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Trap-depth determination from residual gas collisions
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We present a method for determining the depth of an atomic or molecular trap of any type. This method relies
on a measurement of the trap loss rate induced by collisions with background gas particles. Given a fixed gas
composition, the loss rate uniquely determines the trap depth. Because of the “soft” long-range nature of the
van der Waals interaction, these collisions transfer kinetic energy to trapped particles across a broad range of
energy scales, from room temperature to the microkelvin energy scale. The resulting loss rate therefore exhibits
a significant variation over an enormous range of trap depths, making this technique a powerful diagnostic with
a large dynamic range. We present trap depth measurements of a Rb magneto-optical trap using this method
and a different technique that relies on measurements of loss rates during optical excitation of colliding atoms
to a repulsive molecular state. The main advantage of the method presented here is its large dynamic range and
applicability to traps of any type requiring only knowledge of the background gas density and the interaction
potential between the trapped and background gas particles.
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I. MOTIVATION

The particle loss rate from a trap is one of the primary
observables for probing the collisional physics of trapped
gases. Measurements of trap loss are routinely made in a
variety of experiments to deduce elastic and inelastic collision
cross sections for intratrap collisions and for collisions
between trapped species and externally introduced particles.
Trap depth often plays an important role in the interpretation
of these measurements. A well-studied example of this is the
large intensity-dependent variation displayed by the two-body
intratrap loss-rate coefficient for atoms trapped in a magneto-
optical trap (MOT). This variation results from an interplay
of trap depth and the energy imparted to trapped atoms due
to hyperfine or fine structure changing collisions, as well as
radiative escape [1–12]. More recently, inelastic and elastic
collision rates in dipole traps have been of interest, particularly
for metastable species [13,14]. The fraction of elastic collisions
resulting in an evaporated atom depends on trap depth, which
is a key parameter for evaporative cooling [13,15,16]. The
lifetime dependence of a state-insenstive dipole trap on trap
depth for cesium atoms has also recently been investigated
[17]. Of course the most fundamental role of trap depth is that
it be large enough to provide sufficient confinement, which has
been an issue for experiments with buffer-gas-cooled atoms or
molecules [18,19].

In recent years there has been interest in making precision
determinations of collision cross-sections from measurements
of particle loss rates due to externally introduced particles.
These measurements involve collisions of trapped neutral
particles with neutral atoms and molecules [20–24], electron
beams [25–27], and trapped ions [28–30]. Photoionization
cross sections have also been investigated though measure-
ments of trap loss rates [31–33]. It has been shown for atoms
exposed to background gas [34] and for molecules exposed
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to supersonic beams of atoms and molecules [23,24] that
inelastic, and particularly elastic, collisional cross sections for
trap loss vary significantly with trap depth. In these cases, the
use of trap loss rates to determine with accuracy the cross
sections for various processes, and to quantitatively compare
measurement with theory, requires an accurate knowledge of
the trap depth and an analysis of the energy transferred to the
trapped target species. A useful corollary and the main result
of this paper is that if the collision physics is well understood,
measurement of the trap loss rate provides a way of accurately
and reliably determining the trap depth.

For magnetic traps, the depth can be inferred from the trap-
ping field geometry [35], set by rf frequency [36] or measured
by Zeeman spectroscopy [37]. However, for dissipative traps
that rely on radiation pressure forces, the trap depth is not
easily estimated. Estimating the trap depth for a MOT from
first principles requires the numerical integration of the optical
Bloch equations for a multilevel atom [4–6,38,39] and often
provides only qualitative agreement with experimental results.
Trap depth measurement techniques for a MOT have been
developed. For a MOT a kick-and-recapture method has been
used [3,40]. The capture velocity for a beam-loaded MOT
has been measured [41]. A method employing loss due to
photoassociative excitation to a repulsive molecular potential
has also been developed [42]. For trap depth determination
of an optical dipole trap, measurements of beam waist and
trap oscillation frequencies can be used to infer the depth.
However, this procedure, as well as the interpretation of
parametric heating experiments [43], can be complicated by
the broadening and shift of the trap frequency and higher
harmonics caused by the anharmonicity of the trapping
potential [44–46]. A measurement of the differential ac Stark
shift of the atoms in the dipole trap can provide a lower bound
on trap depth so long as both the ground- and excited-state
polarizabilites are well known. Pertinent to all trap depth
calculations are the imperfections resulting from experimental
realization. These imperfections include pointing stability,
beam or field irregularities, interferences, and polarization
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inhomogeneities. For these reasons, finding reliable methods
to directly measure the trap depth in an experiment and to
confirm existing methods is desirable and important.

