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Synthetic magnetic fluxes on the honeycomb lattice
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We devise experimental schemes that are able to mimic uniform and staggered magnetic fluxes acting on
ultracold two-electron atoms, such as ytterbium atoms, propagating in a honeycomb lattice. The atoms are first
trapped into two independent state-selective triangular lattices and then further exposed to a suitable configuration
of resonant Raman laser beams. These beams induce hops between the two triangular lattices and make atoms
move in a honeycomb lattice. Atoms traveling around each unit cell of this honeycomb lattice pick up a nonzero
phase. In the uniform case, the artificial magnetic flux sustained by each cell can reach about two flux quanta,
thereby realizing a cold-atom analog of the Harper model with its notorious Hofstadter’s butterfly structure.
Different condensed-matter phenomena such as the relativistic integer and fractional quantum Hall effects, as
observed in graphene samples, could be targeted with this scheme.
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I. INTRODUCTION

The ability to produce and trap dilute degenerate Bose and
Fermi gases [1,2] ushered in ultracold atoms as powerful
players to explore phenomena mostly studied until now
in condensed-matter physics, see [3,4] for comprehensive
reviews. Paradigmatic examples are the observation of the
Abrikosov vortex lattice [5,6], the Mott insulator to super-
fluid transition [7], the Bose-Einstein condensate (BEC)-BCS
crossover [8,9], and the Kosterlitz-Thouless transition [10].

A current motivation for research in the field is to address
the physics of two-dimensional (2D) electrons exposed to
a magnetic field and the associated integer (IQHE) and
fractional (FQHE) quantum Hall effects [11]. Even though
atoms are neutral, people have rapidly realized that, because
of the similarity between the Lorentz and the Coriolis forces,
repulsively interacting atoms loaded in rotating traps could
target the fractional Hall effect regime [12]. Unfortunately the
first attempts failed as it is difficult to reach the regime of
one vortex per particle [13,14]. One key reason is that the
observation of the Laughlin states requires a very fine tuning
of the rotation frequency compared to the trap frequency.

In the meantime other promising methods using light-
induced gauge fields [15–19] were theoretically explored,
see [20] for a review. For atoms trapped in 2D optical lattices,
these schemes amount to controlling the phases of the hopping
amplitudes such that nonintersecting loops acquire a nonzero
phase. This simply mimicks the effect of a constant magnetic
field leading to Harper’s model [21] and Hofstadter’s butterfly
[22]. More elaborate schemes targeting non-Abelian gauge
fields have been proposed [23,24]. From an experimental
point of view, the successful generation of an Abelian gauge
field in the bulk has been reported with the observation of
vortices [25,26].

The aim of our work is to devise workable experimental
schemes that would create artificial Abelian gauge fields
acting on a honeycomb lattice filled with alkaline-earth
atoms. These artificial gauge fields mimic effective magnetic

fields imposing uniform or staggered fluxes through the
lattice. Related schemes have been theoretically proposed
in [19,27] for the rectangular lattice. Schemes mimicking
an effective periodic magnetic field or realizing topological
quantum states have been proposed in [28,29]. Our primary
interest in the honeycomb lattice is that its ground and
first-excited bands give rise to two Dirac points around which
the dispersion is linear. When loaded with ultracold fermions
around half-filling, the Fermi energy slices the band structure
around the Dirac points and one gets a cold-atom analog of
graphene [30,31]. Key experiments with graphene samples
have revealed a particular quantum Hall effect [32,33]. This
is due to the relativistic nature of the low-energy electronic
excitations which behave like massless Dirac particles [34,35].
Recently the first observations of a FQHE state at ν = ±1/3
in suspended graphene were reported [36,37]. Because of
the richness and flexibility of the cold-atoms technology,
we believe that experiments where fermions, bosons, or
fermion-boson mixtures are loaded in the honeycomb optical
lattice and are exposed to an artificial magnetic field yield
situations difficult to explore in graphene research, in particular
when the hopping amplitudes are imbalanced [38]. Recently,
an interacting multi-component quantum gases was loaded
in a spin-dependent hexagonal lattice paving the way to
address graphene physics with cold atoms [39]. It is worth
mentioning that configurations giving rise to Dirac points in
the square lattice have been proposed [40,41]. However, these
conical intersections only occur for very specific values of
the magnetic flux, such that their observation would require
a very good control over the experimental setup [42]. On the
contrary, with the present scheme, the effective magnetic field
and the Dirac points are produced independently from each
other, such that the Dirac cones are present for all values of
the magnetic flux. Therefore, one could study the Harper model
on the honeycomb lattice not only for low magnetic fields, a
situation where the effective continuous model of massless
Dirac fermions under a magnetic field applies and has its

023604-11050-2947/2011/84(2)/023604(11) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.023604
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widest range of validity with respect to the magnetic flux [42],
but also for arbitrary fractional fluxes. In addition, it has been
shown that these Dirac points are robust against experimental
imperfections such as imbalanced laser intensities and small
deviations from the perfect in-plane 120◦ angles [31].

