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We report calculations of differential and integral cross sections for positron scattering by noble gas and
alkaline-earth atoms within the same methodology. The scattering potentials are constructed by scaling adiabatic
potentials so that their minima coincide with the covalent radii of the target atoms. Elastic differential and integral
cross sections are calculated for Ne, Ar, Be, and Mg, and the results are very close to experimental and best
theoretical data. Particularly, elastic differential cross sections for Be and Mg at low energies are reported.
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I. INTRODUCTION

Positron scattering by atoms has been subject to intensive
experimental and theoretical research in recent years. Despite
these efforts, theory in this field still fails in giving a proper
account to low-energy elastic cross section measurements [1].
Remarkably, diverging results have been presented even for
the simplest problems, such as the total elastic cross section
(TECS) from helium target.

The detailed interaction of a positron with electrons and
nuclei is quite complicated, so it becomes extremely attractive
to search for methodologies in which the scattering dynamics
can be described through a preferably ab initio positron-target
local potential (depending only on the positron coordinates).
This fact gives theorists in the field a double challenge: to
produce potentials simple enough to be useful but, at the same
time, able to describe an involving interaction. To the best of
our knowledge, two such approaches appeared in the literature:
One is the model potentials for rare gas targets from Gianturco
et al. [2] in which the repulsive part is obtained exactly at the
Hartree-Fock level and the attractive polarization and correla-
tion parts come from approximate density functional theory.
The other is from Bromley et al. [3], applied to Be and Mg
targets, in which free parameters of the potentials are adjusted
to reproduce calculated positron binding energies for e+Be and
e+Mg, as in Fig. 1 complexes. Despite the important progress
reported by both approaches, they are clearly limited to partic-
ular targets or to cases in which positron binding is predicted.

We have already reported on the generation of adiabatic
potentials in which the positron is treated on a common footing
with the nuclei, which were applied to different processes
involving a positron, such as binding energies, annihilation
rates, and molecular properties relaxation [4–6]. They are
expected to display the correct repulsive behavior as well
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as the polarization effects and they generate TECSs that
show a proper qualitative dependence with incident energy.
Nevertheless, the total TECSs appear too large, probably due
to the lack of positron-electron correlation on a nonadiabatic
level. In this paper we develop these potentials further by
introducing an empirical nonadiabatic scaling that accounts for
further positron-electron correlation. Applications are made to
Ne, Ar, Be, and Mg targets.

A few theoretical applications are found for Be and Mg
among which we can mention the distorted-wave polarized
orbital method from Szmytskovisk [7], the already cited
calculations from Bromley et al. [3], the low-energy many-
body perturbation theory application by Gribakin et al. [8],
and the orbital polarized method by Drachman et al. [9]
and by Campeanu et al. [10], only for Mg. Measurements
have been made by Stein et al. [11] with incident energies
above 2 eV. As for noble gases we detected the measurements
by Stein et al. (for Ne) [12], Charlton et al. [13], Coleman
et al. [14], Kauppila et al. [15]; Kauppila et al. [16] (for Ar)
(showing the Ramsauer minimum), Coleman et al. [17] and
Kauppila et al. [18]. Theoretical works were from McEachran
et al. (for Ne) [19], McEachran et al. (Ar) [20], based on
the polarized orbital approximation; McEachran and Stauffer
(Ar) based on an optical potential including absorption [21];
Nakanishi and Schrader (Ne and Ar) [22,23] with polarized
orbital approximation plus an effective radius for the target;
the already cited work by Gianturco et al. [2] and theeikonal
Born series method by Byron et al. (Ne) [24]. Finally, a recent
experimental and theoretical paper has been published by
Jones et al. on Ne and Ar [25].

II. CONSTRUCTION OF ADIABATIC POTENTIALS
AND THE SCATTERING DYNAMICS

The first step in the construction of potentials for positron
interaction with an n electron atom is to consider the positron
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FIG. 1. Potential energy curves for all systems: · · · nonscaled PEC (λ = 1.0) for ground state and low-lying excited PECs; scaled ground
state PEC for (a) − − −−, λ = 1.10 and —— λ = 1.06, (b) − − −−, λ = 1.16 and —— λ = 1.08, (c) − − −−, λ = 1.23, and (d) − − −−,
λ = 1.08.

on the same footing of the nucleus (both represented gener-
ically by A) and to take advance of a previously introduced
electronic Hamiltonian (in atomic units, a.u.) [26] given by

Hel =
2∑
A

(
−

n∑
i

PA

∇2
i

2MA

PA

)
−

n∑
i

∇2
i

2
+ V. (1)

Here MA represents the mass of the standard and the exotic
nucleus (e+), PA = |φA〉〈φA| projects a generic electronic
wave function on the space of the atomic-like wave functions
φA, centered on A, and V stands for the Coulombic attraction
and repulsion terms. The last two terms in Eq. (1) correspond
the common Born-Oppenheimer Hamiltonian. The first term
stands for adiabatic corrections of atomic character, since
the projections impose its crossing atomic (B �= A) matrix
elements to vanish. This correction is equivalent of changing
the masses of all electrons [27] in order to keep the center-of-

TABLE I. Scaling data for each system [all defined in text, see
particularly Eq. (6)]. Distances are in a.u.