In this paper we propose and demonstrate with an ex-
periment that the depth of a trap can be determined from
measurement of trap loss rate induced by collisions with a
background gas. Our previous work [34] verified the shape
of the predicted dependence of the collisional cross section
for loss due to background collisions on trap depth in the
region of trap depth attainable with our magnetic trap. In
this work we provide further validation of this predicted
dependence in the region of trap depth attainable with our
MOT (from ∼0.5 to 3 K). For this validation at higher trap
depths we used a trap-depth measurement technique based on
photoassociative loss rates which we adapted and simplified
from Hoffmann et al. [42]. Our work then also provides support
of Hoffmann’s work by showing the consistency of the trap
depth predicted from loss rates and the trap depth as inferred
from photoassociative loss rates.

The paper is organized as follows. In Sec. II we outline
the proposed method. In Sec. III we review the theoretical
calculation of collisional cross section. In Sec. IV we discuss
experimental methods used to measure collisional cross
section and to measure trap depth from photoassociative losses.
In Sec. V we compare the trap depth of a MOT inferred
from photoassociative losses to the trap depth inferred from
particle loss rates induced by collisions with background gases.
Section VI contains conclusions.

II. PROPOSAL

The particle loss rate due to collisions with a background
vapor is the sum of loss rates induced by each of the species
present in a vacuum,

� =
∑

i

ni〈σv〉X,i, (1)

where ni is the density of the ith background species, X de-
notes the trapped species, and the velocity-averaged loss cross
section 〈σv〉X,i is a function of the trap depth Utrap. Because
the terms 〈σv〉X,i are all monotonically decreasing functions
of Utrap [34], the loss rate � is a monotonically decreasing
function of Utrap, and, for fixed background gas composition,
the loss rate � uniquely determines Utrap. Because of the “soft,”
long-range nature of the van der Waals interaction, elastic
collisions transfer kinetic energy to the trapped particles across
a broad range of energy scales, from room temperature to the
microkelvin energy scale. The resulting loss rate therefore
exhibits variation over a large range of trap depths making this
observable a powerful diagnostic with a large dynamic range.

The simplest approach to using the loss rate, �, to determine
trap depth involves experimentally determining the depen-
dence of � on Utrap in a particular vacuum environment using
a trap of known but variable depth. Then the depth of any other
confining potential of unknown depth in the same environment
can be inferred from measurement of its background collision-
induced loss rate. This approach does not require the addition
of background gas other than what is present normally in
steady state. An example would be determining the trap depth
of an optical dipole trap by a comparison of its loss rate with

the loss rate from a magnetic trap, whose depth can be tuned
and known using radio frequency or microwave radiation. A
caveat is that the loss cross section for certain background
species may depend on the electronic state of the trapped
species. Care must be taken, therefore, when characterizing
the depth of a trap that contains trapped particles in both the
ground and the excited electronic states.

There is an alternative ab initio approach to determining
depth of a trap that does not rely on making heuristic
measurements of loss rates from a trap of known depth. The
approach is to measure the loss rate � as the density of
a particular background species nj is varied. The resulting
loss-rate slope 〈σv〉j uniquely determines the trap depth Utrap.
The energy distribution imparted to the trapped species by
collisions with species j can be computed from first principles
using the interaction potentials, and the relationship between
loss rate and trap depth can be computed. The computation
is described in Ref. [34] and the fundamentals are repeated
in the next section. Our proposed method involves using
the measured value of loss-rate coefficient, 〈σv〉j , to give
trap depth by inverting the calculated dependence of 〈σv〉j
on trap depth. This approach is based on well-established
quantum scattering theory with no additional assumptions and
is applicable to any atomic or molecular species and any type
of trapping potential. This approach is also immune to any
additional background trap loss due to species other than the
one being introduced, no matter how significant. One caveat
is the dependence of loss-rate coefficient, 〈σv〉j , on the state
of the trapped species complicating computation of 〈σv〉j for
traps where a mixture of states (both ground and excited) is
found, as in MOTs.

