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Theoretical investigation of charge transfer between N6+ and atomic hydrogen
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Charge transfer due to collisions of ground-state N6+(1s 2S) with atomic hydrogen has been investigated
theoretically using the quantum-mechanical molecular-orbital close-coupling (QMOCC) method, in which the
adiabatic potentials and nonadiabatic couplings were obtained using the multireference single- and double-
excitation configuration-interaction (MRDCI) approach. Total, n-, l-, and S-resolved cross sections have been
obtained for energies between 10 meV/u and 10 keV/u. The QMOCC results were compared to available
experimental and theoretical data as well as to merged-beams measurements and atomic-orbital close-coupling
and classical trajectory Monte Carlo calculations. The accuracy of the QMOCC charge-transfer cross sections
was found to be sensitive to the accuracy of the adiabatic potentials and couplings. Consequently, we developed
a method to optimize the atomic basis sets used in the MRDCI calculations for highly charged ions. Since
cross sections, especially those that are state selective, are necessary input for x-ray emission simulation of
heliospheric and Martian exospheric spectra arising from solar wind ion–neutral gas collisions, a recommended
set of state-selective cross sections, based on our evaluation of the calculations and measurements, is provided.
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I. INTRODUCTION

Stemming from use of new space-borne x-ray observatories
and the theoretical and experimental work they have motivated,
there has been significant progress in x-ray astrophysics over
the last decade [1,2], and references therein. For example, the
charge-transfer process has been found to play a significant
role in the production of the x-rays and extreme ultravio-
let (EUV) photons observed from cometary and planetary
atmospheres and from the heliosphere [3–5]. This component
of the x-ray and EUV emission is due to radiative decay of
highly excited ions, formed in the charge-transfer process
between heavy solar wind (SW) ions and neutral species in
cometary and planetary atmospheres and penetrating the solar
system from the local interstellar medium. With the large
improvement in photon gathering power of these observatories
and the resolution of the detectors that they possess, x-ray
observations have been obtained with enhanced spatial and
spectral resolution. To explain these spectra, charge-transfer
cross sections are required to model the populations of the
excited bound states of the ions, which decay radiatively
into lower bound states. Despite the significant progress
made in both experiment and theory in recent years, the
presently available charge-transfer cross sections and rate
coefficients are insufficient to meet the needs for x-ray spec-
tral simulations, especially in regard to state-selective cross
sections [5].

Charge transfer involving one electron, the single-electron-
capture (SEC) process, for N6+ colliding with atomic hydrogen
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is investigated in the present work, because N6+ is one of
the primary SW minor heavy ions and atomic hydrogen is
an abundant neutral species in planetary atmospheres and in
the heliosphere. Several groups have reported studies of this
collision system. Panov et al. [6] measured the total cross
section, using a hydrogen-oven gas-cell technique, for a few
incident ion energies larger than a few hundred eV/u; likewise
Meyer et al. [7] measured the total cross section over the
energy range 214 eV/u to 7.5 keV/u, and, using a translational
energy spectroscopy technique with a RF hydrogen target,
Kearns et al. [8] measured the energy-change spectrum at
943 eV/u. Panov et al. [6] and Kearns et al. [8] estimated the
charge-transfer cross sections using the Landau-Zener model,
while Olson and Salop [9] performed classical trajectory
Monte Carlo (CTMC) calculations for a few incident energies
larger than 20 keV/u. All these investigations were limited
to energies larger than a few hundred eV/u and, to the best
our of knowledge, no theoretical results based on an ab initio
quantum mechanical approach have been reported.

