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Vortex formation in a rotating two-component Fermi gas
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A two-component Fermi gas with attractive s-wave interactions forms a superfluid at low temperatures. When
this gas is confined in a rotating trap, fermions can unpair at the edges of the gas and vortices can arise beyond
certain critical rotation frequencies. We compute these critical rotation frequencies and construct the phase
diagram in the plane of scattering length and rotation frequency for different total numbers of particles. We
work at zero temperature and consider a cylindrically symmetric harmonic trapping potential. The calculations
are performed in the Hartree-Fock-Bogoliubov approximation which implies that our results are quantitatively
reliable for weak interactions.
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I. INTRODUCTION

A characteristic feature of superfluids is the appearance of
vortices when they are rotated. This fact has been used to
demonstrate that a two-component atomic Fermi gas becomes
a superfluid at sufficiently low temperatures [1–4]. A super-
fluid state can be created in such a gas by trapping fermionic
atoms in two distinct hyperfine states. The interaction strength
between the two components can be controlled by an external
magnetic field. When the interactions are tuned to be attractive,
and the atoms are cooled to sufficiently low temperatures, the
components will form pairs via the Cooper instability. Due to
this pair formation the Fermi gas becomes a Bardeen-Cooper-
Schrieffer (BCS) superfluid as was envisaged in Refs. [5,6].

The response of the superfluid to rotation can be in-
vestigated by rotating the trapping potential with a certain
frequency �. For a nonrotating trap the entire gas will form
a superfluid without vortices. Let us now imagine increasing
the rotation frequency at zero temperature. Up to a certain
critical rotation frequency, the superfluid will stay in the
vortex-free state carrying zero angular momentum. For low
temperatures the angular momentum will be quenched, as
has also been observed experimentally [7]. Above the critical
frequency, angular momentum will be inserted in the gas by
either unpairing the fermions near the edges of the gas, by
formation of vortices, or by the combination of both effects.
The goal of this paper is to compute the rotation frequencies
at which these transitions take place.

Besides the experimental investigations [1–4,7], various
theoretical studies of rotating two-component Fermi gases
have been performed (for a review see, e.g., Ref. [8]). The
profile of a single vortex was analyzed in this context for the
first time in Ref. [9] using a Ginzburg-Landau approach and
in Ref. [10] by solving the Bogoliubov-de Gennes equation.
In Ref. [11] it was concluded that a single vortex can induce a
sizable density depletion at its core. This was also found to be
the case for a vortex lattice [12]. Density depletion is important,
since it allows the vortices to be detected experimentally [1].
The vortex profile was investigated in a population imbalanced
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gas in Ref. [13] and in a situation in which the two components
have unequal mass in Ref. [14]. Real-time dynamics of vortices
has been studied in Ref. [15].

Vortex lattices in two-component Fermi gases have been
examined in several ways in Refs. [12,16,17]. At high rotation
frequencies a completely unpaired phase is preferred over a
vortex lattice. The critical rotation frequency corresponding to
this transition was computed in Refs. [18,19]. A vortex lattice
can also be destroyed by heating the gas. The corresponding
critical temperature was computed in Refs. [12,20]. When
the number of trapped components is unequal, a vortex lattice
might be formed within the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) phase. Its melting temperature was investigated in
Ref. [21] and its upper critical rotation frequency in Ref. [22].

The first analysis of the critical frequency �c for vortex
formation in a two-component Fermi gas was performed in
Ref. [23]. To obtain �c the Helmholtz free energy difference
�F between a vortex with unit angular momentum located
at the center of the trap and the vortex-free superfluid was
estimated at � = 0. For a cylindrically symmetric infinite
well as the trapping potential, �F was obtained by solving
the Bogolibuov-de Gennes equation in Refs. [10,24]. The
free energy difference arises from the loss of condensation
energy at the vortex core, the kinetic energy of fermions
circulating around the vortex core, and the energy needed to
expand the cloud to accommodate the excess particles removed
from the vortex core (the latter effect was not considered
in Ref. [23], but was taken into account in Refs. [10,24]).
When rotating the trap, the free energy decreases with �Lz,
where Lz is the angular momentum contained in the gas. For
the vortex-free superfluid Lz = 0, while for the vortex with
unit angular momentum Lz = Nh̄/2, with N the number of
trapped particles. These estimates are correct if rotating the
trap does not cause unpairing near the edges of the gas. The
critical rotation frequency in this case is �c = 2�F/(Nh̄).
This frequency is similar to the lower critical magnetic field in
type-II superconductors [25].

Fermions confined in a rotating trap can unpair near
the edges [26–28]. This effect was not considered in
Refs. [10,23,24]. In this paper we will take into account this
possibility in order to obtain a more reliable value of �c. We
will make detailed study of how �c varies with the interaction
strength and the number of trapped particles. Furthermore we
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will compute the critical rotation frequency for unpairing.
We consider a cylindrically symmetric harmonic trapping
potential. Our calculations are carried out in the Hartree-
Fock-Bogoliubov approximation. Therefore, we expect that
our results are reliable only in the weak coupling limit.

Let us finally remark that vortices have also been observed
in rotating Bose-Einstein condensates (BEC) of bosonic
atoms [29] and of bosonic dimers composed of fermionic
atoms [1] (for a review see, e.g., Ref. [30]). The behavior
of vortices through the BEC-BCS crossover was investigated
experimentally in Ref. [1]. In this article we only discuss the
BCS regime. A computation of the critical rotation frequency
for vortex formation in a BEC is discussed in Ref. [31].
Theoretical studies of behavior of vortices through the BEC-
BCS crossover have been performed in Refs. [32–34].

This article is organized as follows. In Sec. II we will
introduce the action from which one can derive the properties
of the Fermi gas. To achieve this in practice we will adopt
the two-particle irreducible (2PI) effective action, which we
explain in Sec. III. From the 2PI effective action one obtains
the Dyson-Schwinger equation which is the main equation we
have to solve. This can be achieved by finding the solution
of the Bogoliubov-de Gennes equation, which is explained in
Sec. IV. The numerical methods by which we have solved the
Bogoliubov-de-Gennes and the Dyson-Schwinger equation
are discussed in Secs. V and VI, respectively. The reader who is
not interested in the details of the calculation can immediately
go to Sec. VII where we present the results. The phase diagrams
presented in Figs. 14 and 15 are our main results. We draw
our conclusions in Sec. VIII. Several details are relegated to
the appendices. In Appendix A we review the 2PI effective
action. A derivation of the Bogoliubov-de Gennes equation is
presented in Appendix B. To solve the Bogoliubov-de Gennes
equation numerically, we will use a basis based on Maxwell
polynomials. We discuss the computation of the quadrature
weights and nodes of these polynomials in Appendix C. In
Appendix D we derive the representation of the single-particle
Hamiltonian in the basis we will employ.

II. SETUP

Let us consider a two-component Fermi gas in which
s-wave interactions are dominant and label its components
by α =↑ ,↓. Typically in experimental realizations the higher
partial waves can be neglected and the superfluidity is driven
by attractive s-wave interactions. The interactions among the
same components can be neglected since the Pauli principle
admits s-wave interactions only between the different species.
We will denote the s-wave interaction potential as V (x) and
specify it below. Under these assumptions the interacting
Fermi gas is described by the following action (see, e.g.,
Ref. [35]), S = Skin + Sint where

Skin =
∑

α=↑,↓

∫
dXψ∗

α (X)

[
h̄

∂

∂τ
+ H (�) − μα

]
ψα(X),

(1)

Sint = 1

2

∑
α=↑,↓

∫
dX

∫
dY ψ∗

α (X+)ψ∗
−α(Y+)

×V (x − y)δ(τx − τy)ψ−α(Y )ψα(X). (2)

Here ψα(X) is the (path-integral) quantum field corresponding
to the α component, and X = (x,τx). We write integration
over spatial coordinates and imaginary time τ as

∫
dX ≡∫ h̄β

0 dτx

∫
d3x with the inverse temperature β = 1/(kBT ).

Here and in the rest of the article X± = (x,τx ± η) and η is an
infinitesimal small positive number. We have inserted X+ and
Y+ in Eq. (2) in order to maintain the correct ordering of the
fields in the path integral. We will achieve this in a different way
for the kinetic term and explain this at the end of Appendix B.
Furthermore − ↑ is equivalent to ↓, μα denotes the chemical
potential, and H (�) is the single-particle Hamiltonian. We
will assume that the particles are trapped in a potential that is
rotating in the x-y plane with angular frequency �. It is then
convenient to perform the calculation in the rotating frame.
The single-particle Hamiltonian H (�) in the rotating frame
reads (see, e.g., Ref. [35])

H (�) = p2

2M
+ U (x) − �Lz, (3)

where M is the fermion mass and Lz = xpy − ypx is the
z component of the angular momentum. The trapping potential
U (x) realized in experiments is typically harmonic. In this
paper we will study a cylindrically shaped trap given by the
potential,

U (x) = 1
2Mω2(x2 + y2), (4)

which implies confinement in the x-y plane, and infinite
extension in the z direction. In an experiment this regime
can be reached by choosing the trapping frequency in the z

direction much smaller than in the x-y-direction. In cylin-
drical coordinates, x = (ρ cos φ,ρ sin φ,z), the single-particle
Hamiltonian reads

H (�) = h̄2

2M

(
− d2

dρ2
− 1

ρ

d

dρ
+ L2

z

h̄2ρ2
− d2

dz2

)

+1

2
Mω2ρ2 − �Lz, (5)

where Lz = −ih̄∂/∂φ. The normalized eigenfunctions
ψ0

nmpz
(x) of this Hamiltonian can be written as a product of

three functions,

ψ0
nmpz

(x) = 1√
L

Rnm(ρ)fm(φ)eipzz, (6)

with the radial quantum number n = 0,1, . . ., the angular
momentum quantum number m ∈ Z, and the momentum in
the z direction pz = 2πh̄nz/L with nz ∈ Z. The constant
L denotes the length of the system in the z direction.
In this article we will consider the limit L → ∞. Then
1
L

∑
nz

= ∫
dpz/(2πh̄). The function fm(φ) is a normalized

eigenfunction of Lz and is given explicitly by

fm(φ) = 1√
2π

eimφ. (7)

The radial eigenfunctions are given by

Rnm(ρ) = cnmL|m|
n (ρ̄2)ρ̄|m|e−ρ̄2/2, (8)

where La
n(x) denotes the generalized Laguerre polynomial

which has degree n. Furthermore ρ̄ = ρ/λ with the harmonic
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oscillator length λ = (h̄/Mω)1/2. Normalization gives c2
nm =

2n!/[λ2(n + |m|)!]. The energy spectrum of H (�) is given by

ε0
nmpz

= h̄ω (1 + 2n + |m|) − h̄�m + p2
z

2M
. (9)

At low enough temperatures and densities, the typical
wavelength of the particles will be much longer than the range
of the interaction potential. In that case the detailed structure
of the potential is unimportant and the only relevant interaction
parameter is the scattering length a. To perform a calculation in
this situation, one can just choose the most convenient potential
that has scattering length a. Following Ref. [36] we will use
the Huang-Yang potential [37]:

V (r) = gδ(r)
∂

∂r
r, (10)

where the coupling constant g = 4πah̄2/M . Pairing between
fermions requires attractive interactions, that is a < 0 and
hence g < 0. Note that the Huang-Yang potential is not
equivalent to an ordinary δ-function potential gδ(r), because
the derivative operator also acts on the fields in Eq. (2). The
advantage of the Huang-Yang potential is that all relevant
physical quantities become automatically convergent [36].
Furthermore, the coupling constant does not have to be renor-
malized so that the foregoing relation between the scattering
length and the coupling constant always holds [36]. In the
case of an ordinary δ-function potential one will encounter
divergences. This will require a regularization prescription and
a renormalization of the coupling constant.