The paper is organized as follows. In Sec. II, we introduce
the laser configuration producing the two uncoupled state-
dependent triangular lattices we need. In Sec. III, we introduce
the Raman laser configuration which induces hops between
the two previous sublattices, thereby realizing a (slightly
nonregular) honeycomb lattice where the atoms can move.
We show that a single Raman laser scheme is not sufficient to
induce an artificial magnetic field and we propose a four-beam
scheme to achieve a uniform flux through the lattice. About
two flux quanta per unit cell can be generated with our
scheme, thereby reaching the strong-field limit and realizing
the cold-atom analog of the Harper model. In Sec. IV we
introduce two setups that allow us to achieve a staggered flux
through the lattice similar to the one shown in [19]. About one
flux quanta per unit cell can be generated with both schemes. In
Sec. V, we give the associated Harper models. We summarize
and conclude in Sec. VI.

II. STATE-DEPENDENT TRIANGULAR OPTICAL
LATTICES

In this section we introduce the laser configuration that
produces two triangular state-dependent optical lattices. As in
[19], all our calculations are done for the bosonic isotope 174Yb
of ytterbium [43,44]. We restrict our analysis to two internal
states, namely, the ground state 1S0, hereafter denoted by |g〉,
and the long-lived (lifetime about 20 s) metastable excited
state 3P0, hereafter denoted by |e〉. The energy separation
between these two states is h̄ω0 = h̄ck0 = hc/λ0, where λ0 =
0.578 μm, and the so-called magic and antimagic wavelengths
of this isotope are λm = 0.76 and λam = 1.12 μm.

In a nutshell, our strategy is the following. A first laser
configuration working at the magic frequency creates a
honeycomb potential with the lattice constant a ∝ λm which
confines both Yb internal states in its minima. At this stage
there is thus no special spatial organization of the Yb internal
states among the two triangular sublattices of the honeycomb
lattice. A second laser configuration working at the antimagic
frequency is then superimposed onto the previous one to create
an optical standing-wave potential. When 3a = λam, as a net
result of the combination of these two optical potentials, state-
|g〉 atoms are trapped in the minima of a triangular lattice while
state-|e〉 atoms are trapped in the minima of another shifted
triangular lattice. As a whole, we get a (slightly nonregular)
honeycomb lattice where state-|g〉 atoms are solely trapped in
one of its sublattices while the state-|e〉 atoms are trapped in the
other. Considering the hexagonal Bravais Wigner-Seitz cell of
the new honeycomb lattice, this means that its vertices are now
alternately occupied by state-|g〉 and state-|e〉 atoms. At this
stage, however, the state-|g〉 and state-|e〉 sublattices are still
uncoupled, because atoms trapped in one sublattice cannot flip
their internal state and hop onto the other sublattice. How to
couple these two sublattices is the topic of Sec. III. Throughout
this section and Sec. III, for convenience purposes, we will use
λam/2 = 0.56 μm as our space unit.

θ

FIG. 1. Laser configuration creating a honeycomb optical lattice
in the (Ox,Oy) plane at the magic wavelength. It is made of three
monochromatic linearly polarized beams with the same off-plane
elevation angle θ . The in-plane projections of the laser wave vectors
have respective angles of 120◦.

A. Magic honeycomb lattice

The basic laser configuration creating the honeycomb
lattice was presented and analyzed in [31]. In the present case,
we choose a slightly modified version of it by considering the
superposition of three linearly polarized running monochro-
matic waves at angular frequency ωm = ckm = 2πc/λm with
wave vectors ki = kmêi , where

ê1 = cos θ êy + sin θ êz, (1a)

ê2 = − cos θ

√
3êx + êy

2
+ sin θ êz, (1b)

ê3 = cos θ

√
3êx − êy

2
+ sin θ êz, (1c)

θ being the elevation angle of the magic beams off the
(Ox,Oy) plane, see Fig. 1.

Up to an inessential additive constant, the resulting optical
dipole potential Vm(r) is translation-invariant along the Oz

direction and displays a honeycomb structure in the (Ox,Oy)
plane with lattice constant a = 2λm/(3

√
3 cos θ ). After a

suitable choice of space and time origins, it is then given by
Vm(r) = V0[3 + 2fm(r)] where

fm(r) = cos (b1 · r) + cos (b2 · r) + cos ((b1 + b2) · r), (2)

and where V0 denotes the strength of the potential. The
vectors b1 = k3 − k1 and b2 = k1 − k2 feature the primitive
reciprocal lattice vectors of the honeycomb lattice. In turn they
define the primitive honeycomb Bravais lattice vectors a1 and
a2 through ai · bj = 2πδij . In terms of our space units, we find

fm(r) = 2 cos (πγ x) cos (
√

3πγy) + cos (2πγ x), (3)

where

γ =
√

3λam cos θ

2λm

. (4)

Throughout this paper, we assume that a suitable external
confinement along axis Oz restricts the atomic dynamics in
the (Ox,Oy) plane. Then, for V0 > 0, the atoms are trapped
in the minima of the potential which coincide with its zeros.
These are organized in a regular honeycomb structure made
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FIG. 2. Hexagonal Wigner-Seitz cell of the honeycomb lattice
associated with the optical potential generated by Eq. (3). The figure
shows the two primitive Bravais vectors ai, the three vectors cj

connecting each honeycomb lattice site to its three nearest neighbors
and the honeycomb lattice constant a.

of two shifted identical triangular sublattices [31]. Each lattice
site is connected to its three nearest neighbors by the vectors
ca (a = 1,2,3) satisfying

a1 = c1 − c2, (5a)

a2 = c1 − c3, (5b)∑
a

ca = 0. (5c)

Figure 2 shows the hexagonal Wigner-Seitz cell of this
regular honeycomb lattice together with the primitive Bravais
and nearest-neighbor vectors. The potential has maximum at
its center, vanishes at each of its vertices, and exhibits a saddle
point at the midpoint of each of its sides [31].

