature in the thermodynamic limit (see below for the
discussion in the trap) the isotropically trapped Larkin-
Ovchinnikov phase is characterized by a vanishing average LO
order parameter, i.e., 〈�LO〉 = 0. Reminiscent of 2D superflu-
ids and crystals [130,141], this is a reflection of its enhanced
thermal fluctuations. As with these well-known examples and
other topological phases, this does not however imply that the
state is unstable (at least not in 3D), but that it requires a
finer characterization (e.g., correlation functions, topological
defects, etc.) beyond a simple Landau order parameter. One of
the experimental implications is that, consequently, the leading
nonzero Landau order parameter characterizing the LO state
is the translationally invariant charge-4 (four-atom pairing)
superconducting order parameter �sc, introduced in Eq. (70a).
Thus, in the presence of thermal fluctuations the LO phase
corresponds to an exotic state in which the off-diagonal order
is exhibited by pairs of Cooper pairs, i.e., a bound quartet
of atoms, rather than by the conventional two-atom Cooper
pairs [119]. In 2D and 3D this higher-order pairing is driven
by arbitrary low-T fluctuation, rather than by a fine-tuned
attractive interaction between Cooper pairs, and therefore akin
to 2D superfluids and crystals has no mean-field description.
While a direct experimental probe of �sc may be challenging,
enhanced fluctuations in the LO state can be directly observed
through correlation functions, to which we turn next.

B. Momentum distribution function

Probably the most striking signature of the LO state is the
interesting form of the Cooper-pair momentum distribution
function nk = 〈�†

k�k〉. As for a conventional resonantly
paired superfluid, nk should be accessible by a detuning
sweep (controlled by a magnetic field) that projects the
finite-momentum LO Cooper pairs �k on the BCS side onto
tightly bound molecules on the BEC side of the Feshbach
resonance [7], and then observed through a standard time-
of flight imaging of the resulting molecular condensate. In
contrast to conventional bosonic and BCS condensates (that
in a trap display a single peak, associated with a condensation
into a lowest trap state, or its interaction-swelled equivalent),
the LO condensate is expected to display a spontaneous
reciprocal lattice of condensate peaks associated with its
periodic structure, Fig. 20.

While in mean-field approximation nk is predicted
[4,44,53,112] to resemble a superfluid in an optical periodic
potential [1,188], the spontaneous nature of its translational
and orientational symmetry breaking, in the presence of ther-
mal fluctuations, leads to important qualitative distinctions.
Although the full anisotropic form is quite complex and best
evaluated numerically, the asymptotic form of nLO

k can be
readily obtained analytically. As calculated in Sec. V, nLO

k
exhibit power-law (algebraic) peaks around harmonics qn

of the ordering wave vector q0, replacing the mean-field δ-
function Bragg peaks of bosons in a periodic potential [1,188]:

nLO
k ≈

∑
qn �=0

nqn

|kz − nq0|2−n2η
for d = 3, (220)
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FIG. 20. (Color online) The finite momentum pairing at q0

and divergent 3D smectic phonon fluctuations in the LO state
are predicted to be reflected in the Cooper-pair center-of-mass
momentum distribution function nk, displaying power-law Bragg
peaks, characteristic of the spatial quasi-long-range order. We expect
these to be observable through time-of-flight measurements.

where for simplicity we specialized to k = kzẑ, the form
factor nqn

is given after Eq. (124), and η = q2
0T/(8π

√
BK).

This form is reminiscent of (1 + 1)D Luttinger liquids and
two-dimensional crystals [136–138,141], and is a reflection of
the quasi-long-range order of the nonzero-temperature 3D LO
state. While physically quite distinct, nLO

k is mathematically
closely related to the structure function of a conventional
smectic [129,134]. Another feature of nLO

k is the absence of
the k = 0 condensate peak, which qualitatively distinguishes
the LO state from a supersolid [87–90], where crystalline and
superfluid orders merely independently coexist. We expect
these features to be the smoking gun for the LO state, in
principle observable in time-of-flight imaging.