In order to perform calculations it is convenient to rewrite
the action in the Nambu-Gor’kov basis. For that purpose we
introduce the Nambu-Gor’kov fields,

�(X) =
(

ψ↑(X)
ψ∗

↓(X)

)
, (11)

and write the kinetic part of the action, Eq. (1), as

Skin = −h̄

∫
dX

∫
dX′ �†(X)G−1

0 (X,X′)�(X′), (12)

where the bare inverse Nambu-Gor’kov propagator reads

G−1
0 (X,X′)=−1

h̄

(
h̄ ∂

∂τ
+H (�)−μ↑ 0

0 h̄ ∂
∂τ

−H (�)∗+μ↓

)
×δ(X − X′). (13)

Here we used the fact that H (−�) = H (�)∗. In the Nambu-
Gor’kov basis the interaction part of the action becomes

Sint = −
∑
α=±

∫
dXdYdX′dY ′ �†(X′)σα�(X)

×�†(Y ′)σ−α�(Y )Vα(X,Y ; X′,Y ′), (14)

where σ+ = diag(1,0) and σ− = diag(0,1). The potential Vα

is given by

Vα(X,Y ; X′,Y ′) = 1
4 [(1 + α)δ(τx ′ − τy)V (x′ − y)

+(1−α)δ(τx −τy ′ )V (x − y′)]
× δ(Xα−X′)δ(Y−α−Y ′). (15)

a b

X X
= Gab(X,X )

a b
X X

YY cd

=
α=±

(σα)ab(σ−α)cdVα(X,Y ;X , Y )

FIG. 1. Feynman rules for the propagator and the vertex. When
connecting propagators to the vertex, the arrows of the propagators
have to point in the same direction as the arrows in the vertex. For
each closed fermion loop one should include a factor −1.

Because the Huang-Yang potential contains a derivative
operator, we had to introduce several δ functions in order to
separate the potential operator from the quantum fields.

III. 2PI EFFECTIVE ACTION

To study the interacting Fermi gas we will compute the
resummed propagator Gij (X,X′) = −〈�i(X)�†

j (X′)〉 and the
grand potential �G by using the two-particle irreducible
(2PI) effective action [38]. Readers who are not interested
in the details of this formalism can immediately continue with
Sec. IV where we discuss the Bogoliubov-de Gennes equation
which follows from the 2PI effective action.

The 2PI effective action is also known as the Cornwall-
Jackiw-Tomboulis formalism and is equivalent to the
Luttinger-Ward functional approach [39]. It has been applied
previously to investigate pairing in atomic gases [40] and in
quark matter [41].

The main advantage of the 2PI effective action is that it is
a functional method which generates the resummed Nambu-
Gor’kov propagator and the corresponding grand potential.
Here, we will truncate the 2PI effective action at order g, which
is equivalent to the Hartree-Fock-Bogoliubov approximation.
This leads to the well-known Bogoliubov-de Gennes equation.
Another advantage of the 2PI method is that any truncation
can be systematically improved straightforwardly by taking
into account higher order diagrams. This is necessary when
extending our results to a strongly coupled Fermi gas.

The 2PI effective action reads (see Appendix A for details)
[38]

�[G] = −Tr ln G−1 − Tr
(
G−1

0 G − 1
)+ �2[G], (16)

where �2[G] is the sum of all 2PI diagrams generated from Sint

with propagators G. Here and below log denotes the natural
logarithm. The interaction vertex can be directly read off from
Eq. (14). We have displayed the Feynman rules for computing
the 2PI effective action in Fig. 1. All diagrams contributing to
�2[G] up to order g2 are displayed in Fig. 2.

By minimizing �[G] with respect to G one obtains the
Dyson-Schwinger equation,

G−1 = G−1
0 − �[G], (17)
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FIG. 2. All 2PI diagrams contributing to �2[G] at order g and
order g2. Note the direction of the arrows.

where the 1PI self-energy is �[G] = δ�2[G]/δG. The grand
potential �G = − 1

β
ln Z is equal to the minimum value of

�[G]/β and reads

�G = − 1

β
Tr ln G−1 − 1

β
Tr(�[G]G) + 1

β
�2[G], (18)

where G is now the solution of the Dyson-Schwinger equation,
Eq. (17).

In order to perform a practical calculation, one has to
truncate �2[G] at some order. In this paper we will take
into account the contributions of order g to �2[G], which are
represented by the first two diagrams in Fig. 2. Such truncation
leads to the Hartree-Fock-Bogoliubov approximation. This
approximation is expected to give accurate results for small
coupling g. In general the Hartree-Fock-Bogoliubov approx-
imation can also be applied to strongly correlated systems
if the interaction kernel is renormalized appropriately. Such
renormalization entails a resummation of ladder diagrams in
the Lippman-Schwinger equation. Since we are interested in
the weakly interacting BCS limit there is no need to do this.

Applying the Feynman rules to the first two diagrams in
Fig. 2 we find that to order g, �2[G] is given by

�2(G) = −1

h̄

∑
α=±

∫
dXdYdX′dY ′ Vα(X,Y ; X′,Y ′)

×tr[G(X,X′)σα]tr[G(Y,Y ′)σ−α]

+1

h̄

∑
α=±

∫
dXdYdX′dY ′ Vα(X,Y ; X′,Y ′)

×tr[G(X,Y ′)σαG(Y,X′)σ−α]. (19)

The relative minus sign arises because the first diagram in
Fig. 2 contains two closed loops whereas the second diagram
contains only one closed loop when following the arrows.

The self-energy �[G] can be obtained by differentiating
Eq. (19) with respect to G. This yields

�[G](X,X′) = −2

h̄

∑
α=±

σa

∫
dYdY ′ tr

[
G(Y,Y ′)σ−α

]
×Vα(X′,Y ; X,Y ′)

+2

h̄

∑
α=±

∫
dYdY ′ σαG(Y,Y ′)σ−α

×Vα(X′,Y ; Y ′,X). (20)

The first term is the Hartree self-energy; the second one is the
pairing contribution.

The last two equations can be simplified by computing
the traces and inserting the explicit expressions for V and
V (r). One has then to act the Huang-Yang potential on the

propagators. It can be shown [36] that the diagonal components
of G(X,X′) are finite in the limit r → 0 where r = |x − x′|.
For these components the Huang-Yang potential acts as an
ordinary δ-function potential. We will use this fact to simplify
the expressions involving the diagonal components of G. On
the other hand the off-diagonal components of G will have
in general a singularity proportional to 1/r when r → 0 [36].
In such situations the full form of the Huang-Yang potential
needs to be taken into account.

For later convenience we will now define the pairing field
as

�(x) ≡
∫

d3x ′ V (x − x′)G↑↓(x,τ ; x′,τ ). (21)

Following Ref. [36] we will split the off-diagonal component
of the Nambu-Gor’kov propagator into a singular and regular
part,

lim
x′→x

G↑↓(x,τ ; x′,τ ) = C

r
+ G

reg
↑↓(X,X), (22)

where C is some constant and the superscript reg indicates the
regular part of G. By inserting the Huang-Yang potential in
Eq. (21) one can see that the pairing field does not contain any
singularity [36]:

�(x) = gG
reg
↑↓(X,X). (23)

The diagonal components of the propagator can be ex-
pressed in terms of number densities. To find the relation
between the propagator and the densities we use the definition
of the propagator in terms of field operators,

Gij (X,X′) = −〈Tτ �̂i(X)�̂†
j (X′)〉

= θ (τ ′ − τ )〈�̂†
j (X′)�̂i(X)〉

−θ (τ − τ ′)〈�̂i(X)�̂†
j (X′)〉, (24)

where Tτ denotes time ordering in imaginary time. Hence the
number densities of the two species are related to G as

n↑(x) = 〈ψ̂†
↑(x,τ )ψ̂↑(x,τ )〉 = G↑↑(X,X+), (25)

n↓(x) = 〈ψ̂†
↓(x,τ )ψ̂↓(x,τ )〉 = −G↓↓(X,X−). (26)

From Eq. (24) it follows that G↑↓(X,X′) = 〈ψ̂↓(X′)ψ̂↑(X)〉
and G↓↑(X,X′) = 〈ψ̂†

↑(X′)ψ̂†
↓(X)〉. This can be used to show

that G↓↑(X,X′) = G↑↓(X′,X)∗ which implies that

�(x)∗ = ∫
d3x ′ V (x − x′)G↓↑(x,τ ; x′,τ ) = gG

reg
↑↓(X,X)∗.

(27)

Here we used the fact that the singular part of G↑↓(X′,X)∗ is
a function of |x − x′|, so that x and x′ could be interchanged
without changing the result.

We can now use the above definitions to simplify Eqs. (19)
and (20). After computing the traces we find that to order g,
�2[G] is given by

1

β
�2[G] = g

∫
d3x n↑(x)n↓(x) +

∫
d3x G↑↓(X,X)∗�(x).

