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Supersolid phase in atomic gases with magnetic dipole interaction
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A major obstacle for the experimental realization of a supersolid phase with cold atomic gases in an optical
lattice is the weakness of the nearest-neighbor interactions achievable via magnetic dipole-dipole interactions.
In this paper, we show that by using a large filling of atoms within each well, the characteristic energy scales
are strongly enhanced. Within this regime, the system is well described by the rotor model, and the qualitative
behavior of the phase diagram derives from mean-field theory. We find a stable supersolid phase for realistic
parameters with chromium atoms.
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I. INTRODUCTION

Magnetic dipole-dipole interactions offer a remarkable
opportunity to explore quantum phenomena with long-range
interactions in cold atomic gases. Of special interest are atoms
with large magnetic dipole moments such as Cr, where the
influence of the dipole-dipole interactions on the atomic cloud
as well as the dipole-induced collapse has been observed [1–3].
In the presence of an optical lattice, the system naturally
gives rise to extended Hubbard models with nearest-neighbor
interactions [4], and many remarkable quantum states have
been predicted [5–8]. A major obstacle toward the exper-
imental realization of these states is the weakness of the
nearest-neighbor interaction due to the magnetic character of
the dipole-dipole potential and, correspondingly, the extremely
stringent requirements on temperature, trapping potentials, and
lifetime of the atomic system. In this paper, we propose an
experimentally realistic setup for the realization of a supersolid
phase in cold atomic gases with magnetic dipole-dipole
interactions.

A supersolid phase combines two seemingly contradictory
properties, which in most materials appear in competition with
each other: the arrangement of the particles in a crystalline
structure with a superfluid transport of the particles [9]. While
recent experimental observations of a superfluid response in
solid 4He are still controversial [10–12], various models in
lattice systems have extensively been studied in the past and
the existence of a supersolid phase has been demonstrated
using quantum Monte Carlo simulations. Of special interest
is the appearance of a supersolid phase in a triangular
lattice [13] and the stabilization of a supersolid phase in a
square lattice by dipole-dipole interaction [6]. These Hubbard
models can be naturally realized with cold polar molecules
or atomic gases with magnetic dipole-dipole interactions.
While the understanding of the microscopic derivation of the
Hubbard model for cold atomic gases is well understood [14],
the nearest-neighbor interactions obtained for atoms in a
characteristic optical lattice are well below a nano Kelvin,
i.e., for Cr with strong magnetic dipole moment V ≈ 0.2 nK
with lattice spacing a = 500 nm. Such stringent requirements
have not yet been achieved in experiments.

In the following, we demonstrate that the critical tempera-
ture for the supersolid phase can be increased by several orders
of magnitude. This opens a path toward the experimental
realization of supersolids with cold atomic gases using the

magnetic dipole-dipole interactions with current experimental
technologies. The main idea is to allow a high filling factor of
atoms per lattice site; then, the influence of the dipole-dipole
interaction is enhanced by the number of atoms within each
well. In the extreme situation, the system is then described by
a coupled array of Bose-Einstein condensates (BEC).

For low filling factors, the competition between the insta-
bility toward a supersolid phase and the Mott insulating phase
for integer fillings gives rise to a rich phase diagram. Within
this regime, mean-field theory fails to correctly reproduce the
phase diagram and it is mandatory to resort to exact methods
such as quantum Monte Carlo simulations [15]. On the other
hand, for high filling factors the critical hopping tc for the phase
transition toward the solid phases or Mott insulators scales
as tc ∼ 1/n, while the instability from the superfluid toward
the supersolid phase appears at much higher hopping with
tss ∼ n (see Fig. 1). Consequently, the competition between
the different phases is reduced and the influence of quantum
fluctuations in the particle number is decreased. In this region,
the phase diagram is well described within mean-field theory.

II. THE MODEL

We start with the description of the Hamiltonian for cold
atomic gases with magnetic dipole-dipole interactions. The
system is confined to a quasi two-dimensional setup with an
additional optical lattice within the plane. Each lattice site
is occupied by many particles and therefore gives rise to
a quasi-condensate on each lattice site. In order to reduce
losses from three-body recombination, we propose to work in
lattices with larger spacing than usual. For such high filling
factors, the validity of the standard Hubbard model breaks
down. Nevertheless, the system exhibits tunneling between
the different wells and an interaction term accounting for
deviations around the mean particle number n. Then, the
Hamiltonian is well described by the rotor model [16]