Therefore, in the present work, the quantum-mechanical
molecular-orbital close-coupling (QMOCC) method [10,11]
has been applied to treat SEC, including total and state-
selective cross sections, in which the adopted adiabatic
potentials and nonadiabatic couplings were obtained with
the multireference single- and double-excitation configuration
interaction (MRDCI) approach [12,13]. In order to provide
a demonstrably accurate result, we have developed an opti-
mization method for the atomic basis sets used in the MRDCI
calculation for highly charged ions. The QMOCC results were
compared to available experimental and theoretical data as
well as to merged-beams measurements and atomic-orbital
close-coupling (AOCC) and CTMC calculations reported here.
It should be noted that the collision energy is given in units of
eV/u, the center-of-mass energy per reduced mass, which is
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identical to the incident ion energy per ion mass. Otherwise,
atomic units (a.u.) are used throughout unless noted.

II. THEORETICAL METHODS

In the present work, the QMOCC, AOCC, and CTMC
methods are utilized to calculate total and state-selective cross
sections.

A. QMOCC method

1. Electronic structure calculation

In the collision of N6+ with atomic hydrogen resulting in
SEC, an election is transferred from the hydrogen atom to
the nitrogen ion in a state with principal quantum number n

most likely equal to 4 or 5. Because the electron originally
bound in N6+ remains in the tightly bound 1s shell, the cap-
tured electron’s state is essentially hydrogenlike in character.
However, the typical basis set adopted in molecular-orbital
close-coupling calculations in such cases is the standard set
developed for the neutral N atom with the addition of diffuse
orbitals. This is clearly an insufficient treatment. Therefore
we have developed a hybrid basis set consisting of two
components: (i) the standard Dunning neutral N atom basis
and (ii) a one-electron basis of hydrogenlike orbitals. The
latter basis was optimized to reproduce nearly exactly the
hydrogenlike Rydberg ion energies.

Considering N5+ as a hydrogenlike ion with effec-
tive nuclear charge Z∗ = 6, a large Gaussian basis set
(17s,11p,9d,6f ,3g) has been optimized and used for nitrogen.
A (6s,3p,2d,1f ) basis contracted to [4s,3p,2d,1f ] was
employed for hydrogen [14]. In the present work, an ab initio
multireference single- and double-excitation configuration-
interaction (CI) calculation [12,13] has been carried out to
compute the adiabatic potentials and nonadiabatic coupling
matrix elements of the [NH]6+ system. Sixteen 1�+ and fifteen
3�+ electronic states in A1 symmetry and ten 1� and ten 3�

electronic states in B1 symmetry have been calculated. Using
the optimized Gaussian basis, a full CI calculation was applied
for internuclear distances between 1.0 and 50 a.u. Accurate
relative asymptotic energies of the [NH]6+ system were
obtained and compared with the corresponding experimental
atomic spectroscopic data [15]. We note that experimental data
for some N5+ Rydberg levels are lacking. Energies deduced
from the calculations of Johnson et al. [16] have been utilized
in such cases.

As shown in Table I, for the MRDCI calculation with the
optimized Gaussian basis set functions, the largest error in the
relative asymptotic energies of the [NH]6+ system is about
0.05 eV for the important channels with n of 3, 4, and 5, while
the error is ∼0.3 eV using the standard Gaussian basis set
functions. It should be noted that the resulting ground-state
energies of N5+ obtained with the standard and the optimized
basis sets are −44.775 75 a.u and −44.779 51 a.u, respectively,
and the available Hylleraas CI value is −44.788 a.u. In the
present MRDCI calculation, the correlation error is greater
for the ground state of N5+ (1s2 1S) than for any of the
Rydberg states, which results in underestimations of about
0.33 and 0.23 eV for the ionization energy for the standard
and optimized bases, respectively. Given the optimized basis,

the nonadiabatic radial and rotational coupling elements are
calculated by applying a finite-difference method [12] with the
wave functions obtained.