B. Creating state-dependent triangular sublattices

The previous magic honeycomb potential traps atoms in its
minima irrespective of their internal state. Starting from this
situation, we would like now to selectively trap atoms with a
given internal state in a given triangular sublattice of a new
honeycomb lattice. As a result the six vertices of the corre-
sponding Wigner-Seitz cell would alternate trapped internal
states. This is achieved by shining two counterpropagating
laser beams along the Ox direction, their common angular
frequency being ωam = ckam = 2πc/λam. Taking the origin
of coordinate system at a point where the magic honeycomb
potential Vm(r) has maximum, this antimagic standing-wave
potential is given by

Vam(r) = V1
1 + cos (b · (r − r0))

2
, (6)

where b = 2kamêx is the antimagic reciprocal lattice vector,
V1 being the corresponding potential strength. The position r0

where this potential reaches its maximum value is determined
by the relative phase of the two interfering antimagic laser
beams. The effective potentials for the ground and excited
states then read, respectively,

Vg(r) = Vm(r) + Vam(r), (7a)

Ve(r) = Vm(r) − Vam(r). (7b)

The strategy is now to find parameters for which both Vg and
Ve sustain the same (regular) triangular Bravais lattice, both
potential minima being organized in two shifted triangular
lattices. As a whole, one would get a honeycomb lattice where
adjacent sites would now be loaded with atoms having different
internal states or, in other words, where each sublattice sustains
a given internal state. These sublattices of minima will be
triangular if the magic and antimagic lattices match. This is
the case if b belongs to the reciprocal lattice of the magic
honeycomb lattice. This requirement is simply met when b =
b1 + b2, i.e., when λam = 3a (or equivalently γ = 1). This is
implemented by stretching the honeycomb lattice and choosing
the common polar angle θ of the magic laser beams to satisfy

cos θ = 2λm√
3λam

. (8)

For the chosen internal states of the Yb atom, one finds the
required off-plane angle θ = 31.41◦.

Next we require x0 = 3a/8 ( = 1/4 in dimensionless units)
such that cos(2πx0) = 0, see Fig. 3. From an experimental
point of view, this would require one to control the phases of

FIG. 3. (Color online) Top: contour plot of the stretched magic
honeycomb potential Vm (a = 2/3 in space units of λam/2). Bottom:
plot of the antimagic standing-wave potential Vam for a relative
position x0 = 3a/8 = 1/4. The antimagic potential takes its mean
value half-way between the minima of the magic potential (vertical
dotted lines). The superposition of these two potentials gives the
state-dependent trapping potentials Vg,e = Vm ± Vam. The positions
of the resulting |g〉 sites and |e〉 sites are marked by the corresponding
blue and red letters. Dash-dotted blue line: triangular unit cell of the
state-|g〉 lattice. Dashed red line: triangular unit cell of the state-|e〉
lattice. The combination of these two regular triangular lattices
produces a honeycomb lattice with alternating state-dependent sites.
The unit cell of this honeycomb lattice (black solid line) is no longer
regular, see Fig. 5.
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FIG. 4. (Color online) Vg(r) as a function of x when y = 1/
√

3
for various V1/V0 ratios. Black thin line: magic potential for V1 = 0.
Blue thick line: V1 = V0. Red dashed line: V1 = 3V0. Green dotted
line: V1 = 5V0.

the laser beams. For this particular choice of x0, one has (in
dimensionless units)

Vam(r) = V1
1 + sin(2πx)

2
. (9)

The state-dependent potentials satisfy Vg(x,y) = V1 +
Ve(−x,y). Since they are also even functions of y, they also
satisfy Vg(r) = V1 + Ve(−r). This means that Vg and Ve are
thus simply obtained from each other by mere reflection about
the Oy axis and also by mere inversion about the origin.

Figure 4 shows Vg as a function of x when y = 1/
√

3
for various V1/V0 ratios. As V1 is increased from zero,
the two wells of the magic honeycomb lattice get shifted
away and achieve different potential values. A single band
tight-binding description will be appropriate for Vg when the
wells are deep enough and sufficiently well separated in energy.
The recoil energy associated with the magic honeycomb
potential is here ER = Em cos2 θ , where Em = h̄2k2

m/(2M)
is the magic recoil energy, M being the mass of Yb atoms.
Under the current experimental configuration, one has ER =
4Eam/3 where Eam = h̄2k2

am/(2M) is the antimagic recoil
energy. Direct tunneling between theses two wells is then
suppressed when V1 � V0 � Eam (we take V1 = 3V0 in our
subsequent calculations). One can also show that the harmonic
approximation around the global minima of Vg is no longer
isotropic but features two different trapping frequencies along
Ox and Oy. In turn, the corresponding Wannier functions
wg(r − rg), centered at the |g〉-sublattice sites rg , will reflect
this spatial asymmetry. For V1 = 3V0, the harmonic anisotropy
is small and the corresponding harmonic lengths differ by
10% only. Obviously, the same conclusions apply to Ve and
its associated Wannier functions we(r − re) centered at the
|e〉-sublattice sites re. Furthermore, because of the inversion
property between the two optical potentials one can infer the
interesting property:

we(−r) = wg(r). (10)