H = −2t
∑
〈ij〉

√
ninj cos(φi −φj ) + 1

2

∑
ij

Vij δniδnj , (1)

where δni = ni − n describes the deviation from the mean
particle density n within each well, while φi denotes the
phase within each well satisfying the commutation relation
[ni,φj ] = iδij . The interaction term Vij contains an on-site
interaction U for i = j , and it also describes the dipole-dipole
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FIG. 1. (Color online) Phase diagram for U ∼V : The Mott
insulating or solid phases appear at commensurate fillings (solid bars)
and the critical hopping at the tip of the incompressible lobes scales
as tc ∼ 1/n. In turn, the transition from the superfluid (SF) into a
supersolid (SS) phase behaves as tss ∼ n, i.e., for large fillings n � 1
the influence of quantum fluctuations is reduced and the transition
from the superfluid into the supersolid phase is well described within
mean-field theory.

interaction, which in two dimensions is well accounted for
by the characteristic decay Vi �=j = V a3/|Ri − Rj |3, with a

the lattice spacing and Ri the lattice vectors. Note that the
rotor model derives from the Hubbard model in the limit
of large filling factors; however, the rotor model remains a
proper description of bosonic atoms in an optical lattice even
in the regime where several higher bands are occupied. Its
phase diagram has previously been studied close to half filling
n ∼ 1/2 [19,20]. Here, we first derive the phase diagram of the
rotor model at large filling n � 1, and we present the effective
parameters for a realistic experiment with chromium atoms in
a second step.

III. SUPERFLUID GROUND STATE

A. Excitation spectrum

The system is in the superfluid phase for dominant hopping
with t � V,U and is characterized by a fixed phase φ within
each well and a homogeneous particle density n. Its mean-field
energy per lattice site reduces to E0/N = (U + V χ0)n2/2 −
2tnz, with z = 4 the number of nearest neighbors and N the
number of lattice sites. Here, χk = ∑

j �=0 exp(ik · Rj )/|Rj |3
denotes the dipole-dipole interaction in momentum space. The
transition toward the supersolid phase for increasing interac-
tions is signaled by an instability in the excitation spectrum.
Expanding the Hamiltonian to second order in fluctuating
fields δni = ni − n and δφi = φi − φ around the mean-field
values, and introducing the momentum representation with
δφk = ∑

j exp(ik · Rj )δφj/
√

N and analog for δnk, we obtain
the Hamiltonian Hfl describing the excitation spectrum above
the superfluid ground state,

Hfl =
∑

k

(εk δφkδφ−k + Ṽkδnkδn−k) =
∑

k

Eka
†
kak,

with the single-particle dispersion relation εk = 2tn[z −
2
∑

α cos(k · eα)] and the effective interaction Ṽk =
εk/(2n)2 + U (1 + γ χk)/2. Here, γ = V/U denotes the ratio
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FIG. 2. (Color online) (a) Shape of the Fourier-transformed
dipole-dipole interaction χk plotted in the M direction. (b) Superfluid
dispersion relation for different values of γ . At γ = γc the roton
minima occurs. The inset shows the different directions within the
Brillouin zone.

between the strength of the dipole-dipole interaction V and
the on-site interaction U , whereas eα accounts for the unit
vectors in the direction of the nearest-neighbor lattice sites.
Introducing the creation (annihilation) operators a

†
k (ak) for

the excitations above the superfluid ground state through
a
†
k = iβkδφk+δn−k/2βk with β4

k = εk/4Ṽk, we obtain the
excitation spectrum of the superfluid phase, Ek = (4Ṽkεk)1/2.

B. Instability of the superfluid phase

Next, we analyze the stability of the superfluid phase by
varying the ratio γ between the dipole strength and the on-site
interaction. The result strongly depends on the lattice geome-
try. Here, we focus on a square lattice with lattice spacing a; the
generalization to arbitrary lattice structures is straightforward.
The quantity χk is maximal at zero momentum with χ0 ≈
9.02771, while it turns negative and minimal at the edge of the
Brillouin zone with K = (π/a,π/a) and χK ≈ −2.64589 [see
Fig. 2(a)]. As a consequence, the excitation spectrum exhibits
a roton minima for increasing dipole-dipole interactions [see
Fig. 2(b)] and eventually becomes zero (EK = 0) at the critical
value

γc = 1

|χK|
(

2zt

Un
+ 1

)
. (2)

Hence, the superfluid phase suffers an instability at γc via the
nucleation of excitations with momenta K. In general, one
expects that these excitations form a second condensate and
give rise to a density modulation for the system. The novel
ground state is characterized by a superfluid response due to
the condensates at k = 0 and K and a solid order; i.e., the
instability signals a phase transition from a superfluid into a
supersolid.

