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Prethermalization in quenched spinor condensates
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Motivated by recent experiments, we consider the dynamics of spin-1 spinor condensates after a quantum
quench from the polar to ferromagnetic state from varying the quadratic Zeeman field g. We apply the truncated
Wigner approximation (TWA) to the spinor system, including all spatial and spin degrees of freedom. For short
times, we find full agreement with the linearized Bogoliubov analysis. For longer times, where the Bogoliubov
theory fails, we find that the system reaches a quasisteady prethermalized state. We compute the Bogoliubov
spectrum about the ferromagnetic state with general g and show that the resulting finite-temperature correlation
functions grossly disagree with the full TWA results, thus indicating that the system does not thermalize even over
very long time scales. Finally, we show that the absence of thermalization over realistic time scales is consistent
with calculations of Landau damping rates of excitations in the finite-temperature condensate.
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I. INTRODUCTION

Advances in the field of ultracold atomic gases have spurred
great interest in the nonequilibrium dynamics of quantum
many-body systems. The ability to engineer paradigmatic
model Hamiltonians, the near perfect isolation from the
environment, and the experimentally accessible time scales
of evolution have made it possible to address fundamental
questions about the dynamics of closed, interacting quantum
many-body systems.

Of particular interest in this context is the study of a
“quench” across a quantum phase transition. Here, one or
more parameters of the Hamiltonian are changed rapidly,
resulting in a nonequilibrium evolution of the quantum system
toward the establishment of long-range order. This evolution
is accompanied by a spatially inhomogeneous symmetry
breaking and the formation of topological defects seeded by the
quench. Accurate, time-resolved studies of such quenches are
of fundamental importance to a wide range of nonequilibrium
phase transitions.

Recently, an instance of such a quench across a phase
transition was experimentally realized with quantum degen-
erate spin-1 Bose gases of 3’Rb [1,2]. At low magnetic
fields, these multicomponent fluids are characterized by a
contact interaction that favors a ferromagnetic phase. At large
external magnetic fields, the quadratic Zeeman energy (QZE)
dominates the interaction and favors a paramagnetic (“polar™)
phase. As shown in Fig. 1, these two phases are separated by a
continuous phase transition. In the experiment, in sifu images
of the spin textures following a quench of the degenerate
gas into the ferromagnetic phase revealed the inhomogeneous
growth of transversely magnetized domains accompanied by
the sporadic observation of topological defects that were
characterized as spin vortices.

Motivated by this experiment, we consider here the evo-
Iution of spin textures following a quench from the polar
phase to the ferromagnetic phase. While the short-time growth
of magnetization during such a quench has been analyzed
[3-11], we consider here the evolution over much longer
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periods and study the manner in which the spin degrees
of freedom thermalize following the quench. Applying the
truncated Wigner approximation (TWA) to this problem (for
an overview of the TWA method and its applications, see
Refs. [12,13]), we analyze the long-time dynamics of the spin
degrees of freedom.

We find that unless the QZE is quenched to the immediate
vicinity of the critical value corresponding to the transition to
the ferromagnetic phase, the system reaches a slowly evolving
quasisteady state with exponentially decaying correlations.
This correlation length increases very slowly in time in a
manner consistent with coarsening dynamics [ 14]. We also find
and interpret previously unexplored physics of the dynamics
of spinor condensates such as the emergence of longitudinal
magnetization.

II. THE HAMILTONIAN AND MEAN-FIELD PHASES

Following the experimental situation, we consider the
parameter regime characteristic of F' = 1 spinor condensates
of 8Rb. Also, as in the experiment, the gases are confined in
a quasi-two-dimensional (Q2D) geometry wherein the spatial
extent d, of the condensate along one dimension is less than
the spin healing length. This condition implies that the spin
dynamics along this axis are effectively frozen. The starting
point is the Hamiltonian

H = Ho + Hint, (1)
where the free Hamiltonian is
. n?
H0=/d2r\IJT<——V2+V+qu2)\II ()
2m
and ¥ = (Y, vo,¥_1)  isa three-component spinor, V is the

trapping potential, fx , . are the spin-1 matrices, and ¢ is the
quadratic Zeeman shift. The interaction Hamiltonian is

1 1
Hine = /dzr(ECOHZ + ECze). 3)
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FIG. 1. (Color online) Zero-temperature phase diagram of a
spin-1 Bose condensate indicating the transition from a polar phase
to a ferromagnetic phase at low quadratic Zeeman energy (QZE). The
dashed line indicates the direction of the quench from an initial QZE
q > 2|ca|ng to a final QZE g = g;.