2. QMOCC scattering method

The QMOCC method has been described thoroughly
in previous work [10,11]. In brief, it involves solution of
a coupled set of second-order differential equations using
the log-derivative method of Johnson [17]. In the adiabatic
representation, transitions between channels are driven by
radial and rotational (Arad and Arot) couplings of the vector
potential �A( �R), where �R is the internuclear distance vector.
Since the adiabatic description contains first- and second-order
derivatives, it is numerically convenient to make a unitary
transformation [10,18–20] to a diabatic representation,

U (R) = W (R)[V (R) − P (R)]W−1(R) (1)

and

dW (R)/dR + W (R)Arad(R) = 0, (2)

where U (R) is the diabatic potential matrix, V (R) the diagonal
adiabatic potential, W (R) a unitary transformation matrix, and
P (R) the rotational coupling matrix whose elements are given
by [11,21,22]

Pαβ = ∓ 1

μR2
(J ∓ �α)(J ± �α + 1)1/2Arot

αβδ(�α,�β∓1).

(3)

With the diabatic potentials and couplings, the coupled set
of second-order differential equations is solved and matched
to the plane-wave boundary conditions at large internuclear
separation (R = 200) to obtain the K matrix, and from it the
S matrix [10]. The total charge-transfer cross section is then
given by

σα→β = πgα

k2

∑
(2J + 1)|(SJ )αβ |2, (4)

where the unitary S matrix for each partial wave J is defined
as

SJ = [I + iKJ ]−1[I − iKJ ]. (5)

I is the identity matrix, k denotes the wave number for
center-of-mass motion of the initial ion-atom channel, and
gα is an approach probability factor of the initial channel α.
The procedure described above is carried out with increasing
number of partial waves until the cross section converges.

B. AOCC method

Complementary to the close-coupling approach used at low
collision energies utilizing molecular-orbital wave functions,
methods based on use of atomic orbitals are more appropriate
at higher collision energies. Thus, the most widely used
quantum mechanical method to treat charge transfer for
intermediate energies, say above ∼1 keV/u, is the atomic-
orbital close-coupling approach (see the review by Fritsch
and Lin [23] or standard texts [21,24]). In this method, the
time-dependent electronic wave function is expanded in terms
of functions such as those of the atomic orbitals of the isolated
target and projectile or other functions such as Gaussians or
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TABLE I. Comparison between the experimental data [15] and the MRDCI calculation for the relative asymptotic energies (eV) of the
[NH]6+ system. The energies E1 and E2 have been obtained with the standard and the optimized Gaussian basis set functions, respectively, and

E1 and 
E2 are the corresponding energy differences between the calculations and measurements E0, 
E1 = E0 − E1 and 
E2 = E0 − E2.
Different energy zero points are adopted for 
E

(1)
1 and 
E

(2)
1 and for 
E

(1)
2 and 
E

(2)
2 , respectively.

Molecular states E0 E1 
E
(1)
1 
E

(2)
1 E2 
E

(1)
2 
E

(2)
2

1 1�+[N5+(1s1s 1S) + H+] 0.0 0.0 0.0 −0.31427 0.0 0.0 −0.24121
2 1�+[N5+(1s2s 1S) + H+] 426.4156 426.21543 0.20017 −0.1141 426.25487 0.16073 −0.08048
3 1�+[N5+(1s2p 1Po) + H+] 430.695 430.5757 0.11930 −0.19497 430.52569 0.16931 −0.0719
4 1�+[N5+(1s3s 1S) + H+] 496.6807 496.47947 0.20123 −0.11304 496.47792 0.20278 −0.03843
5 1�+[N5+(1s3d 1D) + H+] 497.644 497.52263 0.12137 −0.1929 497.44499 0.19901 −0.0422
6 1�+[N5+(1s3p 1Po) + H+] 497.9689 497.697 0.27190 −0.04237 497.71457 0.25433 0.01312
7 1�+[N5+(1s4s 1S) + H+] 521.046 520.81873 0.22727 −0.087 520.83193 0.21407 −0.02714
8 1�+[N5+(1s4d 1D) + H+] 521.4564 521.37329 0.08311 −0.23116 521.23714 0.21926 −0.02195
9 1�+[N5+(1s4f 1Fo) + H+] 521.4680a 521.46704 0.00104 −0.31323 521.24417 0.22391 −0.0173
10 1�+[N5+(1s4p 1Po) + H+] 521.5779 521.57481 0.00309 −0.31118 521.36889 0.20901 −0.0322
11 1�+[N5+(1s5s 1S) + H+] 532.2666 532.02214 0.24446 −0.06981 532.05180 0.21480 −0.02641
12 1�+[N5+(1s5d 1D) + H+] 532.4712 532.45702 0.01418 −0.30009 532.24854 0.22266 −0.01855
13 1�+[N5+(1s5g 1G) + H+] 532.5112a 532.48966 0.02154 −0.29273 532.26028 0.25092 0.00971
14 1�+[N5+(1s5f 1Fo) + H+] 532.5212a 532.49952 0.02168 −0.29259 532.26616 0.25504 0.01383
15 1�+[N5+(1s5p 1Po) + H+] 532.6472 532.60899 0.03821 −0.27606 532.41312 0.23408 −0.00713
16 1�+[N6+(1s 2S) + H(1s 2S)] 537.1110b 536.79676 0.31427 0 536.86982 0.24121 0

