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Unreliability of the autocorrelation function as evidence for Ericson fluctuations

Y. H. Jiang,1,* R. Püttner,1 D. Delande,2 M. Martins,1,† and G. Kaindl1
1Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin-Dahlem, Germany
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In a recent combined experimental and theoretical paper for the total photoionization cross section of helium
up to the single-ionization threshold I13, we had shown that Ericson fluctuations were absent, although the
Ericson regime had already been reached. In the present paper, we study the autocorrelation functions of
the total photoionization cross section below I9–I13 and find that these are essentially identical to that of an
artificial spectrum with Ericson fluctuations. Consequently, we have to conclude that the autocorrelation function
alone—although its Lorentzian-like shape for small displacements ε has been used by some authors—is a
necessary but is not a sufficient proof for the existence of Ericson fluctuations. In the present case of He, the
absence of Ericson fluctuations is a consequence of a strong hierarchy between the transitions belonging to
different series with approximate quantum numbers that still exist in this region; this causes the spectra to be
dominated by the principal series.
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I. INTRODUCTION

In quantum chaos, the properties of quantum systems,
whose classical counterparts behave in a chaotic way, are
studied. For bound systems, standard signatures of quantum
chaos are the statistical properties of energy levels, which
can be described by a Poissonian model for regular sys-
tems and random matrix theory for chaotic systems [1].
For open systems, bound states no longer exist, but rather,
resonances exist. One possible signature of quantum chaos
for open systems is the appearance of Ericson fluctuations,
i.e., randomlike fluctuations in the scattering cross section.
Ericson fluctuations can occur in the so-called Ericson regime,
where consecutive resonances overlap strongly, a situation
that renders the assignment of features in the cross section
to individual resonances impossible.

Originally, it was assumed that strongly overlapping res-
onances level out causing a smooth cross section. However,
already half a century ago, several studies revealed that
nuclear cross sections with strongly overlapping resonances
can be anything but smooth exhibiting strong fluctuations.
In 1960, Ericson [2] had shown that spectra, composed
of a large number of overlapping individual resonances
with Lorentzian-like or Fano-like line shapes, lead, in fact,
to Lorentzian-like spectral features, the so-called Ericson
fluctuations. Specifically, Ericson had predicted that spectra,
consisting of these fluctuations, display an autocorrelation
function C(ε),

C(ε) = 1

�σ 2(E2 − E1)

×
∫ E2

E1

[σ (E + ε) − σ̄ ] [σ (E) − σ̄ ] dE, (1)

*Present address: Max-Planck-Institut für Kernphysik,
Saupfercheckweg 1, D-69117 Heidelberg, Germany.
†Present address: Institut für Experimentalphysik, Universität

Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany.

that is characterized by a Lorentzian shape around ε = 0
[2]. Here, σ̄ is the average cross section, �σ 2 = σ̄ 2 − σ̄ 2

is its variance in the energy interval E1 � E � E2, and
ε is the displacement. In addition, one can estimate the
average linewidth of the strongly overlapping resonances
that contribute to Ericson fluctuations from the width of
the Lorentzian shape around ε = 0, even though individual
resonances are not resolved.

In the meantime, it was realized that Ericson fluctuations
are a general fingerprint for quantum chaotic scattering rather
than being only a nuclear phenomenon [3]. The autocorrelation
function was commonly applied to analyze fluctuating spectra
not only in the context of nuclear reactions [4], but also in
atomic scattering [5]. More recently, Rydberg states of 85Rb
in crossed electric and magnetic fields were studied both
experimentally by Stania and Walther [6] and theoretically
by Madroñero and Buchleitner [7], with the aim of observing
Ericson fluctuations in an atomic system. Stania and Walther
used the autocorrelation function of the spectrum to prove the
presence of Ericson fluctuations on the basis of its Lorentzian
shape around ε = 0. Subsequently, Xu et al. [8] studied the
relevance of the autocorrelation function with regard to Ericson
fluctuations by the so-called s2 model for doubly excited
helium. The authors came to the conclusion that, in their
simplified model, the autocorrelation function was not capable
of distinguishing regular from irregular spectral regions in
doubly excited helium.

It is the aim of this paper, where we combine our extensive
experimental results for doubly excited helium up to the single-
ionization threshold (SIT) I13 with the results of calculations
using the complex-rotation method up to I16, to further clarify
the discrepancy between the conclusions in Refs. [6–8]. Our
main result is that both our experimental results, as well as the
theoretical results from the complex-rotation method, which
is much more adequate to describe the real three-dimensional
helium as compared to the s2 model, confirm the previous
conclusion of Xu et al. [8]. However, we came to a different
conclusion than Xu et al. for the threshold above which Ericson
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fluctuations are expected to occur, a fact that might be due to
the different models applied.