C. Structure function

The density-density correlations, conventionally measured
in the reciprocal space using x-ray or neutron scattering, are
other important quantities that can be experimentally probed.
The simplest is the static structure function, which, using
ρ(r) ≈ |�LO(r)|2, is straightforwardly computed (see Sec. V):

SLO(q) = 〈ρ−qρq〉 (221a)

≈
∑
qn

A2qn

|qz − 2nq0|2−4n2η
, (221b)

where for simplicity we evaluated it at q = qzẑ, and A2qn
is a

form factor. SLO(q) contrasts with nLO
k by its insensitivity to the

off-diagonal (i.e., superfluid) order. In three dimensions it also
displays quasi-Bragg peaks, but at twice the reciprocal lattice
vectors, 2nq0, with the 4n2η fluctuation exponent, and just like
conventional smectics [129,130,135] (unlike nLO

k ) does exhibit
the qn=0 = 0 peak (see Fig. 21).

After a projection onto the molecular BEC state, a density
profile ρ(r) for a large atomic cloud should be measurable
in situ. Computing a Fourier transform of its correlations

S(qz) ∼
1

|qz − 2q0|2−4η

FIG. 21. (Color online) The structure function S(q) for the 3D LO
state, displaying power-law (as opposed to δ-function) Bragg peaks,
characteristic of the LO superfluid’s spatial quasi-long-range order.

then allows one to test SLO
q , above. In this way, in principle

the dynamic structure function Sq,ω (a Fourier transform of
the two-time density correlation function) should also be
accessible.

Alternatively, the dynamic structure function can be directly
measured using Bragg spectroscopy [157–159], with its
static limit obtained by integrating over frequencies. Based
on successful measurements of the Bogoliubov mode in
bosonic condensates [158,159], we expect that the peaks
in SLO

q,ω (associated with its poles) can be used to give the
dispersion of the collective modes, the superfluid phase φ, and
LO phonon u,

ωφ(k) =
√(

ρ⊥
s k2

⊥ + ρ
‖
s k2

z

)/
χ0, (222a)

ωu(k) =
√(

Kk4
⊥ + Bk2

z

)/
χ0, (222b)

with the corresponding lifetimes remaining to be determined.
Related to the dynamic structure function is the generalized

density and polarization (spin-imbalance) response function to
a periodic potential. The periodic nature of the LO state makes
it possible to use a perturbation at half the wavelength of the
LO state to resonantly excite long-scale collective modes, such
as the polarization-dipole mode, which can be readily detected
in a trapped gas. This was proposed and carefully investigated
for a 1D LO state in Ref. [189] and should also apply in the
two- and three-dimensional cases considered here. We leave
the analysis of these and related experiments to a future more
detailed study.

D. Trap effects

As is clear from the discussion in Sec. IX a detailed study
of the effects of the trap is essential for an explicit contact
with experiments. By introducing system boundaries, a trap
modifies the structure of and fluctuations in the LO state,
which, away from hc1 (where the LO period can potentially
diverge [96,102]), can be treated within the LDA.
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1. Fluctuations

The detailed phenomenology of the LO state in a trap
depends on the nature of the boundary conditions, which still
remain to be understood. However, for large atomic clouds
with small surface-to-volume ratio, the boundary effects are
expected to be a weak perturbation to the bulk. As discussed
in Sec. IX, in this case its effects can be taken into account
phenomenologically in the spirit of the finite-size scaling
of critical phenomena [130,164] by introducing a long-scale
cutoff (set by the cloud size R) into our bulk quantities. For
observables related to the soft LO phonon u, which is strongly
affected by fluctuations, this introduces an experimentally
observable sensitivity to the cloud size R and by extension
to the atom number N , trapping frequency ωt , and explicit
trap anisotropy ω⊥

t /ω
‖
t .

Referring to the analysis of Secs. V and IX, which
give phonon rms fluctuations for a gas in a “box” of size
L⊥ × Lz, we conclude that in an isotropic trap with cloud size
R ∼ L⊥ = Lz, the phonon fluctuations are large but finite, in
3D given by

u2
rms ≈ T

8π3K
R + T

4π
√

BK
ln R/a, (223)

where we approximated the phonons by Gaussian fluctuations,
neglecting the weak nonlinear elastic effects of Sec. V B 2
[that can become important on scales R > ξNL

⊥,z, (128)], and
assumed Neumann boundary conditions that allow for the qz =
0 zero modes. The crossover from the bulk to the zero-mode-
dominated regimes takes place for a cloud size R >∼ R∗ =√