We perform this ab initio technique using a magnetic trap
and a MOT for 87Rb. To simplify the analysis, we introduce
and vary the background gas density of 40Ar. In this case, the
only significant collisions that occur are elastic since Ar has
no nuclear spin and, relevant to magnetic trapping, there is no
collisional spin exchange. The cross section for spin-changing
collisions arising from the spin-rotation interaction is expected
to be exceedingly small [47,48]. In this regard, certain noble
gas atoms are the species of choice. An additional advantage
to the choice of 40Ar in this case is that the long-range part of
the interaction potential between Rb and Ar in their ground
electronic states is similar to that when Rb is in its first
excited state. For a collision between a ground-state Ar atom
and a ground-state Rb atom (5 2S1/2), C6 = 280.0EhaB [49]
compared to a collision between a ground-state Ar atom and a
Rb atom in the excited (5 2P1/2 or 5 2P3/2) electronic state
where C6 = 924.1EhaB (�) and C6 = 545.1EhaB (�) [50].
Here Eh = 4.359 739 4(22) × 10−18 J and aB is the Bohr
radius. This feature is important when dealing with a radiation
pressure trap where some fraction of the trapped species will
be found in the electronically excited state [51]. In this work,
we compare the MOT trap depth as determined by trap loss
measurements with a method based on photoassociation of
atoms in a MOT with a blue-detuned laser [42,52].

III. THEORY

For completeness, we repeat a section from our previous
work [34] describing the ab initio method to compute
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the loss-rate slope 〈σv〉X,j dependence on the trap depth Utrap.
When a room-temperature background vapor particle encoun-
ters a trapped atom, the collision energy is typically very high.
Nevertheless, for elastic collisions with a large classical impact
parameter, the momentum transferred and resulting scattering
angle can be extremely small. Consequently, for a trap with
finite depth, collisions below some critical scattering angle
do not result in trap loss. The goal is therefore to compute the
differential cross section and evaluate the fraction of collisions
that occur above the critical scattering angle for loss.

Consider a trapped atom of velocity �va and mass Ma and
a background particle of velocity �vb and mass Mb. The initial
relative velocity is �vr = �va − �vb, and momentum conservation
requires that the change in these velocities is related by
��va = μ

Ma
��vr, where the reduced mass is μ = MaMb

Ma+Mb
. Energy

conservation requires that for elastic collisions |��vr|2 =
2|�vr|2(1 − cos θ ), where θ is the collision angle between
the initial (�vr) and final (�vr

′) relative velocities. After the
collision, the trapped atom kinetic energy will have changed
by an amount �E = Ma

2 [(�va + ��va)2 − �v2
a ] = Ma

2 [2�va · ��va +
|��va|2]. If this change in kinetic energy exceeds the trap depth
Utrap, loss will occur. In the limit that the trapped particle has
a negligible initial kinetic energy (�va � ��va), we have that
�E � Ma

2 |��va|2 and

�E � μ2

Ma
|�vr|2(1 − cos θ ). (2)

Therefore, trap loss will occur if the collision angle exceeds
the minimum angle,

θmin = arccos

(
1 − MaUtrap

μ2|�vr|2
)

. (3)

The rate at which background particles are scattered from a
single trapped atom into a solid angle d� is nb|�vr|(dσ/d�)d�,
where nb is the density of background particles and (dσ/d�)
is the differential scattering cross section. Given this, we can
estimate the loss rate from a trap of depth Utrap as

γloss = nbvprobσloss = nbvprob

∫ π

θmin(vprob)
(dσ/d�)d�, (4)

where the relative collision velocity is assumed to be de-
termined by the most probable velocity for the background
particles, |�vr| = vprob. This loss rate is always smaller than the
estimated total collision rate, γC = nbvprobσ , since θmin > 0.
In the limit of a vanishingly small trap depth (Utrap → 0), the
minimum collision angle approaches zero (θmin → 0) and the
loss rate equals the total collision rate.