There are two prerequisites for Ericson fluctuations to
occur: (i) The Ericson regime, i.e., strongly overlapping
resonances with an average decay width �̄ that is much
larger than the average energy spacing between neighboring
resonances S̄. Introducing the Ericson parameter � = �̄/S̄,
the Ericson regime is defined by � = �̄/S̄ � 1. (ii) The
intensities of the various resonances have to be comparable.
This is actually expected from random matrix theory for a
chaotic system, where a typical matrix element displays a
relatively narrow Gaussian distribution. Alternatively, equal
intensities of all lines or—more generally—any distribution,
where very small and very large values of the intensity are rare,
will lead to Ericson fluctuations. We will call such distributions
quasiuniform. In contrast to this, in a regular or a mixed
regular-chaotic system, characterized by good or approximate
quantum numbers, various series of resonances with widely
varying intensities can exist that contribute to the cross
section. Such a hierarchy in the intensities of resonances—
corresponding to a broad distribution of intensities—is
not taken into account in the usual Ericson description,
a fact that has important consequences, as shown in the
following.

Since the classical counterpart of the helium atom, the
three-body Coulomb system, is well known to be nonintegrable
and mainly chaotic, high doubly excited states (actually
resonances) of helium close to the double-ionization threshold,
where they overlap strongly, are expected to display Ericson
fluctuations [3]. As shown by calculations of Grémaud and
Delande [9], the Ericson regime was already reached below
the SIT I9, i.e., when the average linewidth of the resonances
became larger than the average spacing. Statistical studies of
the nearest-neighbor spacings of the energy levels by Püttner
et al. [10] revealed a transition toward a distribution typical for
quantum chaos. Recently, however, for three-dimensional (3D)
helium, the same group proved that the transition to randomly
fluctuating energy positions was not completed before the SIT
I17 was reached [11,12].

In order to assign the doubly excited 1P o states of helium,
we introduce the labeling N,Kn [13,14]. In this labeling,
N (n) is the principal quantum number for the inner (outer)
electron, and K is the angular-correlation quantum number
that reflects angular correlations between the two electrons.
Recently, as pointed out in Refs. [11,12], although the
individual quantum numbers—with increasing energy—were
progressively less favorable quantum numbers, F = N − K

remained an approximate quantum number at least up to
the SIT I17. The existence of such a quantum number had
been proposed before on the basis of a group-theoretical
description by Herrick and Kellman [15] (these authors used
F = N − K − 1 instead of F = N − K), and, subsequently,
it was discussed by Rau for states on the Wannier ridge as a
quantum number of the electron pair [16]. Later on, Nicolaides
et al. confirmed this quantum number theoretically for low-n
states (n � N + 4) below SITs up to I25, however, without
considering autoionization [17].

Moreover, the photoionization cross section is such that
the intensities of the various resonances observe a strong
hierarchy, with F = 2 states being largely dominant [11,12].

The first prerequisite for Ericson fluctuations—average width
larger than the mean-level spacing, i.e., the Ericson regime—is
fulfilled; nevertheless, inside the dominant F = 2 series, the
mean-level spacing is much larger than the average width. This
essentially makes the cross section the sum of nonoverlapping
or weakly overlapping resonances of the F = 2 series, with
the consequence that it will not display Ericson fluctuations.
Very recently, analogous observations have been reported in
two theoretical studies of the photoionization cross section of
doubly excited triplet P states [18] and singlet P states [19]
in planar helium up to I20. In the latter case, the theoretical
predictions describe the experimental cross section even on
a quantitative level quite well, i.e., these two-dimensional
calculations are able to describe the essential features of the
full 3D problem.

Although Ericson fluctuations were absent in the photoion-
ization cross section of doubly excited He below I13, we
studied the autocorrelation function, with the result that its
behavior was quite similar to that observed experimentally
and theoretically for 85Rb [6,7] and similar to the results
of the previous theoretical study of He using the s2 model
[8]. Therefore, we have to conclude that the observation
of an autocorrelation function with a Lorentzian shape is
a necessary, but is not a sufficient prerequisite for Ericson
fluctuations to occur.