K/B ln
√

K/Ba2.
One consequence of this result is that in a trap

the thermally averaged LO order parameter 〈�LO(r)〉T =
2�̃q0 (R) cos

(
q0 · r) no longer vanishes (as it does in an

infinite bulk system), but strongly depends on the cloud size.
For Neumann boundary conditions, its thermally suppressed
amplitude in 3D is given by

�̃q0 (R) ≈ �q0e
− 1

2 T/(ξ0

√
ρ⊥

s ρ
‖
s )e−R/R0

(
a

R

)η/2

, (224)

with R0 ≈ q2
0T/K the scale beyond which the zero modes be-

come particularly important. Thus through R(N,ωt ) the order-
parameter amplitude is also exponentially sensitive to the atom
number N and trap frequency ωt . We note that the exponential
dependence on R is a consequence of the dominance of the
qz = 0 zero modes (under Neumann boundary conditions on u)
over the anisotropic smectic bulk modes in an isotropic trap.
In contrast, under Dirichlet boundary conditions that exclude
these zero modes, the exponential factor is suppressed, and the
LO amplitude is a weaker power-law function of the cloud size,
reminiscent of 2D XY systems, such as a superfluid confined
to two dimensions. We note that Kosterlitz-Thouless phase
fluctuation physics has been reported in 2D trapped atomic
superfluids [190,191], despite the finite trap size. We therefore
expect our predictions for strong fluctuation effects in the LO
phase to also be experimentally accessible.

Finally we note that given our prediction that generically the
LO state is sandwiched by its descendants’ phases (SFN , FLSm,
FLN , FL∗, etc, rather than a simple vacuum) the analysis and

implementation of boundary conditions for a trap are further
significantly complicated, particularly near hc1.

2. Phase diagram through shell structure

As discussed and analyzed in Sec. IX, an even stronger
effect of the trap is that it leads to an effective locally varying
chemical potential μ(r) = μ(1 − r2/R2), and therefore gives
slices through the chemical-potential phase diagram as a
function of radius r . We thus expect that the phase diagram in
Fig. 4 can be “imaged” in the spatial cloud profile, with critical
phase boundaries μ(i)

c (to phase i) translating to critical radii
of shells defined by μ(i)

c = μ(r (i)
c ,h). Given the past success

of such phase detection with bosons in optical potentials
(exhibiting “wedding cake” profiles) [1], and the uniformly
paired superfluids and Fermi liquids of an imbalanced Fermi
gas [2,34,35,37], we expect that similar identification will be
possible for some of the LO liquid-crystal phases.

E. Response to rotation

Consistent with its neutral superfluid order, above a critical
rate of rotation �c1 a FFLO state responds to an imposed
rotation by nucleating quantized vortices. Because of its crys-
talline superfluid form, even within a mean-field description
its vortices are predicted to form a rich variety of vortex
lattices [192–194], which depend on the nature of the “host”
FFLO state.

We predict a number of additional interesting vortex
features that are special to strongly fluctuating LO states. One
distinguishing feature of the smectic LO state studied here is
its uniaxial anisotropy, which is strongly tunable with species
imbalance. It manifests itself in the (quantitative) anisotropy
of the superfluid densities (stiffnesses) ρ⊥

s 	 ρ
‖
s , Eq. (82),

and the qualitatively anisotropic dispersion of the LO phonon,
Eq. (89). The former leads to vortices with spontaneously
elliptical vortex cores, (158), which we expect to form a
centered rectangular lattice for vortices (rotation axis) oriented
transversely to q0. This striking feature should be easily
identifiable in rotation experiments of the type previously used
to identify phase separation in imbalanced Fermi gases [2,34].
In this transverse geometry we also expect vortices to be
pinned to LO phase fronts, localized in zeros of domain walls
in �LO(r), akin to vortices in layered superconductors, e.g.,
BISCCO [195]. In contrast, for rotation about an axis along
q0, a conventional hexagonal vortex lattice is expected.