1 3�+[N5+(1s2s 3S) + H+] 419.7968 419.60043 0.196370 −0.11502 419.65092 0.14588 −0.09826
2 3�+[N5+(1s2p 3Po) + H+] 426.31708 426.2105 0.106578 −0.20481 426.10611 0.21097 −0.03317
3 3�+[N5+(1s3s 3S) + H+] 494.9275 494.72267 0.204834 −0.10656 494.72717 0.20033 −0.04381
4 3�+[N5+(1s3p 3Po) + H+] 496.7005 496.46584 0.234662 −0.07673 496.47439 0.22611 −0.01803
5 3�+[N5+(1s3d 3D) + H+] 497.6056 497.48927 0.116326 −0.19506 497.40215 0.20345 −0.04069
6 3�+[N5+(1s4s 3S) + H+] 520.3369 520.11585 0.221049 −0.09034 520.11703 0.21987 −0.02427
7 3�+[N5+(1s4p 3Po) + H+] 521.0584 521.06884 −0.0104389 −0.32183 520.84599 0.21241 −0.03173
8 3�+[N5+(1s4d 3D) + H+] 521.4552 521.35751 0.0976865 −0.2137 521.21662 0.23858 −0.00556
9 3�+[N5+(1s4f 3Fo) + H+] 521.4697 521.23721
10 3�+[N5+(1s5s 3S) + H+] 531.9108 531.67786 0.232938 −0.07845 531.73 0.1808 −0.06334
11 3�+[N5+(1s5p 3Po) + H+] 532.274 532.2671 0.00690110 −0.30449 532.18734 0.08666 −0.15748
12 3�+[N5+(1s5d 3D) + H+] 532.4588 532.45084 0.00796065 −0.30343 532.242 0.2168 −0.02734
13 3�+[N5+(1s5f 3Fo) + H+] 532.49242 532.25266
14 3�+[N5+(1s5g 3G) + H+] 532.4953 532.25735
15 3�+[N6+(1s 2S) + H(1s 2S)] 537.11103b 536.79964 0.311390 0 536.86689 0.24414 0

aFrom the calculations of Johnson et al. [16].
bThe Coulomb repulsion 5/R has been subtracted at R = 100 a.u between N5+ and H+.

Sturmians that may span not only the bound states but also
the continuum. As in several other recent works [27–31], for
comparison with other methods, here the present QMOCC
results, we utilize the AOCC with pseudostates method of
Kuang and Lin [25,26], a so-called semiclassical approach
using a straight-line trajectory for the projectile’s motion
owing to the validity of this approximation for intermediate
and high collision velocities.