Ne Ar Be Mg

Rm 2.00 2.55 2.30 3.03
Rcov 1.81a 2.19b 1.87b 2.79b

λcov 1.10 1.16 1.23 1.08
λopt 1.06 1.08 – –
Ropt 1.90 2.35 – –

aReference [34].
bReference [35].

mass of the whole system at rest. Particularly when A = e+,

the correction energy term becomes −〈φi
e+

∑n
i

∇2
i

2Me+
φi

e+〉, that

is, the i electron occupying an orbital φi
e+ centered on e+ is

given the appropriate reduced mass, a huge correction since
Me+ is the same as the electron mass.

In the adiabatic approximation, we consider that the relative
nucleus-positron motion can be separated from the electronic
motion. The full Hamiltonian is taken as having the form H =
TA + Hel, where the first term stands for the kinetic energy of
the nucleus and the positron. The total wave function is then

�(R,�r) = χA(R)φel(�r; R), (2)

in which R represents the nuclei-positron distance, χA is the
unknown scattering (or eventually bound state) wave function,
and R means parametric dependence on R. The electronic
function φel(�r; R), in which �r represents all electrons is
obtained by the minimization of the functional

Eel(R) = 〈φel|Hel|φel〉
〈φel|φel〉 . (3)

Finally, the potential energy curve (PEC) is obtained as

U (R) ≡ Eel(R) + VA, (4)

in which VA represents the nucleus-positron repulsion.
Standard approximations involve the construction of the

positron-target potential by partitioning it in a static part,
containing all Coulombic interactions, and a correlation-
polarization potential, describing electron-positron corre-
lations, that is, V (R) = Vest(R)+ Vcorr,pol(R). The static
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FIG. 2. Differential cross section for positron scattering from neon at some energies. Theoretical curves: present work − − −− (λ = 1.10)
and —— (λ = 1.06); − · · − · · − from [19]; − · − · − from [22]; and − − · − − · −− from [24]. Experimental data: • • • from [15]. All data
taken from [15].

potential is constructed by bracketing the Coulombic terms
with the electronic ground state target wave function. For
the correlation-polarization potential two main approaches
have been tried, namely the multichannel methods, involving
excited target wave functions [21], and the use of empirical
potentials Vcorr,pol(R) [2,3]. In the present approach the basis
wave functions refer to the whole system, so that an ab
initio adiabatic potential U (R) is straightforwardly yielded
as explained above. On the other hand, to take advantage of
standard computational codes based on the cited partition,
in which Vest(R) is generated automatically by the codes,
we just define our effective correlation-polarization potential
as Vcorr,pol(R) = U (R) − Vest(R) and add it a posteriori to
Vest(R).

The scattering wave function χ (R) is then expanded in
partial waves ul(R), as usual, to get the radial equation (a.u.)

[
d2

dR2
+ k2 − 2V (R) − l(l + 1)

R2

]
ul(R) = 0 (5)

(k = √
2E, E being the energy of the incident positron).

Since the problem has already spherical symmetry, the
identification χA(R) ≡ ul(R) for each value of the angular
momentum quantum number l holds. To obtain the differential
elastic cross sections (DECSs) and TECSs, we consider just
the ground state PEC and Eq. (5) is solved by the R-matrix
method [28] within the pseudostate algorithm of Walters et al.
[29,30]. The partial waves are obtained for l up to 25.

A. Scaling the potentials

The crude adiabatic potentials described above account for
the scattering physics, namely, the TECS has a qualitative
correct dependence on the incident energy, but at too high
values. The apparently obvious reason for this misbehavior is
the lack of nonadiabatic positron-electron correlation in the
adiabatic PEC. This hypothesis is supported by the fact that
this wrong raising of the TECS is observed as being somehow
proportional to the number of electrons of the target. The ab
initio inclusion of nonadiabatic effects should involve excited
PECs or a previously obtained effective mass for the projectile
[31], formidable tasks capable of compromising the simple
model of positron scattering in a single potential. Instead,
we resort here to an empirical scaling of V (R) that improve
nonadiabatic positron-electron correlation, namely,

Vesc(R) ≡ V (λR), λcov = Rm

Rcov
. (6)

Here Rm corresponds to the minimum distance in the
PEC and Rcov is the so called covalent radius, roughly half
of the bond distance of the molecule formed by two target
atoms.