Another striking feature of the LO state found in Sec. VI
is the π -vortex bound to a half-a/2 dislocation, with 1/4 the
energy cost (in the thermodynamic limit) of a conventional
2π -vortex. We therefore predict that it is this fractional
vortex that will be preferentially induced by the rotation. One
experimental consequence of this is the reduction in the lower
critical frequency �c1 down to 1/2 of the conventional value

h̄
2mR2 ln R/ξ in a large cloud of radius R. Concomitantly, in
addition to its imbalance-tunable anisotropy (which diverges
near the upper, hc2, phase boundary), the vortex lattice is
characterized by a vortex density nv = 4m�

πh̄
, which is increased

by a factor of 2 from the conventional value of a rotated
paired superfluid. Perhaps the most striking feature that we
predict is that a rotation-induced lattice of half dislocations
must accompany and be locked to this π -vortex lattice. We
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expect these features to be most pronounced for a rotation axis
transverse to q0, with a more conventional rotational response
for � ‖ q0. Finally, the LO state may exhibit more than one
critical rotational velocity �ci corresponding to distinct onsets
of the penetration of half-integer and integer vortices.

F. Fermionic excitations

As we have seen above, in addition to the low-energy
Goldstone modes φ,u, the LO state is characterized by gapless
fermionic excitations associated with the imbalanced atom,
which are localized on zeros of domain walls in �LO(r).
The most direct probe of these midgap fermionic states is
through the Feshbach resonance [196] and rf spectroscopies
[149,197–200], with the momentum-resolved extension [201,
202], allowing one to measure the dispersion and Fermi
surface pockets of the Andreev states calculated in Sec. VIII.
An observation of coexisting gapped and (Andreev) gapless
features in these spectroscopies, along with the superfluid
phase coherence in nk, would provide strong evidence for
realization of a FFLO state.

Such measurements can be complemented with
shot-noise correlation spectroscopy [203], which
has been successfully used to probe bosonic Mott
insulators [1] and fermionic paired condensates [204]. In
the LO state, we expect pairing shot-noise correlations
to be peaked for −kF + q0/2,↓ ←→ kF + q0/2,↑
and kF − q0/2,↓ ←→ −kF − q0/2,↑ atom pairs. In
contrast to a conventionally paired BCS state, shot-noise
correlations are furthermore anisotropically distributed in
the center-of-mass pair momentum, with peaks around ±q0,
reflecting the spontaneous nematic anisotropy of the LO state.

The low-energy excitations in the LO state can also be
probed less directly through thermodynamics, modifying the
power-law-in-T behavior of, for example, the heat capacity.
They will also manifest themselves in thermal transport,
although its experimental implementation in the context of
trapped atomic gases remains an open problem.

Probably the most direct way to detect the existence of the
LO state is to simply image the population species imbalance.
Because imbalanced fermions are confined to Andreev states
localized on the LO domain walls, the polarization density is
periodic, with its phase locked to that of �LO(r). As illustrated
for the thermally averaged LO order parameter, in a trap the
amplitude of this periodic component of polarization will be
nonzero and strongly R dependent.

Quite clearly, significant detailed theoretical analysis is
necessary beyond this qualitative discussion, but is left for
future research.

G. Phase transitions and unusual phases

In addition to our findings of the rich fluctuation-driven
phenomenology of the LO (superfluid smectic) state, in
Sec. VII we predicted a variety of putative descendant phases,
that emerge when the LO state is disordered through a set
of continuous phase transitions. If indeed realized as stable
phases (something that our phenomenological approach is
unable to determine) organized into the phase diagram in
Fig. 4, then many of the predicted features should be readily

detectable in experiments on imbalanced resonant Fermi
gases. Each of these states (SFN , FLN , FLSm, etc.) exhibits
its own qualitatively distinct phenomenology, discussed in
Sec. VII, where they were defined. For example, Bragg peaks
in the time-of-flight images can distinguish the periodic SFSm

(LO superfluid smectic) state from the homogeneous SF4
N

(superfluid nematic), which are in turn distinguished from the
FL2q

Sm and FLN states (normal smectic and nematic) by their
superfluid properties, broken spatial symmetries (periodicity
and anisotropy), collective modes, quantized vortices, and
condensate peaks. Standard thermodynamic signatures (e.g.,
heat capacity) will identify the corresponding phase transi-
tions, though some of strongly non-mean-field topological type
between two gapped (disordered) phases (e.g., FL∗ and FL)
may be more difficult to detect. In a trap (see above), the
most vivid manifestation of these states is the appearance of
a shell structure, corresponding to slices through the chemical
grand-canonical phase diagram of an imbalanced resonant
Fermi gas, Fig. 4. Again, we leave the detailed analyses of
all these features to extended future studies.