The present AOCC approach considers the collision system
as possessing one active electron, so we adopted a model
potential [32] to represent the interaction of this electron with
the N6+ ion. Eigensolution with the basis functions of the
Kuang and Lin method was performed to obtain the basis set.
For each collision energy, solution of the coupled equations
was then performed and the probabilities for transitions to
these states were computed as a function of impact parameter,
yielding the cross sections for charge transfer to individual
states within the basis set. For the higher collision energies
considered here, up to 195 basis states were used (up to 86

on the atomic hydrogen atom from the 1s level to 11f, and
up to 109 on the N5+ product ion from 2s to 10g, with many
of the highest states in the pseudocontinuum). For the lowest
collision energies, the basis had to be reduced for numerical
stability, containing as few as 89 states (10 on the hydrogen
atom, 1s–3d, and 79 on the nitrogen ion, 2s–8g).

C. CTMC method

Also useful for comparison with the QMOCC results
are those obtained from application of the CTMC method,
particularly for intermediate collision energies and charge
transfer to higher principal quantum numbers. This method
simulates an ion-atom collision by sampling trajectories
stemming from initial electronic orbits within a large en-
semble of configurations [33,34] (see also recent work using
CTMC to compute state-selective charge transfer, such as
Refs. [28,30,31]). The initial electronic orbitals are prepared
in such a way as to mimic the quantum mechanical electronic
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momentum distribution. The motion of the particles is then
determined by an iterative solution of Hamilton’s equations
using either Coulomb (for the electron-proton interaction in H)
or model (for the electron-N6+ and proton-N6+ interactions)
potentials. At an asymptotic distance, the relative classical
binding energies are then calculated to determine if a reac-
tion (charge transfer, excitation, or ionization) has occurred.
Following binning rules [35], modified to account for the
structure of the N6+ ion [36], the final quantum state after
charge transfer can then be determined based on the binding
energy and angular momentum of the electron if it is bound to
the projectile ion.

III. RESULTS AND DISCUSSION

For the energy range 0.01–104 eV/u, the exoergic channels
are the most important for charge transfer and, therefore, 22
channels were included in the QMOCC calculations for both
the singlet and triplet manifolds. They included 4 1�+–16 1�+,
3 3�+–15 3�+, 2 1�–10 1�, and 2 3�–10 3�. As can be seen in
Table I, the energy gap between the 3 1�+ and 4 1�+ states
is larger than 65 eV in the asymptotic region, and there are
similar energy gaps between the 1 1� and 2 1�, 2 3�+ and
3 3�+, and 1 3� and 2 3� states. Consequently, charge transfer
to these states is not expected to be significant for the range of
collision energies considered using the QMOCC method. For
higher collision energies, the AOCC and CTMC methods have
been used to obtain the total and state-selective (nl-dependent)
cross sections including endoergic channels.

A. Potentials and couplings

As a consequence of the initial channel symmetries (1�+
and 3�+) and the fact that rotational coupling is considered,
the 1� and 3� channels are also involved in the QMOCC
charge-transfer calculations. In Fig. 1, the adiabatic potential
curves are presented for these important channels, including

FIG. 1. Adiabatic potentials for [NH]6+ states as a function of
internuclear distance. (a) Adiabatic potentials for singlet states; (b),(c)
adiabatic potentials for the most important n = 4 channels close to
the avoided crossings at R = 8 a.u. for both singlet (b) and triplet (c)
states. Note that the curves in (a) are 4 1�+, 5 1�+, 2 1�, 6 1�+, 3 1�,
7 1�+, 8 1�+, 4 1�, 5 1�, 9 1�+, 6 1�, 10 1�+, 11 1�+, 12 1�+, 7 1�,
13 1�+, 8 1�, 14 1�+, 9 1�, 15 1�+, 10 1�, and 16 1�+ from bottom
to top at R = 50 a.u.