II. EXPERIMENTAL SETUP AND CALCULATIONS

The experiments were performed at the high-resolution
undulator beamline UE56-2/PGM2 of the Berliner Elektro-
nenspeicherring für Synchrotronstrahlung (BESSY II), with
a photon-energy resolution of � ∼= 1.7 meV [full width at
half maximum (FWHM)]. The spectra were measured with
an ionization cell, filled with ∼=1 mbar of He and operated
with an electric field of 100 V/cm between the two plates
in the ionization cell. A step width of 250 μeV was used,
and the absolute photon-energy scale was calibrated on the
basis of the theoretical results of this paper. It should be
noted that it is rather challenging to record spectra in this
energy region of doubly excited helium since the amplitudes
of the resonances amount to only 0.04–0.2% of the signal
background caused by direct photoionization. Small variations
in the gas pressure or insufficient normalization to the photon
flux can easily make the observation of these resonances
impossible.

The photoionization cross section of He was calculated
by diagonalization of the nonrelativistic Hamiltonian in a
perimetric basis set that was chosen in a way to correctly
reproduce the long-range behavior of the electronic wave
function as well as its behavior close to the nucleus [9]. Above
I1, only autoionizing resonances are found, but no bound states
are found. Close to the double-ionization threshold, the number
of open channels increases dramatically, and it is essential to
correctly calculate both the positions and widths of the various
resonances. Complex rotation renders it possible to obtain
these quantities accurately and to express the photoionization
cross section as a simple sum of Fano profiles of the various
resonances. In the region of overlapping resonances with
�̄ � S̄, the direct extraction of positions and widths is a
major advantage of the present approach as compared to other
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FIG. 1. Total photoionization cross section below the SIT I9:
(a) The experimental data are represented by the data points, with
the fit result represented by the solid curve through the data points.
In the lower part of the figure, the contributions of the principal F =
N − K = 2 and the secondary F = 4 Rydberg series are represented
by the dashed-dotted and dotted lines, respectively. (b) The results
of complex-rotation calculations are represented by the solid line.
The vertical-bar diagram in the upper part of the figure indicates
the energy positions of the resonances belonging to the Rydberg
series 9,7n.

methods [20], since it ensures that the photoionization spectra
as well as the properties of individual resonances are fully
converged.

III. PROOF OF ABSENCE OF ERICSON FLUCTUATIONS
AND AUTOCORRELATION FUNCTION

As stated above, in a combined experimental and theoretical
study up to the SIT I15, we proved that Ericson fluctuations
were absent [11,12]. First, we want to describe the data analysis
used in Ref. [11] to exclude Ericson fluctuations in more detail.
For reasons of simplicity, in the present paper, we will focus
on the energy region below the ionization threshold I9 as an
example.

To this end, the high-resolution photoionization spectrum
below the SIT I9 is presented in Fig. 1, together with the
results of complex-rotation calculations (upper solid line). To
simulate the experimental resolution, the theoretical data were
convoluted by a Gaussian function with a FWHM of 1.7 meV.
A comparison of the experimental and theoretical results shows
impressively good agreement for the entire region below I9.

In the fit procedure, the resonance positions, linewidths, and
Fano parameters q are fixed to the values obtained from the
calculation. The intensities represent the only free parameters,
with the result that the relative intensities obtained for most
of the resonances agree with the calculated ones within a
factor of 2. This data-analysis procedure was first applied
in Ref. [21], where minor discrepancies between experiment
and theory were discussed, with the conclusion that they
were not devaluating the theoretical results. The main goal
of the fit procedure was to deconvolute the spectrum and to
determine the lowest possible number of resonances that were
necessary for a reasonably good description. Such a fit can be
called a describing fit and is directly related to the question
whether Ericson fluctuations are present in this region of the

spectrum or not. In the energy interval between 78.16 and
78.28 eV, presented in Fig. 1, a total of 139 resonances can be
identified. However, from our fit represented by the solid line
through the data points, it becomes obvious that only about
15 resonances significantly contribute to the spectrum. Most
of these resonances can be assigned to the principal series
9,7n, with F = N − K = 2; these resonances are represented
by the dashed-dotted subspectrum, and their energy positions
are indicated by the vertical bars above the spectrum. A much
smaller fraction of resonances belongs to the secondary series
9,5n, with F = N − K = 4; they are represented by the dotted
subspectrum. The describing fits performed for the energy
regions below the SITs I10–I15 essentially show the same
behavior, clearly indicating that the spectra are still dominated
by only one nonoverlapping or weakly overlapping Rydberg
series, namely, the principal series with F = 2. Consequently,
Ericson fluctuations caused by a large number of overlapping
resonances are absent in the spectra up to the ionization
threshold I15. These results are in full accordance with the
theoretical description that predicts all other Rydberg series
intensities that are by one to several orders of magnitude
smaller than those of the principal series.