Here we haven = WIW, F = WifW, and the parameters ¢y and

¢, can be expressed in terms of the s-wave scattering lengths
as ¢y = %(ao + 2a) and ¢, = ;’Th,;(ag — ag). There is also
a linear Zeeman shift in the system proportional to F, but
this can be dropped since F, commutes with the Hamiltonian
and thus is conserved. Spinor gases of 8’Rb are characterized
by the scattering lengths ay (a2) = 101.8 (100.4) Bohr radii,
respectively. Because a, < ag, the spin-dependent interaction
in these spinor gases favors the ferromagnetic state. Since for
these parameters ¢y > |c3|, fluctuations in the total density are
suppressed. Further, due to the weak spin-interaction strength,
the interparticle separation at typical densities is far smaller
than the spin healing length, thereby suppressing the role of
quantum depletion.

III. SHORT-TIME THEORY

As illustrated in Fig. 1, for ¢ > go = 2|cz|ng, the ground
state is the polar state, while decreasing g below gy causes
the ground state to acquire a magnetic moment and eventually
reach the fully polarized ferromagnetic state at g = 0. Initially,
we take ¢ = ¢; to be the largest energy parameter in the
Hamiltonian and quench to a final state g =gy, where
0 < gy < go. For short times, the dynamics is expected to
be well-described by expanding the Hamiltonian to quadratic
order around the initial polar state [3-9], ¥ = \/n0(0,1,0)”.
Under this expansion, the Hamiltonian becomes

H ~ Z[(Ek + cong + q_f)(w;k‘/fl,k + I/fil,kW—l,k)
K

+ Czno(l/fi‘-,klhil,_k + ¥ k¥l “4)

where we have dropped the term describing the stiff density
fluctuations. For simplicity, we have considered the system in
the continuum, in the absence of the trapping potential. In the
ferromagnetic regime, this quadratic Hamiltonian gives modes
with imaginary frequencies, which correspond to unstable,
exponentially growing in time modes [3].

To quantify the spin dynamics after the quench, it is
natural to consider transverse and longitudinal magnetization
correlation functions,

1
Gi(rt)= ;(1 Fi(r)F_(0) ), )
0
1
G (r,1) = = (: F;(r)F(0) 3) (6)
1o
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[3] and the concomitant gain functions, G (¢) and G,(¢),
which are the above evaluated for r = 0. For go¢/h > 1 and
g =0, the above correlations within the linearized theory
give

1
edot/h (7)

1
V8 qot Jh no§? ’
1

647 q3t2n? (n0552)2

Gi(t) =

e*t/h, (8)

Gz(t) =

where & = v/h?/qom is the spin-coherence length. Interest-
ingly, the longitudinal gain grows with twice the exponent of
the transverse gain. However, the longitudinal magnetization
is suppressed by a large factor 1/(ngé2)~ 10~ for the
experimental parameters of Ref. [1]. Thus, G, (¢) remains much
smaller than G (¢) up to the times where the latter saturates
G, (t) ~ 1 and the linearized theory does not work (see Fig. 2).

IV. TRUNCATED WIGNER SIMULATIONS

As seen from the exponential growth of the gain functions,
the above theory clearly fails once the transverse magnetization
is of order unity. To gain a more complete understanding, we
turn to truncated Wigner simulations. This technique involves
propagating the full spinor Gross-Pitaevskii equations (GPE’s)
of motion obtained by taking the classical limit of Eq. (1)
seeded with random initial conditions for canonical degrees
of freedom distributed according to the Wigner transform
of the initial state. For our case, the initial state is taken
to be the vacuum of Bogoliubov quasiparticles for a theory
expanded about the polar state. For the limiting case of ¢; =
0o, this has the particularly simple form W(W) &~ §(|y.0|> —
no) [ 8expl—2)_, |¥w.x|?], where the factor of 8 ensures
the correct normalization of the Wigner function [13].