FIG. 2. (Color online) Nonadiabatic radial couplings for the
adjacent channels of the singlet states of [NH]6+ (both 1�+ and 1�)
as a function of internuclear distance.

both singlet and triplet spin symmetries. Since there are
many channels considered in the present calculation, only the
radial and rotational couplings for the adjacent channels for
the singlet states are presented as an illustration, shown in
Figs. 2 and 3, respectively. In Table II, the avoided-crossing
distances Rx for the adiabatic states of the system are presented
and compared with estimates made using the experimental
asymptotic energies, which can provide an effective check
of the calculation for avoided crossings at large internuclear
distances. We note that, compared with the calculation of R(1)

x ,
made using the standard Gaussian basis set, there is better
agreement with the experimental value (R(0)

x ) with R(2)
x , made

using the optimized Gaussian basis set.

B. Cross sections

Using the adiabatic potentials and nonadiabatic coupling
matrix elements obtained with the MRDCI approach, the

FIG. 3. (Color online) Nonadiabatic rotational couplings for the
adjacent 1�+ and 1� channels of [NH]6+ as a function of internuclear
distance.
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TABLE II. Comparison between the avoided-crossing distances (Rx) for the adiabatic states of [NH]6+ from the experimental data [15] and
from the MRDCI calculation. R(0)

x is the value estimated from experimental data, and R(1)
x and R(2)

x are obtained from the MRDCI calculation
with the standard and the optimized Gaussian basis set functions, respectively.

Atomic states R(0)
x (a.u) R(1)

x (a.u) R(2)
x (a.u) Atomic states R(0)

x (a.u) R(1)
x (a.u) R(2)

x (a.u)

N5+(1s4s 1S) + H+ 7.81 7.5 7.26 N5+(1s4s 3S) + H+ 7.50 7.65 7.50
N5+(1s4d 1D) + H+ 8.00 7.55 7.31 N5+(1s4p 3P o) + H+ 7.81 7.70 7.56
N5+(1s4f 1F o) + H+ 8.00 8.24 8.12 N5+(1s4d 3D) + H+ 8.00 8.07 7.93
N5+(1s4p 1P o) + H+ 8.05 8.55 8.44 N5+(1s4f 3F o) + H+ 8.43 8.31
N5+(1s5s 1S) + H+ 21.93 22.0 21.3 N5+(1s5s 3S) + H+ 20.74 20.7 21.3
N5+(1s5d 1D) + H+ 22.67 23.1 22.3 N5+(1s5p 3P o) + H+ 21.95 22.7 22.1
N5+(1s5g 1G) + H+ 22.83 23.9 22.8 N5+(1s5d 3D) + H+ 22.63 23.5 22.8
N5+(1s5f 1F o) + H+ 22.87 24.4 23.3 N5+(1s5f 3F o) + H+ 24.4 23.3
N5+(1s5p 1P o) + H+ 23.36 24.9 23.8 N5+(1s5g 3G) + H+ 24.9 23.8

QMOCC method was used to calculate the total and state-
selective SEC cross sections for collisions of N6+ with atomic
hydrogen in the energy range of 10 meV/u to 10 keV/u.
The total cross sections are displayed in Fig. 4 along with
available experimental and theoretical data. For energies
between ∼500 and 3000 eV/u, which covers the kinetic energy
range of SW ions, there is good agreement between the present
QMOCC and AOCC calculations and fair agreement with
the measurements of Meyer et al. [37] and merged-beams
measurements [38]. For the highest energies considered in the
QMOCC calculation (>7 keV/u), the total cross section is
found to be overestimated, which may be due to a limited N5+
basis, the neglect of the ionization channel, and/or the neglect
of electron translation factors.