Although we have shown that Ericson fluctuations are
absent in the spectrum, in the following, we discuss its
autocorrelation function, since this function was used, e.g.,
by Stania and Walther [6] as the sole criterion for the existence
of Ericson fluctuations in the photoionization spectra of 85Rb
in crossed magnetic and electric fields. For comparison with
our helium results, a simulated spectrum that displays Ericson
fluctuations is shown in Fig. 2. It was generated by 1000
Fano resonances randomly distributed in an energy region of
200 meV, with an average width of �̄ = 5 meV, corresponding
to an Ericson parameter of � ∼= 25. In detail, � varies
randomly between 0 and 10 meV, the Fano parameter q varies
randomly between −1 and 1, and the intensity varies randomly
between 0 and a maximum value, i.e., we used a uniform
distribution of all of these parameters. For a better comparison
with the total photoionization cross section given in Fig. 1,
the spectrum was convoluted with a Gaussian function of
σFWHM = 1.5 meV (FWHM). Note that the simulated spec-
trum in Fig. 2 exhibits spectral features similar to those of

FIG. 2. Simulated spectrum with Ericson fluctuations character-
ized by �̄ = 5 meV and � = �̄/S̄ ∼= 25. The spectrum is convoluted
with a Gaussian function of 1.5 meV (FWHM) and is plotted as a
function of relative excitation energies. The energy positions of the
1000 individual resonances (see text) are indicated by black vertical
narrow bars in the upper part of the spectrum that overlap strongly;
the resulting white bars define regions without resonances.
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FIG. 3. (Color online) Total cross section of doubly excited He
between 78.3 and 78.71 eV: experimental data (upper black curve)
and results of complex-rotation calculations (lower orange curve).
The photoionization yield is given in units of the single ionization
background (sb), and the vertical bars indicate the positions of the
SITs from I9 to I13.

the spectrum of doubly excited helium given in Fig. 1. In
both spectra, the Fano line shapes of the individual resonances
cannot be recognized.

The autocorrelation functions defined by Eq. (1) of the
simulated spectrum, shown in Fig. 2, and of the spectra of
helium below the ionization thresholds I9–I13, shown in Figs. 1
and 3, are presented in Fig. 4. Since all spectra are broadened
by the experimental resolution, we want to point out that a
convolution of the cross section with a Gaussian function of
the width σexpt leads to a convolution of the corresponding
autocorrelation function with a Gaussian function of the
width σautocor = σexpt

√
2, see the Appendix. This leads in

the present case of σexpt = 1.7 meV to σautocor = 2.4 meV.
For small displacements ε, the best agreement between
the autocorrelation functions and the convoluted Lorentzian
functions that is represented by the dashed lines in Fig. 4 was
obtained using σautocor = 2.1 meV, which is in good agreement
with the expected value. For small values of ε, the Lorentzian
functions obviously agree very well with the autocorrelation
functions, i.e., they fulfill the prediction expected for the
presence of Ericson fluctuations. However, the photoionization
cross section of helium, where Ericson fluctuations are absent,
shows the same behavior as the simulated spectrum, where
Ericson fluctuations are present! For larger displacements ε,
oscillations around zero are observed. The average widths of
∼=2.3 and ∼=5 meV for the resonances in the spectra in Figs. 1
and 2, respectively, are in good agreement with the values
of ∼=3 and ∼=4 meV obtained from the Lorentzian fits. The
observed features of the autocorrelation functions are quite
similar to those of Stania and Walther [6], of Madroñero and
Buchleitner [7], and of Xu et al. [8].

Interestingly, the autocorrelation function of the spectrum
below I9 starts to deviate strongly from a Lorentzian shape
already at ε ∼= �fit, while the autocorrelation function of the
simulated spectrum with Ericson fluctuations exhibit such
strong deviations only above ε ∼= 3�fit. To see if there was
any systematics in this observation, we also analyzed the
autocorrelation functions of the photoionization cross sections
below the ionization thresholds I10–I13 that were shown in
Figs. 3(c)–3(f). For a better comparison, all these functions
are plotted for displacements up to 15�av, with �av = �fit

for the autocorrelation functions of the simulated spectrum
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FIG. 4. Autocorrelation functions (a) of the simulated spectrum
given in Fig. 2 and (b)–(f) of the total ionization cross sections of
doubly excited helium below I9–I13. The displacements are given in
meV (bottom abscissa of each panel) and in units of �av (top abscissa)
up to ε = 15�av; for �av, see text. The dashed lines in (a) and (b)
represent the fit results of Lorentzian functions to the autocorrelation
functions and those in (c)–(e) show simulated Lorentzian functions
using the average values of the theoretical linewidths �̄th as widths
below the corresponding ionization threshold; all Lorentzians were
convoluted to simulate the experimental resolution (for details, see
text). The dotted horizontal lines mark zero.