XI. OPEN QUESTIONS

While this paper addresses a broad range of phenomena
associated with the Larkin-Ovchinnikov state, it leaves many
interesting questions open. Certainly the most important of
these is the long-standing question of the range of energetic
stability of the crystalline superconductor discussed in the
Introduction. If the state is indeed stable over a sufficiently
broad range of detuning and imbalance to be experimentally
accessible, is its lowest-energy form indeed the striped
collinear LO type, assumed throughout this paper? While for
large atomic clouds and shallow traps (such that the LDA
remains valid), we expect only a small deformation of the LO
state near the boundaries of the phase, for tighter traps a more
detailed treatment of the trap is necessary, and may lead to
a distinct global form of the LO state, such as the “onion”
and “radial” structures illustrated in Fig. 18. To address
such questions undoubtedly requires numerical solutions in
experiment-specific geometries.

Furthermore, the nature of the (2D and 3D) transition into
the LO state at the lower critical Zeeman field hc1 [96], and the
extent to which it resembles a commensurate-incommensurate
transition (as in 1D [95,108]) remains an open question. More
broadly, in Sec. VII we predicted a number of different LO
descendant phases adjacent to the LO smectic superfluid state,
but have left open the detailed nature of their phenomenology
and stability to quantum and thermal fluctuations, as well
the nature of the associated phase transitions. Similarly to
the LO state, these phases are expected to exhibit gapless
fermionic excitations coupled to their Goldstone modes. The
understanding of the effects of these fermionic modes on the
properties of the phases and the associated transitions remains
wide open and extremely interesting problems.

Finally, as is clear from the discussion of the previous
section, much detailed theoretical analysis remains to be
done to make contact of our general predictions with specific
experiments. We leave these and many other interesting
questions to future studies.
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XII. SUMMARY AND CONCLUSIONS

To summarize, we studied a wide range of fluctuation
phenomena in a LO state, expected to be realizable in an
imbalanced resonant Fermi gas. Starting with a microscopic
description of a resonant Fermi gas, supported by robust
model-independent and very general symmetry arguments, we
have demonstrated that in an isotropic trap the LO state is a
gapless superfluid smectic liquid crystal, whose elastic moduli
and superfluid stiffness we derived near hc2. Consequently, the
state is extremely sensitive to thermal fluctuations that destroy
its long-range positional order even in three dimensions,
replacing it by a quasi-longer-range order of the resulting
algebraic quantum smectic state, characterized by power-law
correlations, akin to a system tuned to a critical point or
two-dimensional XY-model systems. We showed that this
exotic state also exhibits vortex fractionalization, where the
basic superfluid vortex is half the strength of a vortex in
a regular paired condensate, and is accompanied by half
dislocations in the LO smectic (layered) structure.

Studying the fluctuation-driven disordering of the LO smec-
tic, we predicted a rich variety of descendant phases such as
the superfluid (SFN ) and Fermi liquid nematics (FLN ) and the
fractionalized nonsuperfluid states (FL∗), which generically
intervene between the LO state and the conventional BCS
superfluid (at low population imbalance) and a conventional
Fermi liquid (at high population imbalance). We outlined a
large variety of experimental implications of our findings, but
leave their detailed analysis to future studies.
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APPENDIX A : GINZBURG-LANDAU EXPANSION

In this appendix we provide some of the technical details
necessary to derive the quartic interaction in �q of the
Ginzburg-Landau expansion appearing in Eqs. (30) and (50)
and in particular the current-current contribution (49), which
determines the transverse superfluid stiffness ρ⊥

s . As outlined
in the main text, we use the coherent-state imaginary-time
path-integral formulation of the BCS partition function. We

decouple the quartic fermion interaction g by introducing the
Cooper-pair Hubbard-Stratonovich field �(x), and formally
integrate out the fermionic atoms, obtaining

Z =
∫

[d�∗d�]e−Seff [�∗,�], (A1)

where the effective Ginzburg-Landau action is given by

Seff[�
∗,�] = − ln

[∫
[dψ∗

σ dψσ ]e−Sτ [ψ∗
σ ,ψσ ,�∗,�]

]
, (A2)

where Sτ is the microscopic action defined in Eq. (33).
Taylor-expanding Sτ in powers of Sint, Eq. (35b), we obtain

Seff[�̄,�] = − ln Z0 − ln

[
1 − 〈Sint〉0 + 1

2!