To propagate the wave functions governed by the spinor
GPE, we first discretize the system effectively by using a lattice
with the constant £ chosen such that £ < & and ngl> > 1,
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FIG. 2. (Color online) The growth of transverse (red, upper line)
and longitudinal (blue, lower line) magnetization following a quench
to gy = 0. Inset: The characteristic time constants for the growth
of transverse and longitudinal magnetization densities vs the 2D
interaction strength |c,n|. The dashed lines indicate the predictions
of the linearized Bogoliubov treatment for the respective parameters.
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and then we use a split-operator method that is accurate up
to cubic order in the time-step size [15,16]. The TWA is
an approximate method resulting in the leading order in the
expansion of classical dynamics in quantum fluctuations [13].
It is also known to be asymptotically accurate at short times
and exact for quadratic theories. In our case, we expect this
method to be quantitatively accurate at all times. Indeed, the
small parameter of the expansion is 1/(no&?) < 1 so that
quantum corrections to TWA are suppressed by this factor and
are potentially only important at very long times. At longer
times when nonlinearities become relevant, the momentum
modes become highly occupied and the dynamics remains
classical. Putting the system on a lattice ensures that there
is no potential spurious effect from vacuum occupation of
high-energy modes, which sometimes impedes the validity of
the TWA at long times [12]. We checked that the results of our
simulations are insensitive to the choice of the cutoff as long
as it is shorter than the spin-coherence length.

Shown in Fig. 2 are the TWA results for the transverse
and longitudinal gain functions in the absence of a trap
compared with the analytic results based upon the above
linearized theory. At short evolution times following the
quench, the simulations predict the exponential growth of
both the transverse and longitudinal magnetization densities
in a manner that is in excellent agreement with the linearized
theory. During this period, the spin textures are characterized
by ferromagnetic domains that are predominantly oriented in
the transverse plane.

V. LONG-TIME BEHAVIOR

We now move on to discuss the long-time dynamics of the
quenched spinor condensate. As is seen in the gain functions
in Fig. 2, the magnetization of the system eventually saturates
and reaches a steady state. This motivates one to consider the
prospect of thermalization in the system. More specifically,
under the assumption of thermalization, the system will evolve
to the ground state atg = g ¢, with the excess energy accounted
for by a superposition of elementary excitations about this
configuration. We will therefore consider the theory about the
state atg = qy.

We define the heating (excess energy) of the system as

Q= (H)i = (H)gs, )

where the above expectation values are evaluated for the initial
state immediately after the quench and the ground state for
q = qy. To extract the equilibrium temperature, this heating
can be compared with the thermal energy of the system. It is
convenient to use the following parametrization of the spinor:

U = /ne'“(sinn cos gpe'®, cosne'”, sinnsingpe ). (10)

With this, one can see that for 0 < g¢/go < 1, the classical
energy is minimized for ¢ =nw/4, y =0, and cos(2n) =
qr/qo- One then obtains that the above heating is

Q = ;Nqo(1 —q5/q0) Y

where the details of this calculation are in Appendix A. Note
that the above is based on classical energy differences. In
addition to this classical contribution to the heating, there
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is also a quantum correction coming from the zero-point
fluctuations of the condensate. However, this contribution is
suppressed by a large factor \/ngé2 ~ 100 and thus is not
important.

The thermal energy of the final state is found from

0=UT)=Tre "H)/Z, (12)

where Z = Tr (e~ 7/7) is the partition function and the ground-
state energy of the system is set to be zero. To evaluate the
above, we develop a second Bogoliubov theory by expanding
the Hamiltonian to quadratic order about the minimum at
q = qy. Note that within the chosen parametrization, one
automatically avoids subtleties related to the lack of a long-
range order in two dimensions at finite temperatures. The
quadratic theory is then checked self-consistently by verifying
that the resulting thermal depletion is small for the computed
temperature.