The differential cross section is equal to the square
of the quantum-mechanical scattering amplitude, dσ/d� =
|f (k,θ )|2, and depends explicitly on the magnitude of the colli-
sion wave vector k = μ|�vr|/h̄. It is assumed that the interaction
potential is central and therefore there is no azimuthal angular
dependence. For a beam of incident scattering particles with
wave number k, the cross section for loss-inducing collisions
from a trap of depth Utrap is

σloss(k) =
∫ π

θmin(h̄k/μ)
2π sin θ |f (k,θ )|2dθ. (5)

To compute the loss rate induced by collisions with a
background gas at temperature T , one must average over
the Maxwell-Boltzman distribution of incident collision wave
numbers. Assuming the trapped atom velocity is negligible,
we have that �vr � �vb and k = μ|�vb|/h̄. The velocity averaged
loss rate is 〈γloss〉 = nb〈vσ 〉, where

〈vσ 〉 =
(

Mb

2πkBT

)3/2 ∫ ∞

0
4π σloss(k) v3

be
−Mbv

2
b/2kBT dvb. (6)

In order to evaluate this expression, we need to determine the
scattering amplitude, f (k,θ ), given the interatomic potential
between atoms a and b. The asymptotic form of the two-body
scattering wave function is the sum of an incident plane wave
and a scattered spherical wave [53] ψk(r)|r→∞ = A(eikz +
f (k,θ ) eikr

r
). Given a central potential, ψ and f can be expanded

in terms of the Legendre polynomials,

ψk(r,θ ) =
∞∑
l=0

Rl(k,r)Pl(cos θ ), (7)

f (k,θ ) =
∞∑
l=0

fl(k)Pl(cos θ ). (8)

This is an expansion into partial waves of angular momenta
l. For sufficiently large r , the potential is negligible, and the
radial functions must therefore asymptotically approach the
form for a free particle,

Rl(k,r)|r→∞ = Bljl(kr) + Clnl(kr), (9)

where jl and nl are the spherical Bessel and Neumann
functions. The coefficients Bl and Cl can be written as Bl =
Al cos δl and Cl = −Al sin δl , where Al = (2l + 1)ileiδl and
where δl = arctan(−Cl/Bl) is the phase shift of the lth partial
wave [54,55]. These phase shifts also completely determine
the scattering amplitude,

f (k,θ ) = 1

k

∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ ). (10)

The evaluation of the scattering amplitude and resultant
collision cross section therefore requires finding the partial
wave phase shifts, and this is done by numerical integration of
the radial Schrödinger equation. We write the radial equation
for the lth partial wave as[

d2

dr2
+ Wl(r)

]
ψl(r) = 0, (11)

where

Wl(r) = k2 − 2μ

h̄2 V (r) − l(l + 1)

r2
, (12)

ψl(r) = krRl(r), (13)

and V (r) is the interatomic potential. The solution to the
radial equation for each partial wave l is then independently
computed using the log-derivative method [56]. The integra-
tion of the radial equation starts from a position deep inside
the classically forbidden region and ends at a point in the
asymptotic regime, beyond which the potential is essentially
flat and the scattering phase shift is no longer changing. The
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phase shift is found by matching this numerical solution in
the asymptotic region to the asymptotic form [Eq. (9)] and by
using −Cl

Bl
= tan δl .

The resultant values for partial wave phase shifts δl

depend on the incident wave vector magnitude k = μ|�vr|/h̄.
Given the results for a particular collision wave vector, the
scattering amplitude can be constructed using Eq. (10) and
inserted into Eq. (5) to compute the total cross section for
loss-inducing collisions at that collision velocity. Repeating
this procedure for a set of wave vectors chosen from a
Maxwell-Boltzman distribution, the velocity-averaged rate of
loss-inducing collisions from a background gas at temperature
T [Eq. (6)] is evaluated. The velocity averaged rate of loss can
be computed for a discrete set of trap depths and numerical
fitting provides a functional form for the rate-loss dependence
on trap depth applicable to a limited range of trap depth.
This functional form can be inverted to provide a trap depth
determination method from measured velocity-averaged rate
of loss.