〈
S2

int

〉
0

− 1

3!

〈
S3

int

〉
0 + 1

4!

〈
S4

int

〉
0 + · · ·

]
(A3a)

= − ln Z0 − 1

2!

〈
S2

int

〉
0 − 1

4!

〈
S4

int

〉
0 + 1

8

〈
S2

int

〉2
0 + · · · ,

(A3b)

where Z0 = ∫
[dψ∗

σ dψσ ]e−S0 , 〈· · ·〉0 = ∫
[dψ∗

σ dψσ ]
· · · e−S0/Z0. Above, all odd-power-in-� terms clearly
vanish, and the quadratic �∗ε̂� term has already been
analyzed in the main text [4,44,77].

Thus, we focus on the contribution quartic in �, which
is a connected fourth cumulant. Using the definition of Sint,
Eq. (35b), we find

S4 = − 1

4!

[〈
S4

int

〉
0 − 3

〈
S2

int

〉2
0

] = − 1

4!

〈
S4

int

〉c
0 (A4a)

= 12

4!

∫
x1x2x3x4

V (x1,x2,x3,x4)�∗
x1

�x2�
∗
x3

�x4 , (A4b)

where

V (x1,x2,x3,x4) = G0
↑(x2 − x1)G0

↓(x2 − x3)

×G0
↑(x4 − x3)G0

↓(x4 − x1), (A5)

with the noninteracting fermionic Green’s function (in Fourier
space) as usual given by

G0
σ (ωn,q) = −〈ψσ ψ∗

σ 〉0 (A6a)

= 1

iωn − εqσ

. (A6b)

Because we are interested in τ -independent �(r), the τ

integrals can be taken, giving S4 = ∫
dτH4, with

H4 = 1

2

∫
q̃i

(2π )dδd (q̃1 − q̃2 + q̃3 − q̃4)

[ ∑
q1=±q

Ṽ (q1 + q̃1,q1 + q̃2,q1 + q̃3,q1 + q̃4)�∗
q1

(q̃1)�q1 (q̃2)�∗
q1

(q̃3)�q1 (q̃4)

+ 4Ṽ (q + q̃1,q + q̃2, − q + q̃3, − q + q̃4)�∗
q(q̃1)�q(q̃2)�∗

−q(q̃3)�−q(q̃4)

]
. (A7)

A Taylor expansion of Ṽ (qn1 + q̃1,qn2 + q̃2,qn3 + q̃3,qn4 + q̃4) in q̃i gives H4 = H
(0)
4 + H

(2)
4 , where H

(0)
4 has already been

computed by LO in their mean-field approximation [77] and in Ref. [4] from the expansion of the BdG ground-state energy of
the FF state discussed in Sec. II B.
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We focus on the second H
(2)
4 term and Taylor-expand it to second order in q̃i ,

Ṽ (q + q̃1,q + q̃2, − q + q̃3, − q + q̃4)
(A8)

≈ v
(0)
+− + v

(2)
ij (q)

4m2
(q̃1i q̃4j + q̃1i q̃3j + q̃2i q̃4j + q̃2i q̃3j ),

which gives the key current-current interaction vertex v
(2)
ij jijj , with

v
(2)
ij = m2

∫
dωddk

(2π )d+1
G̃0

↑(k,ω)2∂iG̃
0
↓(q − k, − ω)∂j G̃

0
↓(−q − k, − ω) (A9a)

=
∫

ω,k

(q − k)i
(
q + k

)
j(

iω − k2

2m
+ μ + h

)2(− iω − (k−q)2

2m
+ μ − h

)2(− iω − (k+q)2

2m
+ μ − h

)2 (A9b)

≈
∫

ω,ε,k̂

(q − kFk̂)i(q + kFk̂)j

(iω − ε + h)2
(
iω + ε − vFk̂ · q + q2

2m
+ h

)2(
iω + ε + vFk̂ · q + q2

2m
+ h

)2 . (A9c)