(28)
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The 1PI self-energy to order g is

�[G](X,X′) = 1

h̄

(
gn↓(x) �(x)
�∗(x) −gn↑(x)

)
δ(X − X′). (29)

It follows that Tr(�[G]G) = 2�2[G] + O(g2) so that the
grand potential �G, Eq. (18), to order g becomes

�G = − 1

β
Tr ln G−1 − g

∫
d3x n↑(x)n↓(x)

−
∫

d3x G↑↓(X,X)∗�(x). (30)

Since the particle number in the trap is fixed we solve the
equations for the chemical potentials to obtain the desired
number of fermions in each hyperfine state. The appropriate
thermodynamic potential is then the Helmholtz free energy,
which reads

F = �G + μ↑N↑ + μ↓N↓, (31)

where N↑,↓ denote the total number of particles of a particular
species. Since we consider a cylindrically shaped trap, F and
N↑,↓ are proportional to the length of the trap in the z direction
L. Since L is taken to be infinite is convenient to consider
instead the free energy and particle number per unit of the
harmonic oscillator length λ in the z direction. For this reason
we define

F = F

L/λ
, N↑,↓ = N↑,↓

L/λ
. (32)

Furthermore we will define N to be the total number of
particles per unit of length in the z direction, N = N↑ + N↓.

IV. BOGOLIUBOV-DE GENNES EQUATION

To proceed, we will insert the explicit expression for the
1PI self-energy, Eq. (29), into Eq. (17). This yields the Dyson-
Schwinger equation for the Nambu-Gor’kov propagator,

G−1(X,X′) = −1

h̄

(
h̄

∂

∂τ
+ H

)
δ(X − X′), (33)

with

H =
(

H (�)−μ↑+gn↓(x) �(x)
�∗(x) −H (�)∗+μ↓−gn↑(x)

)
. (34)

To solve the Dyson-Schwinger equation, one first inverts both
the left- and right-hand sides of Eq. (33). As explained in detail
in Appendix B this can be achieved by solving the Bogoliubov-
de Gennes equation [42],

H
(

ui(x)
vi(x)

)
= Ei

(
ui(x)
vi(x)

)
. (35)

The functions ui(x) and vi(x) have to be normalized as∫
d3x [|ui(x)|2 + |vi(x)|2x] = 1. Using the explicit expres-

sion of G, Eq. (B4), and Eqs. (25) and (26) one can now
read off the densities,

n↑(x) =
∑

i

f (Ei)|ui(x)|2, (36)

n↓(x) =
∑

i

f (−Ei)|vi(x)|2, (37)

where f (E) = [exp(βE) + 1]−1 is the Fermi-Dirac distribu-
tion function.

As follows from Eqs. (23) and (B4) to obtain �(x) we need
to extract the regular part of the propagator,

G↑↓(x,τ ; x′,τ ) =
∑

i

f (Ei)ui(x)v∗
i (x′), (38)

in the limit x′ → x. To do so we will use the method proposed
in Ref. [36] with the improvements suggested in Refs. [43,44].

The sum over all modes in Eq. (38) is logarithmically
divergent for x = x′. The singular part of G↑↓ arises from the
modes in the integrand with large negative energy. To obtain
the regular part in the limit x′ → x we will first subtract this
large energy contribution. For this purpose we define

νc(x) =
∑

|Ei |<Ec

f (Ei)ui(x)v∗
i (x), (39)

where Ec denotes an energy cutoff introduced to regulate the
logarithmic divergence in νc(x). The part of νc(x) dominated
by the modes with large negative energies can be approximated
as [36,43,44] νHE(x) = −�(x)K(x,x; Ec) with

K(x,x′; Ec) =
∑

Es<εi<Ec

ψi(x)ψ∗
i (x′)

2εi

, (40)

where here and below ψi(x) and εi denote the eigenvectors
and eigenvalues of the Hartree-Fock Hamiltonian,

HHF = H (� = 0) − μ + gn(x). (41)

Here μ = (μ↑ + μ↓)/2 and n(x) = [n↑(x) + n↓(x)]/2. The
low-energy cutoff Es in Eq. (40) is arbitrary, except that it
should be chosen positive in order to avoid singularities arising
from the Fermi surface. As an alternative to introducing a
low-energy cutoff, one can add a small imaginary part to
εi as done in Refs. [36,43,44]. In that case the integrand
of K(x,x′; Ec) has a peak near the Fermi surface, which
makes the numerical integration over pz difficult. One can
reduce this peak by increasing the magnitude of the imaginary
part. However, that will worsen the large negative energy
approximation of νc(x). The low-energy cutoff which we apply
here does not suffer from these problems.

Let us next define νs(x) ≡ νc(x) − νHE(x). Because
νHE(x) contains the logarithmic divergent part of νc(x), the
difference νs(x) is finite, and hence converges for large enough
Ec. There is some freedom in choosing νHE(x). For example,
we could have left out the gn(x) term in the Hartree-Fock
Hamiltonian as in Refs. [36,43]. However, by including this
term, νHE(x) approximates νc(x) much better, which implies
that a much smaller value of Ec is sufficient to compute νs(x)
accurately [44].

Summarizing the discussion above, we found that in
the limit x′ → x, we can write G↑↓(x,τ ; x′,τ ) = νs(x) −
�(x)K(x,x′; ∞). Following Refs. [43,44] the singular part
can now be obtained by making use of the Thomas-Fermi
approximation. In the limit x′ → x one finds that

K(x,x′; ∞) = K(x,x; Ec′) − 1

2

∫
k<kc′ (ρ)

d3k

(2π )3

× 1
h̄2k2

2M
+ 1

2Mω2ρ2 − μ + gn(ρ) + iγ
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+1

2

∫
d3k

(2π )3

eik·(x−x′)

h̄2k2

2M
+ 1

2Mω2ρ2−μ+gn(ρ)+iγ
.

(42)

Here γ is an infinitesimal small positive number and Ec′ is a
second energy cutoff that can be chosen different from Ec. For
large enough Ec′ the sum of the first two terms in Eq. (42) is
convergent. The inhomogeneous wave vector cutoff kc′ (ρ) can
be found from

h̄2k2
c′(ρ)

2M
+ 1

2
Mω2ρ2 − μ + gn(ρ) = Ec′ . (43)

The last term of Eq. (42) contains the singularity. One can now
perform the integration over k analytically, which in the limit
x → x′ gives [43,44]

G↑↓(x,τ ; x′,τ ) = −M�(x)

4πh̄2

1

|x − x′| + G
reg
↑↓(x,τ ; x,τ ),

(44)

where

G
reg
↑↓(x,τ ; x,τ )

= νs(x) − �(x)K(x,x; Ec′ )

+�(x)M

2π2h̄2

[
kc′(ρ) − 1

2
kF (ρ) ln

(
kc′(ρ) + kF (ρ)

kc′(ρ) − kF (ρ)

)]
.

(45)

Here we have introduced the length of the Fermi wave vector
kF (ρ) which can be found from the equation,

h̄2k2
F (ρ)

2M
= μ − gn(ρ) − 1

2
Mω2ρ2 − iγ . (46)

To obtain �(x) we have to multiply Eq. (45) by g as follows
from Eq. (23).

Inserting Eq. (B8) into Eqs. (30) and (31) gives the
Helmholtz free energy,

F = −
∑

i

[ |Ei |
2

+ 1

β
ln
(
1 + e−β|Ei |)]

+
∑

i

εi −
∫

d3xG↑↓(x,τ ; x,τ )∗�(x)

−g

∫
d3xn↑(x)n↓(x) + μ↑N↑ + μ↓N↓. (47)

Although some of the individual terms in the last equation are
ultraviolet divergent, their sum, and hence the Helmholtz free
energy, is ultraviolet finite. The divergence present in the sum
over the eigenvalues of the Bogoliubov-de Gennes matrix is
canceled by the sum over the eigenvalues of the Hartree-Fock
Hamiltonian and by the logarithmic divergence originating
from G↑↓. This can be made clearer by expressing G↑↓ in
terms of νs and K . One finds

F = −
∑

|Ei |<Ec

[ |Ei |
2

+ 1

β
ln(1 + e−β|Ei |)

]

+
∑
εi<Ec

εi +
∫

d3xK(x,x; Ec)|�(x)|2−
∫

d3xνs(x)∗�(x)

−g

∫
d3x n↑(x)n↓(x) + μ↑N↑ + μ↓N↓. (48)

In the absence of a trapping potential Ei is known analytically;
then it can be seen that Eq. (48) is ultraviolet finite. As we will
see in the next section, F is also finite in the general case.

V. SOLVING THE BOGOLIUBOV-DE GENNES-EQUATION

In the previous section we have reduced the Dyson-
Schwinger equation to a nonlinear equation of the form,

(�(x),n↑,↓(x),N↑,↓) = F (�(x),n↑,↓(x),μ↑,↓). (49)

We will now discuss how to compute the function F in practice.
In the next section we will solve the Dyson-Schwinger
equation.

First we will use the symmetries of our problem to simplify
the analysis. For zero rotation frequency the superfluid is in
a vortex-free phase. Then, the pairing field �(x) will be a
function of the radial coordinate ρ only [i.e., �(x) = �̃(ρ),
where �̃(ρ) ∈ R.]

We will assume that the first vortex that appears when
increasing the rotation frequency carries one unit of angular
momentum and is located at the center of the trap. The
pairing field for such vortex has the following form: �(x) =
�̃(ρ) exp(iφ). After the single vortex has appeared, a vortex
lattice can be formed by further increasing the rotation
frequency.

For these reasons we will make the following ansatz for the
pairing field:

�(x) = �̃(ρ) exp(ikφ), (50)

where k is the winding number (unit of angular momentum)
of the vortex at the center. Hence the k = 0 case corresponds
to the vortex-free phase. To determine the onset of the vortex
phase, we have to compare the Helmholtz free energies with
k = 0 and k = 1. Because of the cylindrical symmetry of the
trap and the fact that a possible vortex is located at the origin,
the number densities are a function of ρ only [i.e., n↑,↓(x) =
n↑,↓(ρ)].

In this case the solutions of the Bogoliubov-de Gennes
equation, Eq. (35), are of the following form:

ui(x) = 1√
L

eipzz
1√
2π

eimφ 1√
λρ

unmpz
(ρ), (51)

vi(x) = 1√
L

eipzz
1√
2π

ei(m−k)φ 1√
λρ

vnmpz
(ρ), (52)

which can be verified by inserting these expressions into
Eq. (35). This also yields the Bogoliubov-de Gennes equation
for unmpz

(ρ) and vnmpz
(ρ),

Hmpz

(
unmpz

(ρ)
vnmpz

(ρ)

)
= Enmpz

(
unmpz

(ρ)
vnmpz

(ρ)

)
, (53)

where

Hmpz
=
(
Hm(�)−μ↑+gn↓(ρ) �̃(ρ)

�̃(ρ) −Hk−m(�)+μ↓−gn↑(ρ)

)
,

(54)

and

Hm(�) = h̄2

2M

(
− d2

dρ2
− 1

4ρ2
+ m2

ρ2 + λ2η2

)

+1

2
Mω2ρ2 + p2

z

2M
− mh̄�. (55)
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Due to the factor 1/
√

ρ in Eqs. (51) and (52) Hm(�) is a
bit different from the single-particle Hamiltonian defined in
Eq. (5). We have inserted this factor for later convenience.
Furthermore, by inserting the term λ2η2 we have modified the
centrifugal potential in such a way that it becomes regular
at ρ = 0. The original centrifugal potential is reproduced for
η → 0. As we explain in Appendix D, this slight modification
is necessary for the numerical computation of the wave
functions and energies. In our computations we have taken
η = 10−5 and checked that the results are completely stable if
η is varied by orders of magnitude around this value.