The superposition of these two independent regular triangu-
lar state-|e〉 and state-|g〉 sublattices defines a new honeycomb
structure, and Fig. 5 shows its primitive Wigner-Seitz cell.
As one can see, contrary to the magic potential, the resulting
new honeycomb structure is no longer regular, because the
two sublattices are no longer shifted by a along Ox but by

FIG. 5. Wigner-Seitz cell of the new honeycomb structure created
by the superposition of two triangular state-dependent trapping
potentials. This unit cell is no longer regular and we have a′ = 0.88a,
a′′ = 1.07a. The proportions on the figure have been exaggerated.

a′ ≈ 0.88a. The new nearest-neighbor vectors c′
a (a = 1,2,3)

no longer add up to zero, but because the underlying Bravais
lattice is still triangular, they still verify a1 = c′

1 − c′
2 and

a2 = c′
1 − c′

3. As a consequence, the overlap of the Wannier
functions wg and we along the horizontal link will be different
from their overlaps along the two other links (these being
identical), a fact which has its importance when coupling the
two sublattices.

III. UNIFORM FLUX CONFIGURATION

So far we have been able to produce a honeycomb lattice
where each of its sublattice traps atoms of a given internal state.
However, these sublattices are still uncoupled, because atoms
cannot yet flip their internal state and hop. For this, one needs
to expose the atoms to Raman lasers which, by resonantly
coupling the two internal states of the atoms, will induce these
hops and thus couple the two sublattices. As it will be explained
below and in Sec. IV, uniform or staggered synthetic magnetic
fields can then be implemented for a suitable choice of the
Raman lasers, and atoms traveling around a unit cell will pick
up a nonzero phase. The net flux per cell can be made of the
order of one quantum flux, thereby reaching the strong-field
regime.

A. Raman-induced hopping

The Raman coupling between the two honeycomb sublat-
tices makes an atom with internal state |g〉 at site rg hop to a
site at re while flipping its internal state to |e〉 (and vice versa).
For a plane-wave Raman laser field with wave vector q, the
associated (complex) hopping amplitude reads

Jg→e = h̄	

2

∫
d2r w∗

e (r − re)eiq·rwg(r − rg), (11)

where 	 is the Raman laser Rabi frequency. For the reverse
hopping process, one has simply Je→g = J ∗

g→e. Most impor-
tantly, if one now considers the hopping amplitude associated
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with Bravais-translated sites r′
e = re + R and r′

g = rg + R,
where R is a Bravais lattice vector, then

Jg′→e′ = eiq·R Jg→e. (12)

Another interesting property can be found by defining Rge =
(re + rg)/2 and rge = re − rg . Then

Jg→e = h̄	

2
eiq·Rge Ige, (13)

with

Ige =
∫

d2r w∗
e

(
r + rge

2

)
eiq·rwg

(
r − rge

2

)
. (14)

Using now Eq. (10), it is easy to show that Ige = I ∗
ge meaning

that Ige is in fact real. Assuming the Raman laser Rabi
frequency to be real, the phase of the hopping amplitude is
then simply given by


g→e = −
e→g = q · re + rg

2
. (15)

In the following, we will assume that the overlap between
the Wannier functions is only significant for nearest-neighbor
sites. This will be the case when V1 � V0 � Eam. As stated
earlier, this overlap, and thus Ige, will be link-dependent,
since the new honeycomb lattice is no longer regular. We will
thus neglect direct tunneling or second-order Raman-induced
tunneling within each sublattice and only consider nearest-
neighbor hopping between the two sublattices.

B. One single Raman laser field is not enough

Unfortunately, the simplest scheme where one uses a single
Raman laser beam does not induce any global phase around
a Wigner-Seitz plaquette. Indeed, considering the situation
depicted in Fig. 6, one can identify pairs of hopping amplitudes
related by a Bravais translation:

JA→B = e−iq·a1 J ∗
D→E, (16a)

JB→C = eiq·(a1−a2) J ∗
E→F , (16b)

JC→D = eiq·a2 J ∗
F→A. (16c)

It is then easily seen that the total phase accumulated around
the Wigner-Seitz plaquette trivially cancels out and thus this
Raman scheme alone fails to produce an artificial magnetic
field.