and of the photoionization cross section below I9. Below all
higher ionization thresholds, the average widths are smaller
than σautocor so that no reliable fit value could be obtained from
the autocorrelation function. We, therefore, used the average
value of the calculated lifetime widths of the resonances below
a given threshold �̄th as widths to simulate the Lorentzian
function for comparison. These functions were convoluted
with a Gaussian of the width σautocor = 2.1 meV (see the
Appendix) and are displayed in Figs. 4(c)–4(f) as dashed lines;
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it is obvious that—for small displacements ε < �av—there is
good agreement between the convoluted Lorentzians and the
corresponding autocorrelation functions.

For displacements ε larger than �av, a different behavior
of the various autocorrelation functions is observed. The
autocorrelation functions obtained below I9, I11, and I13

exhibited significant deviations from a Lorentzian shape
already at ε ∼= �av, while the one below I10—and, in par-
ticular, the one below I12—followed a Lorentzian shape quite
well up to ε ∼= 2�av and 3�av, respectively. We, therefore,
conclude that there is no systematics in the behavior of the
autocorrelation function for displacements between �av and
3�av. In contrast to this, there is a continuous transition in the
nearest-neighbor spacing distribution from regular to chaotic
between I9 and I17 [11]. In addition, our calculations show
that the Ericson parameter � increases with the ionization
threshold. From these considerations, we conclude that the
shape of the autocorrelation function for ε � �av does not
provide information on the degree of chaos inherent in the
system. Instead, it depends on the details of the cross section.

We also checked the influence of the finite resolution used
to convolute the helium spectra on our observations with the
result that there is no effect as long as it is smaller than
the average width in agreement with Ref. [8]. These results
clearly demonstrate that the occurrence of Ericson fluctuations
in a spectrum can be identified neither by the shape of the
spectral variations nor by the autocorrelation function alone.
Therefore, it is essential to independently ensure that the
intensities are quasiuniformly distributed, since only in this
case, will a large number of overlapping resonances contribute
to the observed cross section. This, however, can hardly be
done by experimental studies alone; instead, complementary
calculations are required. In addition, we proved that the
average width of the resonances contributing to the spectra
can be obtained by fitting a Lorentzian to the autocorrelation
function in the region of small displacements ε; however,
this was once again independent of the presence of Ericson
fluctuations.

IV. SUMMARY AND CONCLUSION

To summarize, the total photoionization cross section of
doubly excited helium was studied experimentally up to the
SIT I13 of the He+ ion and theoretically up to I16. Based
on the excellent agreement of the experimental data with
the results of complex-rotation calculations, a describing fit
was performed. As shown for the spectrum below I9, as
an example, the fit analysis revealed that the spectra were
dominated by the principal Rydberg series, implying that the
intensities of the various resonances were far from uniformly
distributed. Consequently, Ericson fluctuations generated by
strongly overlapping resonances were absent, although the
Ericson regime with � = �̄/S̄ � 1 had been reached. Never-
theless, the autocorrelation function of the spectrum displays
a Lorentzian form for small displacements. Therefore, we
have to conclude that a Lorentzian form of the autocorrelation
function for small displacements, although it can help in the
analysis of spectral properties, such as average linewidths, is a
necessary but is not a sufficient prerequisite for the existence
of Ericson fluctuations—contrary to a widespread assumption.

Additionally, for a clear proof of Ericson fluctuations, one
has to show that the intensities of the overlapping resonances
are comparable. The present case of helium shows that this
omission may lead to the wrong conclusions about the presence
of Ericson fluctuations in a spectrum if there is a strong
hierarchy in the intensities of the various resonance series. In
some sense, a Lorentzian autocorrelation function is nothing
else but a rough indication that there is no simple structure in
the spectrum, i.e., it is a consequence of the level repulsion
leading to a Wigner distribution as well as of fluctuations in
the Fano parameter q and the intensities within the dominant
F = 2 series [12,21].