The full Bogoliubov analysis of the spectrum linearized
around the ferromagnetic minimum is rather cumbersome
because of the phonon-magnon coupling [17] (which vanishes
for the special points g = 0 and g = qo). However, *’Rb has
a natural separation of energy scales since co > |cz|, which
inhibits density fluctuations. This simplifies the Bogoliubov
analysis significantly and effectively results in the decoupling
of the stiff density fluctuation and the spin modes. In this limit,
one finds the simplified spectrum consisting of two modes with
the dispersion (see Appendix A)

o” = Jealen + 1),

2 >
z 90 — 4
“):{) = \/(Sk-l-QO)(Sk-I- p f>,
0

where ¢k is the free-particle dispersion. Note that these
reduce to the known dispersions in the limits of g, =0
and gy = go [18,19]. Furthermore, the large-cy limit of the
full dispersion [17] agrees with Eq. (13). These expressions
are used to compute the thermal energy of the system. It
is straightforward to verify that unless g, is very close to
q0. 1 —qy/qo % 1//no&?, the dominant contribution to the
thermal energy U(T) comes from the quadratic dispersion
of these modes: a):(l) ~ a)l(f) ~ gx. This can be justified a
posteriori by comparing the temperature with go. With these
conditions, U(T) ~ N T?/6(no&?)qo. Finally, equating this
to the heating, one finds

(13)

3
T = E”oész(qo —qr)- (14)

To test the hypothesis of thermalization, we use the
developed quadratic theory to evaluate finite-temperature
correlation functions [evaluated at temperature Eq. (14)]
and compare with long-time TWA results. The most natural
correlation function to consider is G defined in Eq. (5). The
gapless mode, Eq. (13), which leads to algebraic decay of
the correlation function in two dimensions, has the dominant
contribution. Within the quadratic Bogoliubov theory, the
correlation function is found to be (see Appendix B)

Gi(r)=[1—(q7/q0)1(r/&)™ (15)
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with exponent o = /6/m3,/1/no§2. Because of the depen-

dence of the exponent o on the small parameter 1/ noész,
we see that, assuming equilibrium, G, (r) will not decay by
any appreciable amount over the relevant length scales of
the condensate, which are typically of the order of tens or
hundreds of the spin coherence length &;. For the same reason,
in equilibrium the system should not have any vortices.

We point out that the resulting thermal state of the
condensate with temperature 7' given by Eq. (14) has some
interesting properties. On the one hand, except for a small
vicinity of gy ~ qo, it is a high-temperature classical state
characterized by a temperature much higher than the chemical
potential. This implies that quantum depletion in this state is
negligible. On the other hand, the smallness of the exponent o
shows that this state is well below the Kosterlitz-Thouless (KT)
transition temperature due to the unbinding of vortices in the
spin degrees of freedom. More specifically, the KT transition
temperature scales as Tt ~ qono€2, which can be compared
with Eq. (14). In this respect, this is a low-temperature state.

We now compare these predictions to the results of the TWA
simulations for long times. Shown in Fig. 3 are magnetizations
for short and long times as well as correlation functions after
the quench. Displayed are results for zero final quadratic
Zeeman field g = 0, though qualitatively very similar results
occur for finite values of g, (for a full animation of the
dynamics, see the supplementary material [20]). As shown

0.0

-0.25 1 1 L 1 L 1 1
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FIG. 3. (Color online) The transverse magnetization densities for
short (a) and long (b) times for g; = 0 over a 70 x 70 pum region.
The amplitude and orientation of the transverse magnetization are
indicated by the brightness and hue (color wheel shown). (c) The
spin correlation function for these same times. While the correlation
function at short times is in excellent agreement with Bogoliubov
theory, the decay of this function at long evolution times is much
more rapid than predicted by Eq. (15) (dashed line).
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in Fig. 3(c), the correlation function G, before saturation
for short times has the functional dependence of a Bessel
function Jy(r/&;), as previously predicted [3]. For long times,
the correlation function reaches a steady state and decays
by over a factor of 5 from its » =0 value for a system
size on the order of 50 spin coherence lengths. Such decay
is qualitatively incompatible with the theory developed by
assuming thermalization. We thus conclude that these spinor
condensate systems do not thermalize at appreciable time
scales but rather reach a quasisteady (prethermalized) regime
that evolves anomalously slowly in time. Such prethermalized
phases were suggested earlier in the contexts of weakly
interacting fermions [21,22], Bose superfluids [23,24], and
the dynamics of the early Universe [25]. What is perhaps
unexpected is that in this system, anomalously slow relaxation
occurs at very high levels of the heating in the system.

To support these results, it is useful to compare with
the Landau damping rates of long-wavelength Bogoliubov
modes as a result of scattering from thermal modes [26-29].
Such an analysis is carried out in Appendix C. It is found
that typical lifetimes of these modes are on the order of
100 s. This rate is considerably lower than those of scalar
condensates due to the weak spin-dependent interaction and
small thermal depletion. The lifetime estimates provide lower
bounds for the thermalization time and are consistent with the
numerical results. However, such long time scales are beyond
our numerical as well as experimental access.