C. More is different

The reason why the single Raman beam scheme fails is
because all links are on an equal footing. To cure this problem,
we need to consider a slightly more involved Raman laser
scheme. To this end we introduce two counterpropagating
laser beams with wavelength λ producing a standing-wave
pattern W (r) having the periodicity of Vg and Ve along Oy.
This imposes λ = 2

√
3a = 2λam/

√
3 ≈ 1.29 μm. These laser

fields generate different optical potentials for states |g〉 and |e〉
(in units of λam/2):

Wg,e(r) = h̄�g,e W (r) = h̄�g,e

1 + cos(π
√

3y)

2
, (17)

FIG. 6. (Color online) Top: sketch of the hexagonal plaquette
alternating sites where state-|g〉 atoms are trapped (A, C, and E, open
circles) and state-|e〉 atoms are trapped (B, D, and F, red-filled circles).
The total phase accumulated per cell is calculated for atoms hopping
clockwise (arrows). Bottom: energy diagram along the loop and the
corresponding Raman transitions. All Raman transitions occur here
at the angular frequency separation ω0 between the two hyperfine
states. As a consequence, one single Raman laser beam is enough to
address all sites.

where we have assumed that the phases of these additional
laser beams are fixed in such a way that the maxima of Wg,e

along Oy coincide with those of Vm when x = 0. The new
total potentials read

V ′
g,e(r) = Vm(r) ± Vam(r) + Wg,e(r). (18)

Because of the chosen periodicity along Oy and choice of
phase, the potential value is lifted in every other horizontal
row of sites, the potential energy increase being h̄�g or h̄�e

depending on the trapped internal state, see Fig. 7.
In the following we will assume that h̄�g,e � V0 so

that the net (perturbative) effect of Wg,e(r) is simply to lift
the potential energy without modifying the original Wannier
functions we,g(r). However, because of these energy shifts,
the honeycomb structure now features two different cells and
exhibits vertical “strips” of these cells alternating along Ox,
see Fig. 7. One now needs four Raman beams to address all
lattice links and activate hopping between all neighboring
sites; see Fig. 8 for one Wigner-Seitz plaquette and Fig. 9
for its neighboring one. Their respective angular frequencies
are ω+ = ω0 + �e, ω− = ω0 − �g , ω = ω0 + �e − �g , and
ω0 and their respective wave vectors are q+, q−, q, and q0. For
sake of simplicity, we will assume that all these Raman beams
propagate in the (Ox,Oy) plane. Since the light shifts are small
compared to the transition angular frequency, �g,e � ω0, it is
legitimate to neglect the tiny changes in wave-vector length so
that we can consider that all these wave vectors have the same
norm k0 = 2π/λ0.
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FIG. 7. (Color online) Left: contour plot of the trapping potential
Vg(r). Right: weak perturbing standing-wave potential which is added
along Oy to lift the energy degeneracy between the potential wells.
The standing-wave potential is maximum for y = 0 and its period
exactly matches

√
3a where a is the magic honeycomb lattice

constant. Every well in every other horizontal row is lifted up.
Dark blue letters “G ” mark the wells which are lifted up, whereas
blue letters “g” mark the unaffected ones. Accordingly, the dark red
letters “E” and red letters “e” mark the respective positions of the
lifted-up and unaffected wells for the trapping potential Ve(r). Both
state-|g〉 and state-|e〉 lattices are rectangular with a two-point unit
cell (blue dashed-dotted and red dashed rectangles, respectively), the
corresponding Bravais vectors being (a1 + a2) and (a2 − a1). The
resulting global honeycomb structure exhibits two different vertical
alternating strips made either of the clockwise “gEGeGE” cell (dotted
hexagon) or the “GegEge” one (solid hexagon).

Then, for the Wigner-Seitz cell of Fig. 8, the cumulated
total clockwise phase is simply


 = (a2 − a1) · q+ + q− − 2q
2

, (19)

while the one for that of Fig. 9 is


′ = (a2 − a1) · q+ + q− − 2q0

2
. (20)

Of course we recover the fact that the phases cancel as they
should when all wave vectors are identical. The induced
artificial magnetic flux will be uniform provided 
 = 
′, i.e.,
provided (q − q0) · (a2 − a1) = 0. This will be the case if q0

and q are most simply chosen parallel. If we now further
choose q+ and q− to be parallel and antiparallel to q0 and q,
the total cumulated phase then reads 
 = 2πα with

α = 2λam√
3λ0

cos θR, (21)

where θR is the angle of q+ with respect to axis Oy. The max-
imum value for α is 2λam/(

√
3λ0) ≈ 2.24, meaning that this

scheme can provide a bit more than two flux quanta per cell. For
comparison the corresponding magnetic field giving rise to the
same maximum flux would be B = 8πh̄/(eλ0λam) ≈ 256 G.
To obtain the same flux in graphene samples, as the graphene
lattice constant is very small (of the order of 0.15 nm), one
would need a magnetic field about 6 × 106 larger.

FIG. 8. (Color online) Top: clockwise “gEGeGE” plaquette.
Open and grey-filled circles mark the unaffected and lifted-up |g〉
sites; red-filled and dark-red-filled circles mark the unaffected and
lifted-up |e〉 sites. Bottom: energy diagram for the Raman transitions
around the plaquette. Because the wells are lifted differently, three
different angular frequencies, ω, ω+ and ω−, are now needed to
activate the hops around this plaquette.