An interesting and partly unsolved question concerns the
specific excitation energy above which true Ericson fluctua-
tions in the double-excitation cross section of He occur. This
requires strongly overlapping resonances within the dominant
F = 2 series, i.e., at significantly higher N values than
experimentally studied up to now. On the other hand, Xu et al.
claimed that the transition to Ericson fluctuations occurred
above I16 [8]. In contrast, calculations for the one-dimensional
helium atom—where a single Rydberg series converges to
each SIT—suggest that this does not happen below N ∼= 34
[22]. In this context, recent studies by Eigelsperger and
Madroñero [18,19] found, for doubly excited P states in planar
helium, that the intensity ratio between the principal series
and the first secondary series decreased when approaching the
double-ionization threshold. If this would also hold for real 3D
helium, Ericson fluctuations might already occur for N values
considerably smaller than N ∼= 34, but not below N = 20 [19].
However, for a definite conclusion, further experimental results
and numerical simulations at higher energies are needed.
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APPENDIX: EFFECT OF FINITE RESOLUTION

Here, we show that the finite resolution of the spectra (either
experimental or calculated) has a well-controlled effect on the
analysis, namely, a simple smoothing of the autocorrelation
function C(ε), Eq. (1). With a subscript “f,” let us denote the
fluctuating part of the cross section,

σf(E) = σ (E) − σ̄ . (A1)

Then, the autocorrelation function C(ε), Eq. (1), simply writes
as

C(ε) = 1

�σ 2(E2 − E1)

∫ E2

E1

σf(E + ε)σf(E) dE. (A2)

Let us now consider a finite-resolution cross section, modeled
by the convolution of the cross section with a smoothing
function, for example, a Gaussian with variance γ ,


(E) =
∫ +∞

∞
σ (E − x)f (x) dx, (A3)
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JIANG, PÜTTNER, DELANDE, MARTINS, AND KAINDL PHYSICAL REVIEW A 84, 023402 (2011)

with

f (x) = 1√
2πγ

exp

(
− x2

2γ 2

)
. (A4)

Provided the width of this Gaussian is much smaller than the
energy interval E2 − E1 (which is assumed in the following),
the finite-resolution cross section has the same average than
the raw one, and the finite-resolution autocorrelation function
can be written as

C(ε) = 1

�σ 2(E2 − E1)

∫ E2

E1


f(E + ε) 
f(E) dE, (A5)

with 
f(E) = 
(E) − σ̄ . Note that this finite-resolution auto-
correlation is not properly normalized here because we use the
variance �σ of the raw cross section in the denominator, which
is larger than the variance of the finite-resolution cross section.
This is unimportant as all results displayed in the figures are
a posteriori normalized. Inserting Eq. (A3) in Eq. (A5), one
obtains

C(ε) = 1

�σ 2(E2 − E1)

∫
σf(E + ε − x) σf(E − y)

× f (x)f (y)dx dy dE. (A6)

The following change of variables:

u = E − y, (A7)

v = −x + y + ε, (A8)

w = x + y

2
(A9)

leads to the triple integral,

C(ε) = 1

�σ 2(E2 − E1)

∫
σf (u)σf(u + v)f

(
w + ε − v

2

)

× f

(
w − ε − v

2

)
du dv dw. (A10)

The integral over w is a Gaussian integral easily performed,
while the integral over u simply reduces to the raw autocorre-
lation function C(v), finally giving

C(ε) =
∫ +∞

∞

1√
4πγ

C(v) exp

(
− (v − ε)2

4γ 2

)
dv. (A11)

This proves that the autocorrelation function for finite-
experimental resolution γ is simply obtained from the raw
one by a convolution with a Gaussian of variance

√
2γ.

Note that a similar property is valid if the smoothing is not
a Gaussian function: The only difference is that the smoothing
function is then related to the autocorrelation of the function
f itself and, in general, is not a Gaussian function.
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A. Richter, and W. von Witsch, Phys. Lett. 9, 48 (1964).
[5] J. Main and G. Wunner, Phys. Rev. Lett. 69, 586 (1992).
[6] G. Stania and H. Walther, Phys. Rev. Lett. 95, 194101 (2005).
[7] J. Madroñero and A. Buchleitner, Phys. Rev. Lett. 95, 263601

(2005).
[8] J. Xu, A.-T. Le, T. Morishita, and C. D. Lin, Phys. Rev. A 78,

012701 (2008).
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(2010).
[20] A.-T. Le, T. Morishita, X.-M. Tong, and C. D. Lin, Phys. Rev.

A 72, 032511 (2005).
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