The major effects of such scaling are moving Rm to effective
lower values (λ > 1), and improving the attractive part of the
PECs (see Fig. 1).

The introduction of an effective reduced radius for the
target can be traced back to the works of Nakanishi et al.
[22,23], based on a model polarization potential, aimed at
reproducing established reference values for scattering lengths
and binding energies for both positron and electron projectiles.
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FIG. 3. Differential cross section for positron scattering from argon at some energies. Theoretical curves: present work − − −− (λ = 1.16)
and —— (λ = 1.08); − · − · − (without absorption) and − · · − · · − (with absorption) from [21];− − · − − · −− from [2]. Experimental
data: • • • from [18]; ��� from [17].

In the present application the positron, a light nucleus, is able
to modify the size of the target by attracting its electronic
cloud [5,32,33] while extruding the positive nuclei, so the main
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FIG. 4. Total elastic cross section for positron scattering from
neon. Theoretical curves: present work · · ·· (λ = 1.00), − − −−
(λ = 1.10) and —— (λopt = 1.06); − · · − · · − from [19]; − · − · −
from [23]. Experimental data: • • • from [12]; ��� from [13]; ���
from [14]; ��� from [25].

region of interaction needs to be larger than the usual atomic
radius (in agreement with [22,23]). Without scaling (λ = 1),
the minimum of the PEC is outlying to the target atomic radius,
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FIG. 5. Total elastic cross section for positron scattering from
argon. Theoretical curves: present work · · ·· (λ = 1.00), − − −−
(λ = 1.16) and —— (λopt = 1.08); − · · − · · − from [20]; − · − · −
from [23]. Experimental data: • • • from [12]; ��� from [25].
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FIG. 6. Total elastic cross section for positron scattering by
beryllium: —— present work for scaled PEC (λ = 1.23); − · − · −
from [7]; - - - - from [3] and magnesium: —— present work for
scaled PEC (λ = 1.08); − · − · − from [7]; − · · − · · − from [8]; -
- - - from [3]; · · · from [10]; and • • • experimental data from [12].
The inset compares the present results with experimental data [12] in
detail.

which results in a repulsive range larger than the actual one and
responsible for the increased TECSs. In most cases we found

it appropriate to scale the PEC so that its minimum coincides
with the covalent radius [34]. With this choice, the short-range
nonadiabatic correlation effects are accounted for.

We restrict ourselves to low-energy elastic positron scatter-
ing, so only the ground state PECs need to be scaled (as shown
in Fig. 1. Table I supplies all data used in the scaling procedure.
For all systems considered here, the new minima decrease by
about 10% –20%, but the covalent radii keep still larger than
the atomic radii: 60% larger for Ne, 38% for Ar, 11% for Be,
and 2% for Mg. For comparison, Nakanishi’s effective radius
for Ne is 45% above the atomic radius.

In the applications we also discuss the possibility of an
optimal (though somewhat arbitrary) choice of λ (= λopt) to
achieve a fit to some set of experimental results. Table I also
shows the corresponding [in the sense of Eq. (6)] values for
the optimal distances Ropt.

III. RESULTS

A. Positron scattering from neon and argon

Figure 2 displays our results for DECSs of a low-energy
positron elastically scattered from neon at 13.6, 20, 50,
and 200 eV and compares them with previous calculations
and measurements. Our results compare well with all data,
especially at low incident energy. Particularly for 13.6 eV we
were able to reproduce the single minimum around 20◦, which
might be expected in positron scattering from noble gases [2].

In Fig. 3 we show the DECSs of a low-energy positron
scattering by the argon target from 2.2 to 8.7 eV and also at
intermediate energies 15, 20, 50, and 300 eV, and compare
them with recent theoretical calculations fromRef. [21] and
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FIG. 7. Differential cross section for positron scattering by Mg at some energies: —— present work for scaled PEC (λ = 1.08) and - - - -
from [37].
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experimental data by [18] and [17]. McEachran’s results [21]
are normalized at 90◦ to Kauppila’s measurements [18] for
each energy. As expected, a single minimum is observed
around 90◦ at 2.2 eV, which moves to smaller angles as the
positron incident energy increase. This feature is also reported
by McEachran et al. [21] within their optical model. There
are agreement between our results and the experimental and
theoretical results for small energies, except for the appearance
of minima for 20 and 50 eV, which is likely to be accounted for
only with the inclusion of an absorption term in the interaction
Hamiltonian [21].