In conclusion, we have examined the long-time evolution
of quantum degenerate spinor gases following a quench to
a ferromagnetic phase. Assuming a thermalized final state,
we find that the finite-temperature spin correlations are
characterized by an algebraic decay over length scales much
larger than the relevant length scales of the condensate. In
distinct contrast, numerical simulations based on the truncated
Wigner approximation indicate a rapidly decaying correla-
tion function even at extremely long evolution times. This
inconsistency leads one to the conclusion that the quenched
spinor condensates will not thermalize over experimentally
relevant time scales. These results are consistent with the
Landau damping rates. The role of dipolar interactions [2,30]
in the long-time evolution has yet to be examined.
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APPENDIX A: BOGOLIUBOV ANALYSIS IN THE REGIME
0 < gy <2|calng

The easiest way to perform the Bogoliubov analysis of
spinor condensates is to use a parametrization of the spinors
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though the density-angle variables as in Eq. (10). In this case,
one avoids issues related to absence of the true condensation
in one dimension at finite temperatures. Also, the normal
modes have a very transparent physical meaning. The analysis
of this appendix mimics very closely an analysis for the
description of the low-energy excitations of bosons in an
optical lattice close to the superfluid-insulator transition in the
effective spin-1 representation [31,32]. In this parametrization,
the magnetizations F, = W* f,W and F, , = W* fZZ\IJ are given
by

=W — |W_|> = nsin’*(n) cos2¢), (Al
Foo = W )> + |W_(|* = nsin’(n). (A2)

Similarly, the square of the transverse magnetization |F, |> =
Fy2 + sz reads

2
|FL > = ”? sin?(2n)[1 + sin(2¢) cos(2y)]. (A3)
With these expressions, one finds for the interaction energy
density (here we include the quadratic Zeeman term in the
interaction energy)

Co 5

C
Hin = ' n” + g(Ff FIFL?) +qF.2

= 6—20112 + can sin® () cos*()[ 1 + sin(2¢) cos(2y )]

. 2 cn’ 2
+ gn sin“(n) + —— sin"(n) cos~(2¢). (A4)
It is straightforward to check that for ¢; <0 and 0 < g <
2|ca|n = qo, the energy is minimized when ¢ = /4, y =0,
and n = 7}, where we define 7 according to g = go cos(27)).
There is an equivalent minimum obtained by gauge transfor-
mation where ¢ — ¢ + /2 and y — y + m. The minimum
of the interaction energy density is then

2
—@<1 _ i) . (A5)

E(q) ~ —qonsin*(7) =
4 qo

Note that in this expression we ignored the zero-point energy
associated with the depletion, which is suppressed by a large
factor 1/,/no&?.

Within the Bogoliubov approximation, we need to expand
the energy around the minimum. For this purpose, we define
small deviations of the angles ¢ and n from the optimal values
¢ =m/4+ 8¢, n =1+ 8n and do a second-order expansion
ind¢, 8n, y,and £. Since we are interested in the limit ¢y > c»,
the density fluctuations are suppressed and we can set §n = 0
and fix the density at its equilibrium value n = ny. Then the
expression for the interaction energy density (A4) reduces to

§Hine & qono sin® (7)[cos(277)(8¢)°
+ cos®()y? + 4 cos>(7)(81)?]. (A6)

Under the same approximation, the kinetic-energy density
term reads

2
Hiin ~ ;/Ll—m[(VfSTI)2 + sin®(H)(V$)* + sin*(F)(VE)?

+ cos’(7)(Vy)? + (Va)? + 2VaVy cos’(ij)]. (A7)
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And finally, to determine the canonically conjugate variables,
we need to write the Berry phase term i W1W in the linearized
approximation,

2n¢ sin®(7)8¢ € + ng sin(27j)én y — dn[d + cos*(7)y].
(A8)
In this form, it is clear that the phase conjugate to the density

fluctuations is @ = « + cos?(7j)y. Then the kinetic energy
density can be rewritten as

2
Hyin ~ f—mno[(vﬂ)2 + sin®(7)(V¢)? + sin®(7)(VE)?
+ (V&)? + cos?(i) sin2(7)(Vy)2]. (A9)

One can further redefine the variables

8¢ — ¢/[2/ngsin(@)], & — &//ngsin(@),
y = 7//nosin(2i)), n — ij/y/no.