IV. SUPERSOLID GROUND STATE

A. Ground state analysis

Now, we analyze the stability and the ground state prop-
erties of the novel phase by a mean-field ansatz with two
condensates. For this purpose, we introduce a density mod-
ulation n̄j = |c + d exp[i(K · Rj + θ )]|2, with the constraint
c2 + d2 = n. The density modulation appears as the inference
of the two condensates at k = 0 and K with relative phase
θ and exhibits a checkerboard structure. Inserting this ansatz
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into the rotor Hamiltonian (1), we obtain the energy per lattice
site

Ess(d,θ )

N
= E0

N
+ 4zt d2

− 2d2(n − d2) cos2 θ (|χK|V − U ). (3)

Here, E0 is again the mean-field energy of the superfluid
phase. The second term accounts for an increase of kinetic
energy due to a reduction of coherence between the different
wells, while the last term describes the lowering of the
interaction energy via the density modulation. The ground
state is obtained by minimizing the energy with respect
to the density modulation and the relative phase between
the two phases. The optimization of the phase requires
θ = 0,π , which corresponds to the two degenerate ground
states reflecting the broken (discrete) translational symmetry.
In the following, this phase will be absorbed into the sign
of d. On the other hand, the condensate fraction d for the
mode K exhibits the typical Ginzburg-Landau behavior for
a second-order phase transition and predicts the lowering
of the ground state energy for γ > γc, i.e., the appearance
of the supersolid phase within mean-field theory coincides
with the instability of the excitation spectrum. The gain in
energy via the formation of the supersolid phase takes the
form

Ess − E0

N
= −n2V

2

|χK|2
|χK| − 1/γ

(
1 − γc

γ

)2

. (4)

A special property of the energy gain is that it scales with
the square of the number of particles per lattice site, n.
The supersolid phase is characterized by a checkerboard
density modulation with the order parameter � defined by
the correlation function

〈n̄i n̄j 〉 = n2{1 + �2 cos[K · (Ri − Rj )]}, (5)

for |i − j | → ∞ and a superfluid density ns describing the
superfluid flow. Within mean-field theory, these quantities
reduce to ns = 2tz/(|χK|V − U ) and �2 = 1 − n2

s /n2. Note
that within a supersolid, the superfluid density is reduced
compared to the averaged density, i.e., ns < n even at zero
temperature due to the additional solid structure [9].

The most remarkable result in Eq. (4) is the scaling
of the gain in energy via the formation of the supersolid
phase with the number of particles in each lattice site, i.e.,
(Ess − E0)/N ∼ n2V/2. This energy serves as an estimate for
the critical temperature: the thermal phase transition for the
onset of a solid order is in the Ising universality class. Then, the
energy difference accounts for the antiferromagnetic coupling
within this Ising model, and one finds the critical temperature
Tsolid ∼ n2V/2. This argument coincides with the observation,
that n excitations with an energy nV per lattice site are
required for the disappearance of the solid order. Consequently,
this transition temperature is strongly increased compared to
the single-particle nearest-neighbor energy V , and it is in
agreement with the formation of solid structures in very large
superlattices [21].

B. Stability of the supersolid

Next, we check the stability of the supersolid phase
against quantum fluctuations and determine the excitation
spectrum above the supersolid ground state. Again we
introduce the fluctuating field operators δφi = φi − φ and
δni = ni − n̄i , where n̄i/n = 1 + � cos(K · Ri) denotes the
mean particle density per lattice site within the mean-field
theory exhibiting a checkerboard structure. Then, the Hamil-
tonian expanded to second order in these operators reduces
to

Hss = tns

∑
〈i,j〉

(
(δφi − δφj )2 − δniδnj

2n2
s

)

+ tz

2ns

∑
i

δn2
i

1 + �2 − 2� cos(K · Ri)

1 − �2

+ 1

2

∑
ij

Vij δniδnj . (6)

Note that the third term involves the modulated density with
wave vector K. As a consequence, this introduces a coupling
for modes with momentum k and k + K, which becomes
obvious in the momentum representation

Hss =
∑

k

[ξk δφkδφ−k + ζk δnkδn−k + η δnkδn−(k+K)],

with the parameters ξk = 2tns[z − 2
∑

α cos(k · eα)],

ζk = U + χkV

2
+ zt

2ns

(
1 + �2

1 − �2
− 2

z

∑
α

cos(k · eα)

)
,

and η ns = −zt �/(1 − �2). This coupling is a result of the
broken translational symmetry in the supersolid phase, which
reduces the Brillouin zone. Hence, we obtain two modes for
each momentum value k with the dispersion relation (see
Fig. 3)(

E±
k

)2 = 2(ξkζk + ξk+Kζk+K)