We first carry out the ω integral using simple identity,

Iω =
∫

dω

2π

1

(iω − a)2(iω − b)2(iω − c)2

= ∂3

∂a∂b∂c

∫
dω

2π

1

(iω − a)(iω − b)(iω − c)

= ∂3

∂a∂b∂c

[
�(−a)

(a − b)(a − c)
+ �(−b)

(b − c)(b − a)
+ �(−c)

(c − a)(c − b)

]

= − δ(a)

b2c2
− δ(b)

c2a2
− δ(c)

a2b2
− 2�(−a)

2a − b − c

(a − b)3(a − c)3
− 2�(−b)

2b − c − a

(b − c)3(b − a)3
− 2�(−c)

2c − a − b

(c − a)3(c − b)3
,

(A10)

which, when used in the expression above, gives

v
(2)
ij ≈

∫
ε,k̂

(kFk̂ − q)i(kFk̂ + q)j

[
4
(
2ε + q2

2m

)
�(h − ε)[(

2ε + q2

2m

)2 − (vFk̂ · q)2
]3 −

(
2ε + q2

2m
+ 3vFk̂ · q

)
�
(
ε + q2

2m
+ h + vFk̂ · q

)
4(vFk̂ · q)3

(
2ε + q2

2m
+ vFk̂ · q

)3

+
(
2ε + q2

2m
− 3vFk̂ · q

)
�
(
ε + q2

2m
+ h − vFk̂ · q

)
4(vFk̂ · q)3

(
2ε + q2

2m
− vFk̂ · q

)3 + δ(ε − h)[(
2h + q2

2m

)2 − (vFk̂ · q)2
]2

+ δ
(
ε + q2

2m
+ h + vFk̂ · q

)
4(vFk̂ · q)2

(
2h + q2

2m
+ vFk̂ · q

)2 + δ
(
ε + q2

2m
+ h − vFk̂ · q

)
4(vFk̂ · q)2

(
2h + q2

2m
− vFk̂ · q

)2

]

≈ N (εF)
1

4π

∫
d�k̂

(kFk̂ − q)i(kFk̂ + q)j[(
2h + q2

2m

)2 − (vFk̂ · q)2
]2 . (A11)

Here we split the k integration into an integration over
its orientations k̂ and magnitude k, and approximated the
latter using a nearly constant density of states at the Fermi

energy, equivalently ignoring small quadratic contributions in
δk ≡ k − kF, valid in the BCS limit. However, in contrast to
a standard isotropic calculation, here the integral over k̂ is
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nontrivial because of the anisotropy introduced by q. That is,
we used∫

d3k

(2π )3
· · · =

∫ ∞

0
dkk2 1

(2π )3

∫
d�k̂ · · ·

=
∫ ∞

0
dεN (ε)

1

4π

∫
d�k̂ · · ·

≈ N (εF)
∫ ∞

−∞
dε

1

4π

∫
d�k̂ · · · , (A12)

where the density of states per spin is

N (ε) = m3/2

21/2π2h̄3 ε1/2 ≡ cε1/2 (A13a)

= N (ε + εF)

≈ N (εF) = 3

4

n

εF
. (A13b)

By symmetry v
(2)
ij is clearly uniaxial along q. Thus it can

be written as

v
(2)
ij = g1δij + g2q̂i q̂j , (A14)

where

g1 = 1
2v

(2)
ii − 1

2v
(2)
ij q̂i q̂j , (A15a)

g2 = − 1
2v

(2)
ii + 3

2v
(2)
ij q̂i q̂j , (A15b)

with the sums over repeated indices implied. Using this inside
Eq. (A14) we find

g1 = 1

2
N (εF)k2

F
1

4π

∫
d�k̂

1 − (k̂ · q̂)2[(
2h + q2

0
2m

)2 − (vFk̂ · q)2
]2

≈ N (εF)k2
F

2v4
Fq

4
0

∫ 1

0
dσ

1 − σ 2[
σ 2 − 4h2

v2
Fq2

0

]2

≡ N (εF)k2
F

2v4
Fq

4
0

α1

(
2h

vFq0

)
, (A16a)

g2 = 1

2
N (εF)k2

F
1

4π

∫
d�k̂

3(k̂ · q̂)2 − 1 − q2
0/k2

F[(
2h + q2

0
2m

)2 − (vFk̂ · q)2
]2

≈ N (εF)k2
F

2v4
Fq

4
0

∫ 1

0
dσ

3σ 2 − 1[
σ 2 − 4h2

v2
Fq2

0

]2

≡ N (εF)k2
F

2v4
Fq

4
0

α2

(
2h

vFq0

)
, (A16b)

where we evaluated q at the dominant dispersion minimum
value of q0 and ignored subdominant q2