From the normalization condition on ui(x) and vi(x) it
follows that unmpz

(ρ) and vnmpz
(ρ) have to be normalized as

1

λ

∫ ∞

0
dρ [unmpz

(ρ)2 + vnmpz
(ρ)2] = 1. (56)

To solve the Bogoliubov-de Gennes equation numerically,
we have to discretrize Eq. (53). One can do this by expanding
the wave functions u(ρ) and v(ρ) in a certain basis. For
practical purposes, this basis has to be truncated [i.e., we will
represent unmpz

(ρ) and vnmpz
(ρ) by a finite number N of basis

functions �i(ρ)]. More specifically we will write

unmpz(ρ) =
N∑

i=1

ci�i(ρ) vnmpz(ρ) =
N∑

i=1

di�i(ρ), (57)

where ci and di are the expansion coefficients, which depend
on the quantum numbers n, m, and pz. We will require the
basis functions to be orthonormal in the following way:

1

λ

∫ ∞

0
dρ �i(ρ)�j (ρ) = δij . (58)

From Eq. (56) it then follows that the expansion coefficients
have to be normalized as

N∑
i=1

(
c2
i + d2

i

) = 1. (59)

Equation (53) can now be transformed into an ordinary
eigenvalue equation for a 2N × 2N matrix which reads(

H̄m − μ̄↑ �̄

�̄ −H̄k−m + μ̄↓

)(
c

d

)
= Enmpz

(
c

d

)
. (60)

Here H̄ , μ̄, and �̄ are N × N real symmetric matrices which
are given by

(H̄m)ij = 1

λ

∫ ∞

0
dρ �i(ρ)Hm(�)�j (ρ), (61)

(μ̄α)ij = 1

λ

∫ ∞

0
dρ �i(ρ) [μα − gn−α(ρ)] �j (ρ), (62)

(�̄)ij = 1

λ

∫ ∞

0
dρ �i(ρ)�̃(ρ)�j (ρ). (63)

Similarly we define (H̄HF)ij as the representation of the
Hartree-Fock Hamiltonian defined in Eq. (41). Once these
matrices have been computed explicitly, Eq. (60) can be solved
numerically using standard linear algebra routines. From the
solutions the wave functions and the expressions for νs(x)

and n↑,↓(x) can be constructed. We will give the explicit
expressions at the end of this section.

Since truncating the basis is an approximation, we have to
choose the basis carefully in order to make sure that the basis
functions can describe the exact solution to good accuracy. We
can always improve the accuracy of the truncation by taking a
larger value of N , but the drawback is that this increases the
computational cost as well.

A good basis has to be able to describe the wave functions
in the case � = 0, which are the radial single-particle wave
functions given in Eq. (8) times

√
ρ. For that reason we will

choose a basis of the following form:

�i(ρ) =
√

w(ρ/λ) li(ρ/λ), (64)

where w(x) = x exp(−x2) and li(x) is a set of linear in-
dependent polynomials of degree N − 1. In this basis all
single-particle wave functions can be represented exactly by a
finite number of basis functions. For the calculation of vortices
this is a desirable feature, because in that case mixing between
states with different angular momentum quantum numbers
occurs.

From Eq. (58) it follows that the polynomials li(x) have to
be chosen orthogonal with respect to weight function w(x),
that is, ∫ ∞

0
dx w(x)li(x)lj (x) = δij . (65)

The set of polynomials of increasing degree that are or-
thonormal to each other with the weight function xp exp(−x2)
on the interval [0,∞) are called Maxwell polynomials [45].
We will write the Maxwell polynomials for p = 1 as φi(x),
where i = 0,1,2, . . . denotes the degree.

One could have chosen as basis functions the Maxwell
polynomials directly, for example, li(x) = φi−1(x). However,
the computation of the Bogoliubov-de Gennes matrix, Eq. (60),
becomes much easier if we use Lagrange interpolating
functions as basis functions. These Lagrange interpolating
functions are a particular linear combination of Maxwell poly-
nomials and will be specified below. This approach is generally
known as the discrete variable representation (DVR) method,
or alternatively as the Lagrange mesh discretization [46–48].
By applying this method one can obtain highly accurate values
for the energies and wave functions [49]. The DVR method
can be applied to any set of orthogonal polynomials [50], and
is not restricted to Maxwell polynomials. To our knowledge,
this is the first time that the DVR method is used with Maxwell
polynomials.

The DVR method is based on the Gaussian quadrature
formula, ∫ ∞

0
dx w(x)f (x) ≈

N∑
n=1

wnf (xn). (66)

Here and in the following the nodes xn are the roots of
the Maxwell polynomial φN (x) and wn the corresponding
quadrature weights. The integration formula Eq. (66) is exact
for all polynomials f (x) of degree less than 2N . From the
properties of the orthogonal polynomials, one can show that
all N roots are real and all weights are positive. The nodes
and the weights are the only nontrivial properties of the
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Maxwell polynomials one needs to know in order to apply the
DVR method. Since the Maxwell polynomials are nonstandard
polynomials, we review the computation of its nodes and
weights in Appendix C.

In the DVR method one chooses the functions li(x) to be
the Lagrange interpolating functions through the nodes xn.
Explicitly, these functions read

li(x) = 1√
wi

N∏
n=1,n�=i

x − xn

xi − xn

. (67)

It follows directly that the polynomials li(x) satisfy the
following useful property, li(xj ) = δij /

√
wi . Because the

combination li(x)lj (x) is a polynomial of degree 2N − 2,
the Gaussian quadrature is exact for this combination. Hence
we can use the Gaussian quadrature to show that li(x) satisfies
the required orthonormality condition given in Eq. (65),

∫ ∞

0
dx w(x)li(x)lj (x) =

N∑
k=1

wk√
wiwj

δikδjk = δij . (68)

We will now compute the matrices that appear in the
Bogoliubov-de Gennes equation, Eqs. (61)–(63) explicitly. In
the DVR method one uses the Gaussian quadrature to compute
the integrals. In this way we find that

(μ̄α)ij ≈ μαδij − gn−α(λxi)δij , (69)

(�̄)ij ≈ �̃(λxi)δij . (70)

Here one of the nice features of the DVR method appears.
All parts of the Bogoliubov-de Gennes matrix that contain
no derivatives become diagonal and are easy and fast to
evaluate. Furthermore, the values of �̃(ρ) and n↑,↓(ρ) have
to be evaluated only at the mesh points ρ = λxi . These mesh
points are unevenly spaced.

Another attractive feature of the DVR method is that matrix
elements of derivative operators can be computed exactly. We
discuss the computation of H̄ in Appendix D. The exact
expression for the matrix H̄ can be obtained by inserting
Eqs. (D14) and (D17) into Eq. (D1). While H̄ becomes much
more complicated than μ̄ and �̄, this is not a disadvantage,
because we only need to compute H̄ once. This is in contrast
to μ̄ and �̄ which will change from iteration to iteration when
solving the Dyson-Schwinger equations.

In order to describe a single-particle wave function with
quantum numbers n and m in this basis exactly, we need to take
N � 2n + |m|. For a given value of N therefore only the lowest
(N − |m|)/2 eigenvalues and corresponding eigenvectors can
be computed exactly in this basis.

Let us now order the eigenvalues of the Bogoliubov-de
Gennes matrix and the Hartree-Fock Hamiltonian, that is, label
them in such a way that

Enmpz
� En+1,mpz

, n = 1 . . . 2N, (71)

εnmpz
� εn+1,mpz

, n = 1 . . . N. (72)

If we can compute the first nmax eigenvalues of the single-
particle Hamiltonian accurately then the eigenvalues of the
Bogoliubov-de Gennes matrix with ni � n � nf where ni =

N − nmax + 1 and nf = N + nmax, will be computed accu-
rately. We will write the maximum n quantum number as

nmax =
⌊

κN − max(|m|,|k − m|)
2

⌋
, (73)

where �x� denotes the floor function, and κ is a free
parameter which equals 1 if all single-particle eigenvalues
and vectors need to be computed exactly. Typically the next
few eigenvalues and eigenvectors can also be computed very
reliably, although they deteriorate rapidly at some point. A
larger value of κ is advantageous because more eigenvalues
and vectors are taken into account in the same basis. From
our experience one can safely take 1 � κ < 1.2. The angular
quantum number is varying between mmin and mmax. These are
in the case of k � 0 given by

mmin = −�κN� + k, (74)

mmax = �κN�. (75)

To solve the Bogoliubov-de Gennes equation we only need
to evaluate νs(ρ) and n↑,↓(ρ) at ρ = λxi . At the mesh points
the wave functions become rather simple and read

unmpz(λxi) = ci

√
xi

wi

exp
(− x2

i /2
)
, (76)

vnmpz
(λxi) = di

√
xi

wi

exp
(− x2

i /2
)
. (77)

Combining now the last two equations with Eqs. (51) and (52)
we find that at the mesh points the densities read

n↑(λxi) = e−x2
i

2πλ2wi

∑∫ nf∑
n=ni

f (Enmpz
)c2

i , (78)

n↓(λxi) = e−x2
i

2πλ2wi

∑∫ nf∑
n=ni

f (−Enmpz
)d2

i . (79)

Here we introduced the symbol,

∑∫
≡

mmax∑
m=mmin

∫ pc

0

dpz

πh̄
, (80)

where pc is a cutoff on the pz integration. Furthermore, we
used the fact that all integrands are symmetric in pz. We
have performed the integration over pz numerically using the
adaptive Simpson method. After that we performed the sum
over m.