± 2
√

(ξkζk − ξk+Kζk+K)2 + 4ξkξk+K η2. (7)

The lower branch of the dispersion relation accounts for the
acoustic modes with a linear sound mode for small values
k, while the second branch accounts for density fluctuations
of the checkerboard order. Due to the discrete translational
symmetry, this mode is lifted to a finite value for small
values k and corresponds to an optical mode. From the
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FIG. 3. (Color online) Supersolid dispersion relation, given in
different directions of the reduced Brillouin zone, as shown in the
inset. The results are in qualitative agreement with previous analysis
in the Hubbard model [22,23].
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ADAM BÜHLER AND HANS PETER BÜCHLER PHYSICAL REVIEW A 84, 023607 (2011)

dispersion relation, Eq. (7), we find that the supersolid phase is
stable.

C. Experimental parameters and outlook

Finally, we can estimate the relevant parameters for
the experimental realization of a supersolid phase for
chromium atoms in an optical lattice [24]. The limiting
energy is given by the nearest-neighbor interaction V for
magnetic dipole-dipole interactions. These interactions are
characterized by the length scale add = μ0μ

2m/(12πh̄2) ≈
0.8 nm, where μ is the permanent magnetic dipole mo-
ment. Then, the strength V of the dipole-dipole interaction
reduces to

V = 6

π2

add

a
Er, (8)

with Er = π2h̄2/2ma2 the recoil energy and a the lattice
spacing. Starting with a conventional density for a BEC of
cold atomic gases, we obtain a filling with n ∼ 40 for a lattice
spacing of a ∼ 1 μm within the plane and a prolate shape of
each well along the perpendicular direction with aspect ration
λ ≈ 1/4. Note that for lattices with larger lattice spacing,
fillings up to 1000 have been experimentally realized [18].
Due to the increased lattice spacing, the density within each
well is in the range of 3 × 1014 cm−3, where three-body
losses are well controlled [17]. The nearest-neighbor energy
reduces to V ≈ 0.5 Hz, while the characteristic temperature
scale for the formation of the solid structure reaches Tsolid ∼
n2V/2 ≈ 0.4Er . On the other hand, the on-site interaction
within each well derives from the change of energy for the local
condensate within the well by adding or removing particles,
i.e., U = ∂2

nElocal[n]. For Cr atoms, there exist several Feshbach
resonances, which allow tuning of the s-wave scattering
length from repulsive through zero to attractive interaction.
Therefore, we can adjust the on-site interaction to the same
order as the off-site interaction. For particle numbers with
n ∼ 40 within the quasi-condensate, the influence of the
interactions on the ground state wave function is weak and is
dominated by the contribution from the trap and kinetic energy.
Then, the ground state wave function is well described by a
Gaussian wave function and the on-site interaction accounting

for the full anisotropic dipole-dipole interaction reduces to (see
Ref. [24] for details)

U = 2h̄ωadd√
2πaho

[
as

add

− f
(√

λ
)]

, (9)

where ω is the mean trap frequency and aho the corresponding
harmonic oscillator length, while f (

√
λ) denotes a dimension-

less function with f (1/2) ≈ 0.5. The result is derived within
first-order perturbation theory in the small parameter addn/aho.
The stability against collapse of the quasi-condensate is well
guaranteed for such small particle numbers.

The last remaining parameter is the tunneling energy t .
From the critical value γc in Eq. (2), we find that the tunneling
has to be suppressed by the factor t < V n|χK|/8 ≈ 6.2 Hz.
Note that the allowed energies for the hopping term increase
again with the number of particles. In addition, the superfluid
stiffness involves another factor n. As a consequence, the
appearance of the superfluid response given by the Kosterlitz-
Thouless temperature TKT ∼ h̄2ns/m exhibits the same scaling
as the transition temperature for the solid, i.e., TKT ∼ n2V/2. It
is this scaling of the critical temperatures for the solid critical
temperature, as well as the Kosterlitz-Thouless temperature,
that allows us to improve the experimental parameters by
increasing the particle numbers within each well. In addition,
the formation of the supersolid phase is very insensitive to the
particle numbers, and, consequently, the phase will extend over
a large area in a parabolic trap, and even moderate three-body
losses can be tolerated.

The suitable experiments then can be performed by adia-
batically ramping up the optical lattice in a BEC of chromium
atoms at positive s-wave scattering length as until the proper
filling and hopping energies are reached. With this method,
temperatures well below the recoil energy can be reached [25].
Then, lowering the s-wave scattering length allows one to pass
through the supersolid instability and leads to the additional
formation of the solid structure.
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