IV. STAGGERED FLUX CONFIGURATION

A. Adapting the previous configuration

An artificial staggered magnetic flux can be easily created
using the results of the previous section. Indeed, by simply
taking the q+ and q− wave vectors to be along axis Ox and
the q0 and q wave vectors to be antiparallel, the accumulated
phases in the two different types of Wigner-Seitz cell would
now be opposite:


′ = −
 = (a2 − a1) · q = πα, (22)

where θR in Eq. (21) is now the angle of q with respect to
Oy. We get alternating vertical stripes with opposite fluxes,
the maximum value reached being half the uniform one, i.e.,
about 1.12 flux quanta. Hence, the configuration proposed in
Sec. III proves quite versatile, as it allows us to easily switch
from the uniform to the staggered magnetic flux cases by only
changing the direction of propagation of the Raman beams.

B. Another configuration

However, for sake of completeness, we would like to
propose here another scheme, similar to the one proposed
in [19], where the final lattice configuration alternates zig-zag
vertical rows of |g〉-state minima with zig-zag vertical rows of
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FIG. 9. (Color online) Top: clockwise “GegEge” plaquette. Open
and grey-filled circles mark the unaffected and lifted-up |g〉 sites;
red-filled and dark-red-filled circles mark the unaffected and lifted-up
|e〉 sites. Bottom: energy diagram for the Raman transitions around
the plaquette. Because the wells are lifted differently, three different
angular frequencies, ω0, ω+, and ω−, are now needed to activate the
hops around this plaquette.

|e〉-state minima. To achieve this, we simply start with a magic
honeycomb potential where all beams are now coplanar with
respective consecutive angles of 120◦ as done in [31]. With
respect to the previous section, this configuration is obtained
by setting θ = 0, see Eq. (1). Using now λm/2 as the space
unit in this section, we get

V ′
m(r) = V ′

0[3 + 2f ′
m(r)]

with

f ′
m(r) = 2 cos

(√
3πx

2

)
cos

(
3πy

2

)
+ cos (

√
3πx). (23)

This magic honeycomb lattice constant is ã = 4/(3
√

3) in
dimensionless units (ã ≈ 0.29 μm).

The antimagic potential is now produced with two laser
beams counterpropagating along Ox, their off-plane elevation
angle being θ ′. In dimensionless units, the antimagic potential
reads

V ′
am(r) = V ′

1
1 + cos (b′ · (r − r′

0))
2

, (24)

where b′ = b′êx = 4π cos θ ′/λamêx. We now request the
period of the antimagic standing-wave to match 3ã and the

horizontal shift to be x ′
0 = 3ã/4. This imposes the off-plane

angle to satisfy

cos θ ′ =
√

3λam

4λm

, (25)

giving θ ′ ≈ 50.35◦. One then finds

V ′
am(r) = V ′

1
1 + sin (

√
3πx/2)

2
, (26)

and V ′
g,e(r) = V ′

m(r) ± V ′
am(r). With this set of parameters, one

finds that b′ = (b1 + b2)/2. In other words the Bravais lattice
associated with the potential Vg and Ve is no longer triangular.
It turns out to be rectangular with reciprocal lattice vectors
b′ along Ox and b′′ = √

3b′êy along Oy, respectively, the
Wigner-Seitz cell of the lattice of global minima being a two-
point cell, see Fig. 10. As Vg and Ve are still related by inversion
and reflection about Oy, the inversion symmetry relating their
associated Wannier functions remains valid. Figure 11 shows a
plot of V ′

g when y = √
3ã/2 for various ratios V ′

1/V ′
0. A single

band description for each rectangular lattice is appropriate
when the condition V ′

1 > V ′
0 � Em is met, Em being the magic

recoil energy. Typically a ratio V ′
1/V ′

0 = 3 or larger is required.
To couple the two shifted independent rectangular |g〉-state

and |e〉-state sublattices, it is then sufficient to use a single
in-plane Raman laser at frequency ω0 and wave vector k0.
We assume that the Raman laser only couples Yb atoms
(with different internal states) which are trapped in nearest-
neighbor sites. As Fig. 10 shows, the Raman-induced hops only
occurs along Ox, between vertical zig-zag rows. The hopping
along the zig-zag rows relies on direct tunneling through the
potential barriers. As a whole, the coupled system displays a
honeycomb structure. Each vertical row is built by repeated
tiling of the same plaquette. There are two different kinds of
plaquettes, obtained from each other by reflection about their
middle vertical axis. The rows with different plaquettes are
alternating along Ox. A schematic picture of the hops around
the clockwise “eeggge” plaquette is shown in Fig. 12. The
situation for the other “geeeg” plaquette is simply obtained
from it by mirroring the sites through the middle vertical axis
and changing the energy diagram accordingly.

By an argument similar to the case of the uniform synthetic
magnetic flux, the phase of the hopping amplitude between a
|g〉-state site and its neighboring |e〉-state site is simply given
by k0 · Rge, where Rge is the middle point of the (horizontal)
connecting link, the phase for the reverse hopping process
being the opposite. Because the hopping amplitude along the
vertical zig-zag chains is real, the total phase accumulated
around the cell shown in Fig. 10 is simply 
 = 2πα′ =
(4πλm/3λ0) cos θ ′

R , where θ ′
R is the angle of the Raman wave

vector with axis Oy. The phase for the other plaquette is
−
. The maximum value obtained for α′ with this scheme is
(2λm/3λ0) ≈ 0.876, a bit less than a flux quantum. Here again
we get alternating vertical stripes with opposite fluxes.