The function νs(x) from which �(x) can be obtained
becomes at the mesh points

νs(λxi) = eikφ e−x2
i

2πλ2wi

∑∫ [
nf∑

n=ni

f (Enmpz
)cidi

+ �̃(λxi)
nmax∑
n=1

c̃2
i

2εnmpz

θ (εnmpz
− Es)

]
, (81)

023609-8



VORTEX FORMATION IN A ROTATING TWO-COMPONENT . . . PHYSICAL REVIEW A 84, 023609 (2011)

where εnmpz
and c̃i are, respectively, the eigenvalues and

eigenvectors of the matrix representation of the Hartree-Fock
Hamiltonian, (H̄HF)ij . To compute �(λxi) we also need to
evaluate K(λxi,λxi,Ec′ ), which is defined in Eq. (40). To
obtain K only the eigenvalues and eigenvectors of the Hartree-
Fock Hamiltonian in the case pz = 0 have to be computed
numerically. Their values for nonzero pz follow trivially, since
εnmpz

= εnm0 + p2
z/(2M). We then obtain

K(λxi,λxi ; Ec′ ) = e−x2
i

2πλ2wi

mmax∑
m=mmin

nmax∑
n=1

c̃i(pz = 0)2

×
∫

dpz

2πh̄

1

2εnmpz

∣∣∣∣
Es<εnmpz <Ec′

. (82)

The value of Ec′ is limited by the largest εnmpz
one can compute

reliably. An estimate of this value is Ec′ < κN − μ + gn(0).
The integration over pz in Eq. (82) can straightforwardly be
performed analytically (we will, however, not write down the
result here). Therefore K(λxi,λxi ; Ec′ ) can be computed much
faster than νs(λxi) for which numerical integration over pz is
required. To compute K(λxi,λxi ; Ec′ ) we can thus afford to use
a much larger basis (we have taken N = 128) than for νs(x).
A larger basis implies that we can choose a larger value of the
cutoff Ec′ leading to more reliable answers. The values of K

on a coarser mesh can then be obtained from interpolation.
From Eq. (45) we obtain the pairing field,

�(λxi) = gνs(λxi) − g�(λxi)K(λxi,λxi ; Ec′ )

+g
�(λxi)M

2π2h̄2

[
kc′(λxi)

−1

2
kF (λxi) ln

(
kc′ (λxi) + kF (λxi)

kc′ (λxi) − kF (λxi)

)]
. (83)

The Helmholtz free energy per unit of harmonic oscillator
length in the z direction follows from Eq. (48) and reads

F = −λ
∑∫ { nf∑

n=ni

[ |Enmpz|
2

+ 1

β
ln(1 + e−β|Enmpz|)

]

−
nmax∑
n=1

[
εnmpz + θ (εnmpz−Es)

2εnmpz

N∑
i=1

c̃2
i |�(λxi)|2

]}

−2πλ3
N∑

i=1

wiνs(λxi)
∗�(λxi)e

x2
i (84)

−g2πλ3
N∑

i=1

win↑(λxi)n↓(λxi)e
x2

i + μ↑N↑ + μ↓N↓.

Here we have used the Gauss-Maxwell quadrature to compute
the integrals over ρ. It can be shown numerically that the
integrand of F decreases rapidly for large pz, making F
ultraviolet finite.

Another important quantity which now can be constructed
is the expectation value of the angular momentum operator

Lz. With help of the number densities, Eqs. (78) and (79), the
angular momentum density can be written as

lz(λxi) = e−x2
i h̄

2πλ2wi

∑∫ nf∑
n=ni

[
mc2

i f (Enmpz
)

+ (k − m)d2
i f (−Enmpz

)
]
. (85)

Integrating the last equation over ρ and φ gives the angular
momentum per unit harmonic oscillator length in the z

direction which we will denote by Lz.

VI. SOLVING THE DYSON-SCHWINGER EQUATION

Solving the Dyson-Schwinger equation amounts to finding
the solution of Eqs. (78), (79), and (83), together with the
constraint on the number of particles. Schematically the
equation to be solved is of the form given in Eq. (49). Such
equation can be solved using a multidimensional root-finding
method. For that purpose we will use the Newton-Broyden
method [51], which leads to very fast convergence once close
to the solution. As an input to the Newton-Broyden method
one should provide initial guesses for �, n↑,↓, and μ↑,↓ and
also provide the Jacobian of F .

To obtain the initial conditions we will use the Thomas-
Fermi approximation. The Thomas-Fermi approximation to
the density is found by solving the following equation:

n↑,↓(ρ) =
∫

d3p

(2πh̄)3
f

(
p2

2M
+ 1

2
Mω2ρ2

−�Lz − μ↑,↓ + gn↓,↑(ρ)
)

. (86)

If T = 0 the last equation becomes

n↑,↓(ρ)= 1

6π2λ3

[
2
μ↑,↓−gn↓,↑(ρ)

h̄ω
−
(

1− �2

ω2

)
ρ2

λ2

]3/2

.

(87)

This equation can easily be solved numerically. If μ↑ = μ↓ the
Thomas-Fermi radius [the minimal ρ for which n↑,↓(ρ) = 0]
of the gas becomes

R = 1

1 − �2/ω2

√
2μ

h̄ω
λ. (88)

The initial values for μ↑,↓ can be obtained by integrating the
Thomas-Fermi density profiles and solving numerically for the
desired N↑,↓.

For the initial condition to the pairing field in the case k = 0
we use the result of the BCS theory in the weak coupling limit
(see, e.g., Ref. [44]),

�̃(ρ) = 4kF (ρ)2λ2 exp

(
−2 − π

2kF (ρ)|a|
)

h̄ω, (89)

where kF (ρ) is defined in Eq. (46). As an initial condition
for nonzero k, we multiply this equation by a factor 1 −
exp[−ρ/(kξ )] where the BCS coherence length equals

ξ = kF (0)λ2

π�̃(0)/(h̄ω)
. (90)

In the Newton-Broyden method the Jacobian has to
be computed at each iteration. We have computed the
initial Jacobian using finite differences. If μ↑ = μ↓ there are
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2(2N + 1) evaluations of F required, so obtaining the initial
Jacobian is computationally expensive.

However, it is not necessary to apply finite differences to
recompute the Jacobian in the next iteration. The next Jacobian
can be obtained from the previous one using a Broyden
update [51]. Such update has negligible computational cost.
After the initial Jacobian has been acquired Newton-Broyden
iterations typically reach convergence in about 10 iterations.
The time it takes to reach convergence is completely dominated
by the time it takes to compute the initial Jacobian. The
computational cost of the whole problem scales roughly with
N5, a factor of N3 originates from solving the Bogoliubov-de
Gennes equation, a factor of about N arising from the sum
over angular quantum numbers and another factor of N from
the Jacobian.

Given the solution, the Helmholtz free energy can straight-
forwardly computed by applying Eq. (84).

VII. RESULTS

In the numerical computations the following parameters
were used η = 10−5, κ = 1.1, Es = 2.43h̄ω, pc/h̄ = 20/λ,
and Ec′ = 100h̄ω. The adaptive Simpson integration was
performed with a relative precision goal of 10−5 and absolute
precision goal 10−10 for each individual component of �(λxi)
and n↑,↓(λxi). The accuracy goals for the computation of
the initial Jacobian were set much lower, which speeds up
the computation. As long as these goals are not set too low
they will not ruin the convergence of the Newton-Broyden
algorithm. We would like to stress that a less accurate Jacobian
that can make the Newton-Broyden algorithm converge does
not influence the accuracy of the final values of �(λxi) and
n↑,↓(λxi).

The iterations of the Newton-Broyden algorithm were
performed until the relative difference between the norm of
(�̃(λxi),n↑,↓(λxi),N↑,↓) and F (�(λxi),n↑,↓(λxi),μ↑,↓) be-
came less than 10−7. Frequently, a relative accuracy of 10−9

could be reached.
The number of basis functions N was chosen such that

convergence was reached. At least all energy levels below the
Fermi energy have to be computed accurately. Since a larger
number of particles implies a larger Fermi energy, for a larger
number of particles a larger value of N is required. We have
done computations from N = 16 to N = 80. A calculation
with N = 80 took several days on a single modern CPU. For
calculations with N = 100, 200, and 1000 we typically used,
respectively, N = 40, 48, and 64.

We have checked that our results are completely stable
under acceptable variation of these parameters. By studying
these variations, we have convinced ourselves that the largest
values of �(λxi), n↑,↓(λxi) have a relative accuracy of a
least 10−3. The free energy could be obtained with a relative
accuracy of 10−5.

Furthermore we have taken T = 0 throughout and con-
sidered the situation that the number of particles per unit
harmonic oscillator length in the z direction in each species is
equal (i.e.,N↑ = N↓ = N /2). We have investigated situations
with N = 100, 200, and 1000, different scattering lengths and
different rotation frequencies. The scattering lengths we have
considered correspond to inverse interaction strengths at the

N = 1000
N = 200
N = 100

−a/λ

1
kF(0)|a|

0.20.150.10.050
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0

FIG. 3. (Color online) Inverse interaction strength at the center
of the trap as a function of scattering length, for � = 0 and different
number densities of particles N .

center of the trap in the range 1 � 1/(kF(0)|a|) � 4. We have
depicted their relationship at zero rotation frequency in Fig. 3.
In this range the Hartree-Fock-Bogoliubov approximation is
expected to be valid. If one wants to study stronger interactions
one has to take into account the higher order diagrams in order
to get a reliable result.

To get an idea of the scales in a typical experiment, we
can use that in Ref. [1] a Fermi gas made out of 6Li atoms
was studied in a trapping potential with radial frequency
ω/(2π ) = 57 Hz. This situation corresponds to λ ∼ 5.4 μm
and h̄ω/kB ∼ 2.7 nK.

We will now first give a detailed overview of the results at
zero rotation frequency. After that we will discuss the effects
of rotating the trap and present the main objective of this work,
the critical rotation frequency for vortex formation.

A. Zero rotation frequency

In Fig. 4 we compare the pairing field of the vortex-
free superfluid (k = 0) with the pairing field of the vortex
with unit angular momentum (k = 1). These pairing fields
were computed for N = 1000 and a = −0.1λ with N = 64.
Because the data points lie so close to each other, we have
only displayed a line that interpolates through the data points
for visibility reasons. Since the rotation frequency was taken
to be zero, the vortex is metastable.

The pairing field clearly vanishes at the center of the vortex.
Away from the vortex core the pairing field is restored to its
value in the k = 0 case. The typical distance at which this
happens is the BCS coherence length ξ . This implies that the
size of the vortex core grows when decreasing the strength
of the interaction. For very weak interactions, ξ can become
larger than the radius of the gas. In that case even a metastable
vortex is no longer possible. In the second part of this section
we will study the size of the vortex core at the critical rotation
frequency for vortex formation in some detail.