For collision energies less than about 500 eV/u, a signif-
icant discrepancy is evident between the QMOCC total cross

FIG. 4. (Color online) Total SEC cross section for N6+ + H
collisions. Black line, the present QMOCC calculation obtained with
the optimized Gaussian basis set; red dot-dashed line, the present
AOCC calculation; blue dashed line, the present CTMC calculation;
filled triangles, merged-beams measurements [38]; filled circles
with error bars, measurements of Meyer et al. [7]; filled squares,
measurements of Panov et al. [6].

sections and the merged-beams measurements. This difference
is troublesome as the AOCC results are consistent with the
measurements down to 100 eV/u. However, three facts give
some confidence in the low-energy QMOCC results. First,
similar differences have been noted between measurements,
using other experimental techniques, and QMOCC findings
for highly charged ions colliding with atomic hydrogen. These
include fully stripped and H-like C, N, O, F, and Ne from rela-
tively low energies up to a few hundred or a few thousand eV/u
[7,37,39]. For fully stripped ions, this is somewhat surprising
since the quantal treatment of a one-electron system is thought
to be reliable. Second, for systems involving low-charged ions,
good agreement has been found at low energies, down to a
few eV/u, for C3+ + H [40], O3+ + H [11], N4+ + H [41],
and H+ + H [42], for example. Third, straight-line trajectories
were adopted in the current AOCC approach, which is expected
to be less reliable at the lower energies. We also note that
oscillatory structures are predicted by the QMOCC method
at very low energies (<0.1 eV/u); such structures have been
found in other systems [43]. As a consequence, the origin
of the low-energy discrepancy is unknown, but a number
of factors may contribute. For example, for highly charged
ion systems, postcollisional interactions via strong Coulomb
repulsion between the product protons (after charge exchange)
and residual incident N6+ beam ions and product N5+ may
deflect the protons into large scattering angles, while remaining
uncertainties in the QMOCC computations may result from un-
certainties in the potential energies (particularly near avoided
crossings), nonadiabatic couplings, and coupling phases.

In Fig. 5, the present QMOCC calculations of state-selective
charge-transfer cross section are presented. The contributions
from the n = 4 channels are dominant over the whole energy
range, but contributions from the n = 5 and n = 3 channels
increase rapidly with increasing energy. At an energy of
about 5000 eV/u, the contributions from the n = 5 channels
equal that of the n = 4 channels, because of avoided-crossing
interactions at very small R. However, because the n = 5
channels are the highest of those included in the QMOCC
scattering calculation, the corresponding cross sections are
likely to be overestimated, particularly those for the 5p 1P and
5g 3G channels. With a further increase in energy, contributions
from the n = 2 and 3 and n > 5 channels, not included in the
QMOCC calculations, become important as discussed below.
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FIG. 5. (Color online) QMOCC calculations of state-selective
charge-transfer cross section in N6+ + H collisions.

In Fig. 6, the n-resolved cross sections obtained using
the QMOCC, AOCC, and CTMC methods are compared for
n = 2–9. All the calculations consistently find that the n = 4
channels dominate. The n = 5 channels are also important,
with cross sections much larger than those of n = 3 for the
QMOCC and AOCC calculations (the n = 3 contribution
is found to dominate over n = 5 in the less applicable,
low-energy, low-n-level CTMC calculation). In Fig. 7, the
n = 4,l cross sections from the QMOCC and AOCC methods
are compared. Near 1 keV/u, the two methods give very similar
results for all channels, except the 4f . This is likely due to
the fact that the QMOCC calculations account for the spin

FIG. 7. (Color online) The l-resolved SEC cross sections ob-
tained with the QMOCC and AOCC methods for the n = 4 channels.

dependence of the cross sections and the irregular internal
energy ordering of the 4l singlet states (see Table I). The
behavior of the CTMC calculation (not shown for simplicity)
is again somewhat different, with the two dominant channels
being the 4s and 4f .