V. HARPER MODEL

In this section we would like to give the single-band Harper
model [21,22,35] describing the previous configurations and
discuss some orders of magnitude and limitations. We will
restrict ourselves to the configuration obtained in Sec. III since
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FIG. 10. (Color online) Staggered magnetic field case. Contour
plot of the magic honeycomb lattice V ′

m(r) and the antimagic standing-
wave potential V ′

am(r) with spatial period 3ã, ã being the magic
honeycomb lattice constant. The blue letters “g” mark the positions
of the state-|g〉 sites for the trapping potential V ′

g = V ′
m + V ′

am; red
letters “e” mark the positions of the state-|e〉 sites for the trapping
potential V ′

e = V ′
m − V ′

am. Both state-|g〉 and state-|e〉 lattices are
rectangular but with a two-point unit cell (blue dashed-dotted and red
dashed rectangles, respectively), the corresponding Bravais vectors
being (a1 + a2) and (a2 − a1). The Raman laser beams only connect
horizontal nearest-neighbor state-|g〉 and state-|e〉 sites. The resulting
honeycomb structure exhibits two different alternating vertical strips
made either of the clockwise cell “eeggge” (dotted hexagon) or the
“ggeeg” one (solid hexagon).

0.5 0.5
2x λm

2

4

6

8

10

Vg' r

FIG. 11. (Color online) Staggered magnetic field case. Trapping
potential V ′

g(r) as a function of x when y = √
3ã/2 for various V ′

1/V ′
0

ratios. Black thin line: magic honeycomb potential (V ′
1 = 0). Blue

thick line: V ′
1 = V ′

0. Red dashed line: V ′
1 = 3V ′

0. Green dotted line:
V ′

1 = 5V ′
0.

FIG. 12. (Color online) Staggered magnetic field case. Top:
clockwise “eeggge” plaquette. The red-filled circles mark the state-|e〉
sites; open circles mark the state-|g〉 sites. Bottom: energy diagram
for the Raman transitions around the plaquette. A single Raman laser
beam at frequency ω0 is required here to activate hopping along the
horizontal “e-g” links. Hopping along the vertical direction is due to
direct tunneling through a potential barrier.

it can as well describe a uniform or a staggered synthetic
magnetic flux applied to a honeycomb lattice.

To find the Harper Hamiltonian associated with the consid-
ered optical potential configuration, one has first to identify its
unit cell C and the corresponding Bravais lattice B. Then the
Harper Hamiltonian is simply written as

HHarper =
∑
n∈B

Hn, (27)

where Hn is the hop operator acting on the cell Cn obtained by
translation of C along B. In turn, one can write

Hn = Tn + T †
n , (28)

where Tn describes hops among sites within Cn but along
prescribed directions.

A. Simplest uniform flux configuration

This is the configuration obtained for q = q0 = −q+ =
−q−. In this case, it is easy to see that the lattice is obtained by
repeated tiling of the unit cell displayed in Fig. 13, the relevant
Bravais lattice B being triangular and spanned by a1 and a2.
We take the origin of the cell at the state-|g〉 site located at rn.
We denote by gn the corresponding annihilation operator and

023604-8



SYNTHETIC MAGNETIC FLUXES ON THE HONEYCOMB . . . PHYSICAL REVIEW A 84, 023604 (2011)

FIG. 13. (Color online) The cell used to derive the Harper
Hamiltonian for the simplest uniform magnetic flux configuration.
Red circles: state-|e〉 sites. Open circle: state-|g〉 site. The arrows on
the links indicate the hop directions considered to write down the
hop operator Tn, see Eq. (28). The Raman wave vectors implied in
the hops are indicated along each link. The hop operator T †

n operates
on the same cell but with reversed hop directions and thus complex
conjugate hopping amplitudes. The Harper Hamiltonian is obtained
by superposing the hop operators obtained by repeated translations
along the Bravais lattice B spanned by vectors a1 and a2, see Eq. (27).

by ean the annihilation operators of a state-|e〉 atom located at
sites ran = rn − c′

a (a = 1,2,3). The hop operator is

Tn =
∑

a

Jae
iφan e†angn, (29)

where Ja is the (real) hopping strength along the link vector
−c′

a and φan = εa q · (rn − c′
a/2) (ε2 = ε3 = −ε1 = 1). As

obtained from Sec. III, the total anticlockwise phase per unit
cell is


B = 2q · (a2 − a1). (30)

At this point one may wonder which gauge potential A and
which magnetic field B = ∇ × A would give rise to the same
Harper model for electrons in the graphene lattice. Using
the gauge potential AL = −Byêx (Landau gauge), we write
A = AL + A0. The vector potential AL generates a uniform
magnetic field perpendicular to the honeycomb lattice, and
we choose its strength B such that it gives rise to the same
flux per unit cell as A. It is then easy to show that the vector
potential A0, which does give rise to a nonzero magnetic field,
nevertheless gives rise to zero flux around any closed loop. In
the Harper model the particles move along the lattice links,
which means that the contribution of A0 can in fact be locally
gauged away. Indeed, picking up some lattice site r0 as the
origin, the phase 
n = ∫ rn

r0
A0 · dr is in fact path independent

(as long as the path is taken on the honeycomb lattice) and
only depend on the end point rn. This proves that the Harper
model given by Eqs. (27)–(29) can in fact be obtained with a
uniform magnetic field.