The vortex also leaves its imprint on the corresponding
density profiles which are displayed in Fig. 5. As already
found in Refs. [12,13], the density at the center of the trap
is significantly depleted in the presence of a vortex. To
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FIG. 4. (Color online) Pairing field as a function of radius, for
a = −0.1λ, N = 1000, and � = 0.

compensate for the removal of particles at the center, the gas
will expand. This is a tiny effect and is, therefore, not visible in
Fig. 5. In the next subsection we will study density depletion
at the critical rotation frequency.

The density profile for normal pairing is very well described
by the Thomas-Fermi approximation, which is the solution of
Eq. (87). The pairing field however only agrees qualitatively
with the Tomas-Fermi approximation, Eq. (89), as was also
concluded in Ref. [36].

We have displayed pairing field profiles for N = 100 in
Fig. 6. The interaction strength was taken to be weak, in
the range 0.07 � |a|/λ � 0.09, which leads to small pairing
fields. In such situations we encountered oscillations in the
pairing field. To ensure that this is not a numerical artifact, we
have compared these profiles computed with N = 32, N = 48,
and N = 64. We find that they are completely consistent
with each other. The oscillations in the pairing field are only
prominent in the case of a small number of particles with weak
interactions.

Let us now study the effect of variation of the scattering
length and the number of particles in the zero rotation limit.
In Fig. 7 we display the pairing field at the center of the
trap as a function of the scattering length. Clearly, increasing
the interaction strength and the number of particles (i.e., the

k = 1
k = 0

ρ/λ

n↑,↓(ρ)λ3

86420

10
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2

0

FIG. 5. (Color online) Number density as a function of radius,
for a = −0.1λ, N = 1000, and � = 0.

a = −0.07λ
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FIG. 6. (Color online) Pairing field as a function of radius, for
N = 100, k = 0, and different scattering lengths.

Fermi wave number) both lead to larger pairing fields. This
is qualitatively in agreement with the BCS pairing formula,
Eq. (89).

In Fig. 8 we have displayed the corresponding number
density at the center of the trap. Increasing the number of
particles leads naturally to a larger number density at the center.
Stronger attractive interactions lead to a more compressed gas,
which likewise results in a larger density at the center.

In Fig. 9 we have displayed the corresponding chemical
potential. Obviously a larger number of particles implies a
larger chemical potential. The chemical potential decreases
with increasing the strength of the interaction. This is because
the Hartree term −gn↓,↑(ρ), which acts as a sort of inhomoge-
neous chemical potential, grows with increasing the interaction
strength.

The radius of the gas can, to very good approximation, be
obtained by inserting the values of the chemical potential in the
Thomas-Fermi estimate, Eq. (88). This gives at zero rotation
frequency R/λ = √

2μ/h̄ω. It then follows from Fig. 9 that
increasing the number of particles increases the radius. On
the other hand, increasing the interaction strength reduces

N = 100
N = 200
N = 1000
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FIG. 7. (Color online) Pairing field at the center of the trap, as a
function of the scattering length, for different numbers of particles,
and � = 0.
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FIG. 8. (Color online) Density at the center of the trap, as a
function of the scattering length, for different numbers of particles,
and � = 0.

the radius. The gas becomes more compressed because the
interaction between the two components is attractive.

B. Nonzero rotation frequency

To illustrate the effects of rotation, we have displayed the
pairing field, the number density and the angular momentum
density for � = 0.15ω, N = 1000, and a = −0.1λ in Fig. 10
(k = 0) and Fig. 11 (k = 1). These figures can be compared
to the results at zero rotation frequency which are displayed in
Figs. 4 and 5. As we will show below, � = 0.15ω is the critical
rotation frequency for vortex formation in this situation.

A vortex-free superfluid state cannot carry angular momen-
tum. For that reason the angular momentum density vanishes
in the region where the pairing field is sizable, as can be
seen in Fig. 10. Since angular momentum density appears at
large ρ, it indicates the presence of unpaired fermions at the
edges of the gas. Another way to observe this effect is that for
large radial coordinates, the pairing field disappears before the
number density does. It can be seen in Fig. 11 that a vortex
generates angular momentum density in the superfluid region.
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FIG. 9. (Color online) Chemical potential as a function of the
scattering length, for different numbers of particles, and � = 0.
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FIG. 10. (Color online) Pairing field, number density, and angular
momentum density as a function of radius. The results correspond to a
vortex-free superfluid with N = 1000, a = −0.1λ, and � = 0.15ω.

For the same reasons as in the k = 0 case, unpaired fermions
are present at the boundaries of the gas.

By careful comparison of Figs. 10 and 11 one can observe
that the pairing field of the vortex is slightly larger in the outer
region. This is generally the case and leads in addition to the
effects mentioned in the introduction to a fourth contribution to
the energy difference between a vortex and a vortex-free phase.
Rotation increases the radius of the cloud as well. However, at
this rotation rate this is only a very small effect and is therefore
not visible in the figures.

Now let us discuss the determination of the critical rotation
frequencies for unpairing and vortex formation. To obtain these
frequencies we have computed the Helmholtz free energy. The
phase with the lowest free energy is the preferred phase.

In Fig. 12 we have displayed the Helmholtz free energy
divided by the number of particles, for N = 1000 and a =
−0.1λ. A number of interesting features of the superfluid
are shown in this figure. First of all, the superfluid phase is
always preferred over the unpaired phase, since � = 0 has the
largest free energy. Furthermore, for � < 0.05ω the gas forms
a vortex-free superfluid. It can be seen that in this region the
free energy does not depend on the rotation frequency. This

0.5lz(ρ)λ3/h̄

n↑,↓(ρ)λ3

Δ̃(ρ)/h̄ω

ρ/λ

86420

15

10

5

0

FIG. 11. (Color online) Same as in Fig. 10, but for a vortex with
k = 1.
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FIG. 12. (Color online) Helmholtz free energy divided by the
number of particles, as a function of rotation frequency, for a =
−0.1λ and N = 1000. The label k = 0 corresponds to a superfluid
without vortices, the nonzero values of k correspond to a single vortex
at the center of the trap with angular momentum k. The label � = 0
corresponds to the situation in which all fermions are unpaired.

indicates that the entire gas is in a superfluid state. However,
for � > 0.05ω the free energy of the vortex-free phase starts to
decrease when increasing the rotation frequency. This implies
that the gas has acquired angular momentum, which occurs
via unpairing the fermions at the edges of the gas. Hence for
0.05ω < � < 0.15ω the gas forms a vortex-free superfluid
with unpaired fermions at the boundaries. At � > 0.15ω a
superfluid with a k = 1 vortex becomes the preferred phase.
One can see this more clearly in Fig. 13, where we have
displayed the difference in free energy between the vortex
phase with k = 1 and the vortex-free phase. The critical
rotation frequency can be found from interpolation of the data
points which in this case yields �c = 0.149ω. For � < 0.15ω

the k = 1 phase is metastable. Because superfluids with a
vortex carry angular momentum, the derivative of their free
energy with respect to rotation frequency is negative, even at
zero rotation frequency. In the unpaired phase this derivative
vanishes at zero frequency, because the fully unpaired gas does
not contain angular momentum at zero frequency.

At zero temperature, one can also compute the critical
rotation frequency for unpairing in a more direct way. At
zero rotation frequency all quasiparticle excitations (except the
superfluid phonon) are gapped (i.e., |Enmpz

| > 0). As follows
from the discussion in Appendix B, if μ↑ = μ↓ and � = 0,
both Enmpz

and −Enmpz
are eigenvalues of the Bogolibuov-de

Gennes matrix. Rotation shifts these eigenvalues downward
by mh̄�. As long as no gapless mode arises the rotational
contributions from positive and negative energies cancel so
that this shift has no effect on the free energy. For that reason
the free energy for k = 0 stays constant up to a certain rotation
frequency. Only when the first gapless mode appears, the free
energy will change. The minimal rotation frequency at which
this occurs is the critical rotation frequency for unpairing, �u.
Thus this rotation frequency can be found from the solutions
at � = 0 in the following way:

�u = min

∣∣∣∣ 1

mh̄
Enmpz

(� = 0)

∣∣∣∣ , (91)

Ω/ω
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FIG. 13. (Color online) Difference in Helmholtz free energy per
unit length in the z direction between the vortex phase with k = 1 and
the vortex-free phase with k = 0, as a function of rotation frequency,
for a = 0.1λ and N = 1000.

where the minimum is to be taken over all values of n, m, and
pz. Determination of �u in this way is computationally much
less expensive than obtaining it from the free energy.

Let us now discuss our main result: the phase diagram as a
function of scattering length and rotation frequency. In Figs. 14
and 15 we have displayed these diagrams for N = 1000 and
N = 200, respectively.

There are two transitions in these phase diagrams. The lower
line denotes the unpairing transition. The order parameter
corresponding to this transition is the angular momentum.
This transition is of second order since the angular momentum
changes continuously. At T �= 0 this transition turns into a
crossover. Hence at � = �u and T = 0 the gas resides at a
so-called quantum critical point. Above this critical point the
order parameter behaves as Lz ∼ tβ where t = (� − �u)/�u.

C
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Ω/ω

0.120.080.040
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FIG. 14. (Color online) Phase diagram of a two-component Fermi
gas as a function of scattering length and rotation frequency, for
N = 1000 and T = 0. The lines correspond to the phase boundaries.
The label A indicates that the entire gas is in a vortex-free superfluid
state. The label B indicates a vortex-free superfluid in the center with
unpaired fermions in the outer regions of the gas. The label C indicates
a superfluid with vortices in the center and unpaired fermions in the
outer regions.
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FIG. 15. (Color online) Same as in Fig. 14, but for N = 200.

We find numerically that the critical exponent has the value
β = 1.

The upper line denotes the critical rotation frequency for
the formation of a vortex with unit angular momentum at
the center of the trap. Energy arguments suggest that with
increasing rotation frequency the first vortex configuration
that will nucleate is a single vortex with k = 1. A single
vortex with k > 1 will have larger energy, as can be seen in
Fig. 12. Several vortices with k = 1 have again larger energy
and their nucleation would require larger than critical rotation
frequencies. Therefore, the upper line shows the critical
rotation frequency for vortex formation. The order parameter
corresponding to this transition is the winding number of the
vortex. Since this winding number changes discontinuously,
this transition is of first order.

Increasing the absolute value of the scattering length
leads to a larger critical rotation frequency for unpairing.
Furthermore, for a given scattering length �u becomes larger
when the number of particles is increased. Both effects can
be explained by the fact that a stronger bound pair is more
difficult to break.