The l distributions of the QMOCC results at 1 keV/u
and 300 eV/u for the n = 4 channels are presented and
compared with those from the AOCC and CTMC calculations,
a statistical distribution, and the “low-energy distribution”
proposed by Janev et al. [44] and Abramov et al. [45] in
Fig. 8. The latter is proposed to be appropriate for typical
SW ion energies, while the statistical distribution is applicable

FIG. 6. (Color online) The N6+ + H n-resolved SEC cross sections using the MOCC, AOCC, and CTMC methods.
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FIG. 8. (Color online) N6+ + H → N5+ + H+ l distribution
after SEC at 1 keV/u and 300 eV/u (n = 4). Solid line with filled
squares, QMOCC; solid line with unfilled triangles, AOCC; solid
line with filled circles, CTMC; dashed line with unfilled squares, low-
energy distribution [44,45]; dashed line with filled triangles, statistical
distribution.

for higher energies (E � 10 keV/u). The present QMOCC l

distribution is most similar to the low-energy distribution at
1 keV/u, while they are nearly identical at 300 eV/u. The
AOCC results are most similar to a statistical distribution,
while the CTMC distributions are intermediate between the
two cases. The current results suggest that neither analytical
distribution function nor the CTMC method are sufficiently
reliable to predict final nl populations for collision energies
typical of SW ions, as independently observed by Ali et al.
[46]. However, the low-energy and statistical distributions may
be useful for approximating conditions at slow and fast solar
wind speeds, respectively, in the absence of more applicable,
explicit calculations (see [30]).

In Fig. 9, the QMOCC cross-section ratios for charge
transfer to the total triplet and singlet states are presented and

FIG. 9. (Color online) Cross-section ratios for SEC to the triplet
and singlet states. Solid line with filled squares, the present QMOCC
results obtained with the optimized Gaussian basis set; red line, the
statistical value of 3.

FIG. 10. Recommended total cross section and the corresponding
total rate coefficients for SEC in collisions of N6+ with H.

compared to the statistical value of 3. The QMOCC results
only start to converge to the statistical value as the collision
energy increases to a few keV/u, with the ratio reaching about
3.5 at 10 keV/u. At higher energy, the actual ratio can be
expected to approach the statistical limit. For typical solar
wind speeds, the ratio is about 5. The present calculations
reveal that singlet and triplet initial states contribute differently
to capture processes, and there are strong influences of
the electron-electron interaction during the collision. Due to
varying electron correlation effects in the singlet and triplet
states, the excitation energy intervals are different and the
energy orderings modified for some singlet states (see Table I).
Thus, the present calculation indicates the degree to which the
assumption of a 3:1 ratio of triplet to singlet cross sections
would be valid for this case, and raises the possibility that this
common approximation for other collision systems should be
questioned [3]. Further, the variation in the triplet-singlet ratio
for nl-resolved cross sections (not shown) can be even larger.

In order to apply the present results conveniently in models
of x-ray emission and other applications, a recommended set
of total and state-selective cross sections has been constructed
over a large energy range based on the present QMOCC,
AOCC, and CTMC results. The QMOCC results are utilized
for energies less than 3 keV/u, while for higher energies
the AOCC calculations were adopted with the CTMC results
used in some cases. To approximate spin resolution in the
AOCC- and CTMC-based cross sections, they were scaled by
the QMOCC triplet-to-singlet ratio at 3 keV/u and smoothly
varied to a ratio of 3 at higher energies. The recommended
total cross section is displayed in Fig. 10(a) while the state-
selective cross sections can be obtained upon request. Using
the recommended cross sections, the total rate coefficient has
also been computed, as displayed in Fig. 10(b).

IV. CONCLUSIONS

In the present work, single-electron capture due to colli-
sions of N6+(1s 2S) with atomic hydrogen has been investi-
gated using the QMOCC, AOCC, and CTMC methods. We
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developed a hybrid basis set for the MRDCI calculation for
highly charged ions and accurate adiabatic potentials, and
nonadiabatic radial and rotational couplings were obtained.
For the kinetic energy of solar wind ions, E ∼ 500–5000 eV/u,
there is good agreement between the AOCC, QMOCC, and
experimental results for the total cross section. n-, l-, and S-
resolved SEC state-selective cross sections were also obtained,
and will be of importance for accurate predictions of x-ray

emission following charge transfer arising from solar wind
ion interactions with cometary and planetary atmospheres and
heliospheric neutral species.
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