We would like to give now a somewhat simpler expres-
sion for the hop operator. Performing the local U(1) gauge
transformation:

gn → exp(−iq · rn/2) gn,

e†an → exp(−iq · ran/2) e†an, (31)

one gets

Tn = J1e
iϕ e

†
1ngn + J2 e

†
2ngn + J3 e

†
3ngn, (32)

where ϕ = q · (rn + r1n) is the Raman phase evaluated at
the midpoint along the link vector −c′

1. One can easily
check that the total anticlockwise phase picked up around
a hexagonal plaquette is again 
B . This local U(1) gauge
transformation amounts to choosing locally the phase of the
Wannier functions.

Because the link vectors c′
2 and c′

3 have the same length,
the tunneling amplitudes J2 and J3 are the same as long as the
corresponding Raman Rabi frequencies are equal. However,
as c′

1 has a different magnitude, in principle, J1 is different
from the two others. The mismatch could be compensated for
by a fine-tuning of the corresponding Raman Rabi frequency
though this might not be easy in practice. In another context,
it is known that hopping imbalance can have a strong impact
on the physical phenomena under study [45].

Forgetting about this hopping imbalance, one can give
a rough order of magnitude of the hopping amplitude J =
(h̄	/2)Ieg , see Eqs. (13) and (14). Using a harmonic approxi-
mation, and further neglecting the Wannier function anisotropy
which is anyway small, a simple calculation performed at
V1 = 3V0 shows that

J ≈ h̄	

2
exp[−(1.587/h̄e + 0.323h̄e)], (33)

where the effective Planck’s constant is h̄e = √
2Eam/V0 and

Eam is the antimagic recoil energy (Eam/h = 900 Hz). For
h̄	 = 2Eam and V0 = 16Eam, one gets J ≈ 10−2Eam.

FIG. 14. (Color online) The cell used to derive the Harper
Hamiltonian in the general case. Red circles: state-|e〉 sites. Dark
red circles: lifted-up state-|e〉 sites. Open circles: state-|g〉 sites. Grey
circles: lifted-up state-|g〉 sites. The arrows on the links indicate the
hop directions considered to write down the hop operator Tn, see
Eq. (28). The Raman wave vectors implied in the hops are indicated
along each link. The hop operator T †

n operates on the same cell but
with reversed hop directions and thus complex conjugate hopping
amplitudes. The Harper Hamiltonian is obtained by superposing the
hop operators obtained by repeated translations along the rectangular
Bravais latticeB spanned by vectors a1 + a2 and a2 − a1, see Eq. (27).
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B. General case

In the general case where all Raman wave vectors are differ-
ent, the unit cell must now be enlarged and it is given in Fig. 14.
Writing down the hop operator Tn is straightforward but rather
tedious because now many links are required. We leave it as
an exercise for the reader. The noticeable point is that the
relevant Bravais lattice B is now rectangular and spanned by
the vectors a1 + a2 and a2 − a1.

The above Harper model can be readily extended when
interactions come into play. This could be experimentally re-
alized by loading the lattice with bosonic atoms in the presence
of on-site repulsive interactions. In this case one could target
the fractional quantum Hall effect and the Laughlin state at
filling fraction ν = 1/3, and more generally highly correlated
quantum liquids. By loading the lattice with fermionic atoms,
one could target the relativistic quantum Hall effect, as
evidenced in graphene samples at low fluxes per cell. It is worth
mentioning that contrary to 174Yb, which has zero total spin,
the fermionic Yb isotopes have a nuclear spin. They are thus
multilevel systems and one can then think of designing more
elaborate configurations to mimic non-Abelian gauge fields.
One could also imagine loading the lattice with Bose-Fermi
mixtures like 173Yb-174Yb [46] or like 171Yb-174Yb where
next-nearest-neighbor interactions of the order of six times
the tunneling energy have been reported at zero magnetic field
[47]. The case of Fermi-Fermi mixtures raises tantalizing ques-
tions on spinor superfluidity. For instance, the 171Yb-173Yb

mixture realizes a system with SU(2) × SU(6) symmetry
[48,49].

VI. CONCLUSION

In this paper we have proposed experimental setups
realizing Abelian gauge fields acting on Yb atoms moving
in a honeycomb lattice and giving rise to uniform or staggered
synthetic magnetic fluxes. A net flux per unit cell of one
quantum flux can be easily reached, thereby realizing the
cold-atom analog of the Harper model. Different phenomena
could be experimentally studied with these configurations,
ranging from the relativistic to the fractional quantum Hall
effects. A possible extension of this work would be to study
the role of the honeycomb lattice distortion which leads to
hopping strength imbalance. As far as we know the impact of
this imbalance on the Harper model is largely unexplored but
would be of great experimental relevance.
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