Then, the spin part of the Lagrangian density (Berry phase
minus Hamiltonian) becomes

|:cos(n/2)

L~ §E+ilj n ¢* + cos*(M7* + sin (277)77]

+iiy —
[ (Vi) + — (V¢>2 +(VEY + cosz(ﬂ)(v)/)z]
(A10)

2
2_

This Lagrangian density immediately gives two sets of normal
modes corresponding to oscillations in the ¢-£ variables,
which represent uniform rotations around the z axis, and in the
n-y variables, which represent oscillations in the magnitude of
the transverse magnetization. The corresponding frequencies
in momentum space are

(Al1)
(A12)

o = Vexlex + go cos2i)],
o = /(g0 + e)lex + qo sin?(27)],

where g = % is the free-particle dispersion. We note that
these expressions follow from taking the ¢y — oo limit of the
general dispersion relations obtained in Ref. [17]. There are,
however, advantages to using the density-angle representation
since it does not rely on the assumption of the existence of true

long-range order.

APPENDIX B: FINITE-TEMPERATURE CORRELATION
FUNCTIONS WITHIN THE BOGOLIUBOV THEORY

The Bogoliubov theory described in the previous section
makes it possible to compute correlation functions in two-
dimensional systems. In the following, we will consider the
transverse magnetization correlation function

1
G.i(rn)= ;(1 Fi(r)F_(0) 3). (BI)
0

Written in terms of the variables introduced in the previous
section, we have

F, = %nem sin(2n)e ¢ [cos(p)e’” + sin(¢p)e V].  (B2)
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According to the Mermin-Wagner theorem, a gapless mode
will lead to a power-law behavior of correlation func-
tions in two dimensions. The gapless mode for our case
corresponds to the ¢-& variables. It is straightforward
to see that these will dominate the correlation func-
tions. Taking into account these two fluctuating fields, one
finds

(Fo(r)F_(0)) = sin?(2i)e A¢")/2,=(A8%/2  (B3)

In this equation, (A£?) = ([£(r) —£(0)]*) with a similar
expression for (A¢?).
Using the above analysis, one finds

(L)
2 @y (ED) _
(A8 = ——— — sz(ﬁ); o L@+ 172111 = Jo(kr)]
(B4)
and
SN S (@) _
(Ag?) = Nsinz(ﬁ)Xk:wl(j)[f(wk )+ 1/2][1 = Jo(kr)],
(BS)

where f is the Bose distribution function. It can be seen that
the dominant contribution comes from (A&2) due to the long-
wavelength divergence of the sum over k, which is cut off at
~1/r. The above expression is therefore well-approximated
by

(AE?) = In(r/&). (B6)

7 sin*(7)qono&;

Using the expression for the temperature derived in the paper,
one arrives at Eq. (15).
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APPENDIX C: LANDAU DAMPING RATE

We take a spinor condensate with a single Bogoliubov
excitation of wave vector k and evaluate its lifetime 7; due
to scattering off of short-wavelength thermal modes. For
simplicity, we will consider the gapless spin mode w,f as
given in Eq. (13). Such a rate is given by the well-known
Landau damping formula [26], which has been generalized to
Bose-Einstein condensates in [27-29]

1 T
— ==Y IMlPLf (@) = flop))]
Tk n w
x 8" + o — o), (C1)

where f is the Bose-Einstein distribution function. In this
equation, the matrix element My is given by [27-29]

(L)
qf hk [ ey Wy
=L/ —-5+—%—=) @@
2/N V 2ms o ex +qr/2

where s is the sound speed of the mode wl(f) With this expres-

sion, the two-dimensional k' summation can be performed. In

the limit 7 > g, the result is

1 sk T kg T

Lok T ary 3 & T 45y 45 (o3
o hody/& qo I 8mnoks qo

where a; = (ay —ap)/3 is the spin-dependent scattering

length. Using the experimental parameters and the expression

for the temperature given in Eq. (14), and taking g = qo/2,

we find that

My

7 ~ 90 s (C4)

for a mode having a wave vector g = 1/(2&;).
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