As can be seen from the phase diagrams, we find that
vortices are formed only for relatively large negative scattering
lengths. The critical rotation frequency for vortex formation
has a minimum at a certain intermediate value of the scattering
length. This minimum arises from the interplay of two effects.
Firstly, the energy cost of creating a vortex at zero rotation
frequency increases with increasing the negative scattering
length. This explains the rise of the critical frequency at large
negative scattering lengths. The second effect is caused by the
difference in energy gain due to rotation. The k = 1 phase
will always have a larger rotational energy gain than the
k = 0 phase due to the angular momentum generated by
the vortex. However, for small interaction strengths above
the unpairing transition, the difference between these gains
is relatively small. This is because in this case it is relatively
easy to break the pairs at the boundaries of the gas, which
contribute to the rotational energy gain in both the k = 0 and
k = 1 phase. As a result of this effect the critical frequency
increases for small negative scattering lengths. For a certain
small scattering length the difference in rotational energy gain
cannot overcome the costs associated with the vortex. For this
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FIG. 16. (Color online) Relative density depletion at the core of
a vortex, as a function of scattering length, at the critical rotation
frequency for vortex formation.

reason at small negative scattering lengths the vortex phase has
an abrupt transition to a vortex-free phase. We see that below
a ≈ −0.155λ for N = 200 and a ≈ −0.085λ for N = 1000
vortex formation does not occur at all the rotation frequencies
displayed in the phase diagram.

Vortex formation sets in at a lower rotation rate when the
number density of particles is increased from N = 200 to
N = 1000. For the number of particles we have investigated
we find that the vortices always appear together with unpaired
fermions at the edges of the gas. One could speculate that for a
larger number of particles �c will be reduced so that a vortex
phase will appear before unpairing at the edges could become
possible. In other words, we anticipate that for a large number
of particles the phase diagram might feature a direct phase
transition from the A to the C phase without the intermediate
B phase.

In Fig. 16 we have displayed the central number density of a
vortex over the central density of a vortex-free superfluid, at the
transition to vortex formation. It can be seen that the amount
of density depletion is relatively small for weak interactions
and grows with increasing the interaction strength.

Let us define the half-width d of the vortex to be the radius at
which �̃(ρ)k=1/�̃(ρ)k=0 = 1/2. In Fig. 17 we have displayed
this half-width at the transition for vortex formation. For N =
1000 it can be clearly seen that weak interactions lead to larger
vortices, which is caused by the increase of the BCS coherence
length.

VIII. CONCLUSIONS

In this article we studied a two-component Fermi gas
with attractive s-wave interactions confined in a cylindrically
symmetric harmonic trap. Our key results are summarized
in a phase diagram spanned by the rotation frequency and
scattering length for zero temperature and a fixed number of
particles. Explicit results are shown for a number density of
1000 and 200 particles per unit harmonic oscillator length in
the z direction in Figs. 14 and 15, respectively.

To obtain the phase diagram we have used the two-particle
irreducible effective action. We only took into account the
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FIG. 17. (Color online) Half-width of the vortex as a function
of scattering length, at the critical rotation frequency for vortex
formation.

leading order diagrams, which is equivalent to the Hartree-
Fock-Bogoliubov approximation. This constrains our study
to interaction strengths of magnitude 1/[kF (0)|a|] � 1. The
equations we obtained were solved numerically using the DVR
method based on Maxwell polynomials.

In the phase diagram three phases can be distinguished. For
small rotation frequencies the entire gas forms a superfluid. At
a certain critical frequency a second-order transition occurs to
a superfluid phase, which features unpaired fermions that are
concentrated at the edges of the gas. At this critical rotation
frequency the gas resides at a quantum critical point when
the temperature vanishes. For even larger rotation frequencies
vortices are formed via a first-order transition. These vortices
only appear for large negative scattering lengths. We have
found that at a certain scattering length the critical rotation
frequency for vortex formation has a minimum.

The presence of unpaired fermions at the boundaries of the
gas results in an increase of the critical rotation frequency for
vortex formation. For this reason one cannot use the free energy
difference between a vortex phase and vortex-free phase at zero
rotation frequency to compute the critical rotation frequency
for vortex formation.

Our theoretical findings can be compared to the experiment
at will, since the vortices have been observed in rotating two-
component Fermi gases [1,2]. It would be interesting to obtain
the structure of the phase diagram from such experiments.

The theoretical understanding of the phase diagram can
be improved in several ways. It would be worthwhile to
investigate how the phase diagram is modified by temperature
and by an imbalance in the number of fermions. Furthermore, it
would be very useful to extend our analysis to larger interaction
strengths, in order to obtain reliable results in the unitary
regime.

Finally we would like to point out that vortices can also
be induced by synthetic magnetic fields, as has been shown
experimentally in a Bose-Einstein condensate [52]. Since
such synthetic magnetic field is similar to rotation, another
interesting extension of our work would be to compute the
critical synthetic magnetic field strength for vortex formation
in a two-component Fermi gas.
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APPENDIX A: THE 2PI EFFECTIVE ACTION

Consider an action S = −h̄�†G−1
0 � + Sint, where G−1

0
denotes the bare inverse propagator and Sint is the part of the
action that contains interactions. The partition function Z[K]
corresponding to this action in the presence of a source term
K is given by

Z[K] =
∫

D�†D� exp[−S/h̄ + �†K�]. (A1)

Let us denote the exact propagator in the presence of a source
term K as G. The 2PI effective action is defined as [38]

�[G] = − ln Z[K] + Tr(KG), (A2)

where K has to be chosen in such a way that the exact
propagator in the presence of K equals G. Since the exact
propagator has to satisfy the Dyson-Schwinger equation, we
can conclude that K = G−1 − G−1

0 + �[G], where �[G] is
the 1PI self-energy. Taking the derivative of Eq. (A2) with
respect to G gives δ�[G]

δG
= K , so that in the extremal points

�[G] = − ln Z[0]. Inserting the expression for K in Eq. (A2)
gives

�[G] = − ln Z2 − Tr
(
G−1

0 G − 1
)+ Tr(�[G]G), (A3)

where Z2 = Z[G−1 − G−1
0 + �[G]], which implies that

Z2 is the partition function of a theory with action
S2 = −h̄�†G−1� + S2,int, where S2,int = −h̄�†�[G]� +
Sint. One can now compute − ln Z2 in a perturbative series,
using G as the propagator. It follows that the first two terms in
this perturbative series are

− ln Z2 = −Tr ln G−1 − Tr (�[G]G) + · · · . (A4)

Because the 1PI self-energy is now included in the interaction
term, cancellations will occur such that only the 2PI diagrams
survive [38]. Hence

�[G] = −Tr ln G−1 − Tr
(
G−1

0 G − 1
)+ �2[G], (A5)

where �2[G] is now the sum of all 2PI diagrams generated by
the interaction Sint with propagator G.

APPENDIX B: DERIVATION OF THE BOGOLIUBOV-DE
GENNES EQUATION

The inverse of a nonsingular Hermitian matrix A can
be obtained from its eigenvalues λn and the corresponding
orthonormal eigenvectors |n〉, with 〈n|m〉 = δnm. Putting the
nth eigenvector in the nth column of a new matrix U , one
finds that U is unitary (i.e., U †U = 1 and A = U�U †), where
� = diag(λ1,λ2, . . .). The inverse of A can now be constructed
as A−1 = U�−1U †, where �−1 = diag(1/λ1,1/λ2, . . .). By
performing the matrix multiplications, the last equation can be
conveniently written as A−1 = ∑

n |n〉〈n|/λn. A single compo-
nent of the inverse matrix now reads A−1

ij = ∑
n〈i|n〉〈n|j 〉/λn.
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The inverse Nambu-Gor’kov propagator G−1, Eq. (33),
can be written as −h̄G−1 = h̄∂/∂τ + H, where the Hermitian
matrix H is given by Eq. (34).

Since H is independent of τ , the eigenfunctions of G−1 are
a product of eigenfunctions of h̄∂/∂τ and eigenfunctions of H.
Because G(X,X′) has to satisfy antiperiodic boundary condi-
tions in imaginary time, the properly normalized eigenfunc-
tions of h̄∂/∂τ are plane waves φm(τ ) = exp(−iωmτ )/

√
h̄β

with eigenvalue −ih̄ωm, where the Matsubara frequency ωm =
(2m + 1)π/(h̄β), with m ∈ Z. Let us denote the normalized
eigenfunctions of H as (ui(x),vi(x))T with corresponding
eigenvalue Ei (which is real). This eigenvalue equation which
is given explicitly in Eq. (35) is known as the Bogoliubov-
de Gennes equation [42]. Normalization (U †U = 1) implies
that ∫

d3x [|ui(x)|2 + |vi(x)|2] = 1. (B1)

Furthermore from completeness (UU † = 1) one finds

∑
i

(
ui(x)u∗

i (x′) ui(x)v∗
i (x′)

vi(x)u∗
i (x′) vi(x)v∗

i (x′)

)
= δ(x − x′)

(
1 0
0 1

)
. (B2)

We can now invert the inverse propagator G−1, to obtain
the Nambu-Gor’kov propagator,

G(X,X′) = − 1

β

∑
i

∑
m∈Z

1

−ih̄ωm + Ei

e−iωm(τ−τ ′)

×
(

ui(x)u∗
i (x′) ui(x)v∗

i (x′)
vi(x)u∗

i (x′) vi(x)v∗
i (x′)

)
. (B3)

We can see from this equation explicitly that G↓↑(X,X′) =
G↑↓(X′,X)∗. In order to obtain the pairing field and the number
densities we need to evaluate G(X,X′

±). Here X′
± = (x,τ ± η)

with η an infinitesimal small positive number. In this limit
one can compute the sum over Matsubara frequencies exactly.
After using the completeness relation, Eq. (B2), one then
finds

G(X,X′
±) =

∑
i

f (Ei)

(
ui(x)u∗

i (x′) ui(x)v∗
i (x′)

vi(x)u∗
i (x′) vi(x)v∗

i (x′)

)

−θ (∓)δ(x − x′)
(

1 0
0 1

)
, (B4)

where f (E) = [exp(βE) + 1]−1 denotes the Fermi-Dirac dis-
tribution function and θ (x) is the unit-step function. The term
proportional to the step function reflects the anticommutation
relation of the fermionic operators. The sum over i runs over
all eigenvalues. Using Eqs. (23), (25), and (26) one can now
read off the expressions for the pairing field and the number
densities.