Figures 4 and 5 show the TECSs for positron elastic
scattering from Ne and Ar, respectively, up to the positronium
(Ps) formation threshold. The unscaled (λ = 1) result is
shown for illustration purpose, while the λopt result present
a slight improvement over the λcov result. Measurements
from Stein et al. [12] reported a deep Ramsauer-Townsend
minimum of 0.1 × 10−16 cm2 for the Ne target, around 0.6 eV.
McEachran’s [19] minimum lies at 0.85 eV while Nakanishi’s
[23] minimum lies in the vicinity of 1.23 eV. Our minimum
lies at 0.8 eV, 25% above the experimental result, and amounts
0.0867 × 10−16 cm2, only 13% smaller than experiment and
6% better than the best theoretical result so far [19]. From
5 eV up to the Ps formation threshold our results agree almost
exactly with McEachran’s and are closer to experiments than
Nakanishi’s.

For the Ar target, our λcov calculations provide the shallow
minimum around 2 eV that is observed in the experimental
data from Stein et al. [12,16] but is not obtained in any
other calculation except that from Gianturco et al. [2] which,
however, locates it quite apart from that observed. On the
other hand, the cross sections for λcov, though qualitatively
good, depart about 33% below from experiment for energies

larger than 1 eV. In this case it becomes clear that the
covalent radius is not the better choice to fix λ. The λopt

procedure greatly improves the experimental agreement but,
unfortunately, makes the minimum vanish. It appears that a
more sophisticated scaling procedure should be considered to
account for both features.

B. Positron scattering from beryllium and magnesium

Figure 6 shows the TECSs for positron scattering from
Be and Mg, compared to previous results. In the Be case,
unfortunately, no experimental data for comparison were
found, but our results are very close to the previous two
calculations from Refs. [3] and [7], diverging significantly
from Bromley’s just for very small energies. On the other
hand, the present results for positron scattering from Mg at
energies higher than 2 eV represent nearly full agreement to
experimental data [11] so far, as illustrated in the inset. For
energies lower than 2 eV we are in agreement with other
theoretical approaches, except Szmytkowski’s, in obtaining a
peak of the TECS. We found this peak around 0.3 eV (below
the first inelastic threshold of 0.84 eV). It could be connected
to the recent proposal by Mitroy et al. [36] of a prominent
p-wave shape resonance in the TECS at 0.096 eV.

In Fig. 7 we show the DECSs for positron scattering from
Mg at low incident energies. To the best of our knowledge,
there is no theoretical or experimental data to compare besides
the single calculation by Khare et al. [37] at 50 eV. For
all energies our results present a minimum that moves to
smaller angles as the energy increases but, however, differs
from Khare’s in its position for the 50 eV case. Elsewhere the
agreement of the DECSs is considerable.

The DECSs for positron scattering by the Be target is
depicted in Fig. 8, having a similar behavior to the Mg case. No
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FIG. 8. Differential cross section for positron scattering by Be at some energies for scaled PEC (λ = 1.23).
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other calculations or measurements were found to be compared
with our results.

IV. DISCUSSION

Regularly the present potentials seem to behave better
than other theoretical approaches for small positron incident
energies, where it reproduce details of the DECSs and TECSs
not present in most other calculations. Particularly the present
calculations of DECSs for the Ar target at 2.2 and 3.4 eV (see
Fig. 3) are the only ones at these energies and their agreement
with experiments is remarkable. This feature can be connected
to an almost exact long- and medium-range behavior of the
potentials, where they are able to describe properly the two
main components of the wave function, namely the Ps cluster
polarized by the ionized atom or the bare positron polarizing
the neutral atom. The agreement with the “polarization range”
of the PEC is also illustrated by the fact that we do not have to
add the empirical α/R−4 term (where α is the isotropic atomic
polarizability) which is present in almost all other calculations.

It should be noted that, though being a clear correlation
effect, virtual Ps formation (that is, a component of the wave
function) is contained already in the adiabatic potentials.

As for the scaling procedure, that becomes necessary to
adjust DECSs and TECSs as long as the number of electrons
becomes larger than a few, we have shown that the scaling
factor λ can be fixed by an ad hoc criterion, so to access the
predictive capacity of the method, or by fitting it to agree better
with experiments, in order to yield useful potentials to further
calculations. It is important to observe that noble gases and
alkaline-earth-metal atoms are reasonably different elements
concerning chemical and physical properties, and the open
possibility of treating them within a common methodology
might be seen as progress. On the other hand, the direct
proportionality of the TECSs with the number of electrons,
assumed for the scaling based on atomic or covalent radii,
seems to be still a little crude and behind the failure in
predicting the Ramsauer minimum of the TECS of Ar. It seems
that a more involving model that considers the details of the
atomic electronic structure can further improve the present
approximation.
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