0/k2
F terms.

The dimensionless functions α1(x) and α2(x) defined by
the above polar-angle (σ ) integrals are given by

α1(x) =
∫ 1

0
dσ

1 − σ 2

[σ 2 − x2]2

= − 1

2x2
+ 1 + x2

4x3
ln

1 + x

1 − x

≈ 2.07 at hc2 (xc2 = 1/αc2 = 5/6) transition, (A17a)

α2(x) =
∫ 1

0
dσ

3σ 2 − 1

[σ 2 − x2]2

= x − 3x3 + 1
2 (3x4 − 2x2 − 1) ln 1+x

1−x

2x3(1 − x2)
≈ −5.75 at hc2 (xc2 = 1/αc2 = 5/6) transition,

(A17b)

with the final values obtained by their evaluation at the
upper critical field hc2. Although naively the expressions
appear to be linearly divergent, a careful analysis of the
integrals regularized with an infinitesimal imaginary part
(associated with the analytic continuation to real frequencies,
iω → ω + i0+) gives well-defined values given above.

APPENDIX B : FLUCTUATION IN A FINITE BOX

In the main body of the paper, Sec. IX C, we demon-
strated that due to the smectic phonon dispersion anisotropy,
for Neumann boundary conditions the zero qz = 0 mode
dominates fluctuations over the bulk qz ≈ λq2

⊥ modes and
must be explicitly taken into account. This leads to an
effective dimensional reduction for a system confined in any
reasonably isotropic trap. Here, we rederive this result within a
complementary, fully continuum description and contrast the
behavior in the smectic state with that of the more familiar
isotropic XY model.

1. Isotropic models

For an XY model (or really any model with isotropic spatial
dispersion) described by

H = 1

2

∫
ddx(∇u)2, (B1)

the fluctuations inside a box of aspect ratio Lz × L⊥,
with Lz < L⊥ for free (Neumann) boundary conditions, are
given by

〈u2(x)〉 =
∫

dqzd
d−1q⊥

(2π )d
1

q2
z + q2

⊥

∼ 1

Lz

L3−d
⊥ + L2−d

z (B2a)

∼ 1

Lz

L3−d
⊥ � L2−d

z for d < 2, Lz < L⊥, (B2b)

where the first term is due to the qz = 0 zero mode and is
larger than the second bulk mode contribution when Lz < L⊥.
It accounts for fluctuations in the reduced dimensionality of
a (d − 1)-dimensional film of thickness Lz. We note that for
an isotropic dispersion the crossover to a lower-dimensional
scaling takes place only when the actual geometrical aspect
ratio of the system is filmlike, i.e., anisotropic.

2. Smectic models

We contrast the above standard finite-size scaling with that
of a model with smectic dispersion, described by

H = 1

2

∫
ddx[(∂zu)2 + (∇2

⊥u)2]. (B3)
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In a finite box, its fluctuations are instead given by

〈u2(x)〉 =
∫

dqzd
d−1

(2π )d
1

q2
z + q4

⊥

∼ 1

Lz

L5−d
⊥ + L(3−d)/2

z (B4a)

∼ 1

Lz

L5−d
⊥ � L(3−d)/2

z for d < 3, Lz < L2
⊥.

(B4b)

Now, clearly the first zero mode (qz = 0) term dominates over
the bulk contribution (second term) for Lz < L2

⊥ � L⊥, and
does so even in an isotropic box with all dimensions L. Thus,
a smectic confined in a geometrically isotropic environment is
effectively deep in the lower, (d − 1)-dimensional film regime
with phonon fluctuations scaling as u2

rms ∼ L4−d � L(3−d)/2.
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