If μ↑ = μ↓, then the densities of the two species are equal
so that n↑(x) = n↓(x). By taking the complex conjugate of
Eq. (35) it follows in this case that if Ei is an eigenvalue
of H with eigenvector (ui(x),vi(x))T , then also −Ei is an
eigenvalue of H with eigenvector (v∗

i (x), − u∗
i (x))T . One can

now use this fact to restrict the sum over n to eigenvectors with

positive eigenvalues only, so that if μ↑ = μ↓ one has

G(X,X′
±)=

∑
Ei�0

f (Ei)

(
ui(x)u∗

i (x′) ui(x)v∗
i (x′)

vi(x)u∗
i (x′) vi(x)v∗

i (x′)

)

+
∑
Ei�0

[1−f (Ei)]

(
v∗

i (x)vi(x′) −v∗
i (x)ui(x′)

−u∗
i (x)vi(x′) u∗

i (x)ui(x′)

)

−θ (∓)δ(x − x′)
(

1 0
0 1

)
. (B5)

From this equation one can read off the expressions for the
number density and pairing field as they often appear in the
literature. In this paper, however, we will solely use Eq. (B4),
because it leads to more compact expressions and has broader
validity. The only slight disadvantage is that in Eq. (B4) we
have to sum over all eigenvalues.

To evaluate the grand potential, Eq. (30), we need to
compute Tr ln G−1. Using that the trace of a logarithm is the
sum over the logarithm of the eigenvalues one finds

1

β
Tr ln G−1 = 1

β

∑
i

∑
m∈Z

ln(−ih̄ωm + Ei). (B6)

In order to perform the sum over the Matsubara frequencies
one adds and subtracts the following infinite constant to the
last equation,

C = 1

β

∑
i

[∑
m∈Z

ln(−ih̄ωm) − ln(2)

]
. (B7)

After summing over Matsubara frequencies one finds

1

β
Tr ln G−1 =

∑
i

[ |Ei |
2

+ 1

β
ln
(
1 + e−β|Ei |)]+ C. (B8)

Since C is independent of Ei it shifts the thermodynamic
potential by an irrelevant constant and can therefore be ignored.
Now the result Eq. (B8) is not entirely correct. For example, it
is still infinite and in the limit of �(x) = 0 the grand potential
of an unpaired Fermi gas is not obtained. To cure this problem
one needs to take carefully the limit η → 0. We proceed as in
Refs. [35,53] to obtain

1

β
Tr ln G−1 =

∑
i

[ |Ei |
2

+ 1

β
ln(1 + e−β|Ei |)

]

−
∑

i

εi , (B9)

where εi are the eigenvalues of the Hartree-Fock Hamiltonian,
which is defined in Eq. (41). The last equation is indeed finite
and reduces to the grand potential of an unpaired Fermi gas in
the case �(x) = 0.

APPENDIX C: COMPUTATION OF NODES AND WEIGHTS
OF MAXWELL POLYNOMIALS

Any set of orthonormal polynomials of increasing degree
i and hence also the Maxwell polynomials φi(x) satisfies the
following recursion relation (see, e.g., Refs. [54,55]),√

βi+1φi+1(x) = (x − αi)φi(x) −
√

βiφi−1(x). (C1)

Here αi and βi are the recursion coefficients.
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Once the recursion coefficients are known, the nodes [which
are the roots of φN (x)] and weights of order N can be found
by solving the following eigenvalue equation numerically (see,
e.g., Refs. [54,55]),⎛
⎜⎜⎜⎝

α0
√

β1√
β1 α1

√
β2

. . .
. . .

. . .√
βN−1 αN−1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

φ0(xn)
φ1(xn)

...
φN−1(xn)

⎞
⎟⎟⎠=xn

⎛
⎜⎜⎝

φ0(xn)
φ1(xn)

...
φN−1(xn)

⎞
⎟⎟⎠ .

(C2)

The eigenvalues of the last equation are the N nodes xn. The
weights follow directly from the eigenvectors in the following
way (see, e.g., Refs. [54,55]),

wn =
[

N−1∑
i=0

φi(xn)2

]−1

. (C3)

The eigenvectors have to be normalized in such a way that
the orthonormality condition is satisfied, so that φ0(xn) =
[
∫∞

0 dx w(x)]−1/2.
The recursion coefficients can be computed using

the Stieltjes procedure (see, e.g., Ref. [56]). Although
the recursion coefficients for the Maxwell polynomials can
be computed analytically in this way, this is impractical since
the coefficients quickly become extremely complicated. Hence
we have computed the recursion coefficients numerically.
When doing so, one encounters another problem. The Stieltjes
algorithm is extremely ill conditioned [56], implying that small
errors blow up quickly. To avoid this, we followed Ref. [45],
and performed the Stieltjes algorithm using arbitrary precision
arithmetic. This can be done using for example the computer
program MATHEMATICA. In order to compute all recursion
coefficients up to N = 128 with 22 digits accuracy (so that it
fits in double precision) we had to use 10 000 digits precision
in the Stieltjes procedure.

In this way we have computed the weights and nodes of the
Gauss-Maxwell quadrature with p = 1 up to N = 128. For
N = 2,4,8, and 16 we could compare with tables presented in
Ref. [45]. We find excellent agreement, almost up to machine
precision accuracy.

APPENDIX D: COMPUTATION OF H̄

Here we will compute H̄ , which is defined in Eq. (61). The
integration over the parts of Hm(�) that are independent of ρ

is straightforward so that we can write

(
H̄
)
ij

= 1

2
h̄ω[−(A)ij + m2(B)ij ] − h̄�mδij + p2

z

2M
δij ,

(D1)

where the matrices A and B read

(A)ij =
(

λ2 d2

dρ2
+ λ2 1

4ρ2
− ρ2

λ2

)
ij

, (D2)

(B)ij =
(

λ2

ρ2 + η2λ2

)
ij

. (D3)

First we will compute the matrix (A)ij . We find

(A)ij =
∫ ∞

0
dx w1/2(x)li(x)

×
[

d2

dx2
+ 1

4x2
− x2

]
w1/2(x)lj (x)

=
∫ ∞

0
dx w(x)li(x)

[
d2

dx2
+
(

1

x
−2x

)
d

dx
−2

]
lj (x).

(D4)

To obtain the last line we have used that w(x) = x exp(−x2).
Equation (D4) can be rewritten as

(A)ij =
∫ ∞

0
dx w(x)li(x)

[
d2

dx2
− 2x

d

dx
− 2

]
lj (x)

+
∫ ∞

0
dx w(x)li(x)

1

x

[
d

dx
lj (x) − l′j (0)

]

+ l′j (0)
∫ ∞

0
dx w(x)

1

x
[li(x) − li(0)]

+ li(0)l′j (0)
∫ ∞

0
dx exp(−x2). (D5)

This form has the advantage that the integrands of the first
three terms are products of the weight function w(x) and a
polynomial of degree less than 2N . Hence we can evaluate
these terms exactly using the Gauss-Maxwell quadrature. The
last term of Eq. (D5) can also be computed analytically and is
equal to li(0)l′j (0)

√
π/2.

To proceed we will first evaluate the first and second-order
derivatives of lj (x) at the nodes xi which become (see also
Ref. [48])

d

dx
lj (x)

∣∣∣∣
x=xi

= 1√
wi

ξiδij + 1√
wi

Ci

Cj

1

xi −xj

(1−δij ), (D6)

d2

dx2
lj (x)

∣∣∣∣
x=xi

= 1√
wi

(
ξ 2
i − ζi

)
δij

+ 1√
wi

Ci

Cj

[
2ξi

xi −xj

− 2

(xi −xj )2

]
(1−δij ),

(D7)

where

ξi =
N∑

n=1,n�=i

1

xi − xn

, (D8)

ζi =
N∑

n=1,n�=i

1

(xi − xn)2
, (D9)

Ci = √
wi

N∏
n=1,n�=i

(xi − xn). (D10)

Furthermore li(0) and l′j (0) are given by

li(0) = 1√
wi

N∏
n=1,n�=i

xn

xn − xi

, (D11)

l′j (0) = −Dj lj (0), (D12)
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Dj =
N∑

n=1,n�=j

1

xn

. (D13)

Putting everything together we find that

(A)ij =
[
ξ 2
i − ζi +

(
1

xi

− 2xi

)
ξi − 2

]
δij

+ Ci

Cj

[
2ξi

xi − xj

− 2

(xi − xj )2

+
(

1

xi

− 2xi

)
1

xi − xj

]
(1 − δij )

+Dj

[
N∑

n=1

wn

xn

− 1

2

√
π

]
li(0)lj (0). (D14)

The matrix A is symmetric as follows from Eq. (D4), although
this is not directly clear from the last equation.

Now let us compute the matrix (B)ij . Expressed in terms
of an integral over the basis functions this matrix reads

(B)ij =
∫ ∞

0
dx w(x)li(x)lj (x)

1

x2 + η2
. (D15)

We are interested in (B)ij in the limit of small η. Therefore
in the rest of the calculations, we will drop terms that are
of order η and higher. Like in the calculation for (A)ij we
rewrite the integrand in such a way that we get terms which
are a polynomial of degree less than 2N times w(x). We can

then easily integrate these terms using the Gauss-Maxwell
quadrature. We can rewrite (B)ij in the limit η → 0 as

(B)ij =
∫ ∞

0
dx w(x) [li(x) − li(0)] [lj (x) − lj (0)]

1

x2

+li(0)
∫ ∞

0
dx w(x)[lj (x) − lj (0) − xl′j (0)]

1

x2

+lj (0)
∫ ∞

0
dx w(x)[li(x) − li(0) − xl′i(0)]

1

x2

+[li(0)l′j (0) + l′i(0)lj (0)]
∫ ∞

0
dx exp(−x2)

+li(0)lj (0)
∫ ∞

0
dx

x

x2 + η2
exp(−x2). (D16)

The first three terms of the last equation can be computed using
the Gauss-Maxwell quadrature. The next term can be evaluated
analytically. The last integral can be computed analytically for
small η. We obtain

(B)ij = 1

x2
i

δij −
[

1

2
γE + ln(η) +

N∑
n=1

wn

x2
n

+(Di + Dj )

(
1

2

√
π −

N∑
n=1

wn

xn

)]
li(0)lj (0),

(D17)

where γE denotes the Euler-Mascheroni constant.
The last equation shows that (B)ij has a logarithmic

singularity for η = 0. For that reason we had to regularize
the centrifugal potential in Eq. (55). An alternative way of
treating such singularity in the DVR method is discussed in
Ref. [57].
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