IV. EXPERIMENTAL METHODS

A. Residual gas collision experiment

The aim is to measure the particle loss rate due to
background collisions, �, and to then infer the trap depth
from the dependence of loss rate on the density of 40Ar. The
population dynamics in a trap can be modeled as

dN

dt
= R − �N − β

∫
n2(r,t)d3r, (14)

where N is the number of particles in the trap, R is the loading
rate of particles into the trap, and � is the loss rate due to
collisions between the trapped particles and the background
gases. The final term depends on the density of particles
in the trap, n, and accounts for particle loss arising from
two-body inelastic collisions between trapped particles.
These two-body inelastic collisions, characterized by β,
include ground-state collisions and light assisted collisional
losses present in a MOT (see, for example, [3–5,7,57,58] and
references therein). Losses from three-body and higher-order
intratrap collisions are assumed here to be negligible [7].

Our MOT, described in [59], collects and cools on the order
of 106 rubidium atoms from a room-temperature Rb vapor of
below 10−8 torr. The light for the MOT was provided by a laser
system composed of grating-stabilized and injection-seeded
diode lasers described previously [12,59]. After amplification,
we have a maximum six-beam total power of 18.3 mW of pump
or “cooling light” (driving transitions from |F = 2〉 → |F ′ =
3〉) and 0.3 mW of repump light (driving transitions from
|F = 1〉 → |F ′ = 2〉) both operating on the 5 2S1/2 → 5 2P3/2

transition. This light is combined and expanded to a 1/e2

horizontal (vertical) diameter of 7.0(9.5) mm, prepared with
the correct polarization, and introduced into the MOT cell
along the three mutually orthogonal axes in a retroreflec-
tion configuration. Our maximum total pump intensity is
34.5 mW cm−2. We operate the MOT with an axial gradient
of b′ = 27.9(0.3) G cm−1. The anti-Helmholtz magnetic coils
were used for both the MOT and for magnetic trapping of the
rubidium atoms. Various pump detuning and intensities were
used for our MOT to provide different trap depths for the MOT.

Previous work has shown that MOTs grow in number
and density with a constant volume up to densities of
3 × 1010 cm−3, where the outward pressure on the cloud from
multiple scattering becomes significant [60]. For a constant
volume MOT the density is modeled as n(r,t) = n0(t)e−( r

a
)2

,
where n0(t) is the peak density of the MOT. In this regime the
solution to Eq. (14) is

N (t) = Nss

(
1 − e−γ t

1 + ξe−γ t

)
, (15)

where γ = � + 2βnss and ξ = βnss

� + βnss
[7,61–63]. In addition,

this model predicts that the steady-state MOT number should
follow,

Nss = R

� + βnss
, (16)

where R is the loading rate of the MOT and nss is the average
steady-state density of the MOT,

nss =
(∫

n2 d3r∫
n d3r

)
ss

. (17)

In Eq. (17) the subscript ss refers to the integrals being
performed for a steady-state MOT. For the MOT conditions
used in these experiments, the two-body loss-rate coefficient,
β, can range from 10−13 to 10−11 cm3/s [2,6,12]. Higher β

values have been found for MOTs with a larger magnetic field
gradient and larger laser intensity [12]. With a steady-state
MOT density on the order of 1010 cm−3, the two-body loss
rate, βnss ranges from 10−3 to 10−1 s−1.

When 40Ar is introduced to the sample volume the MOT
losses are dominated by collisions between trapped atoms
and the room-temperature argon atoms (i.e., � > βnss). Our
measured MOT loss rates range from 0.5 to 2.0 s−1, between
5 and 20 times the largest estimate for βnss. In addition, as the
background argon pressure increases, the number of atoms in
the MOT and the average steady-state density decrease, further
reducing the relative significance of the two-body losses. In
the limit where � > βnss, Eq. (15) can be replaced with

N (t) = R

�
(1 − e−�t ). (18)

The MOT filling data were fit to both models Eq. (15) and
Eq. (18) and we found that model Eq. (18) provided the
better fit. The results of fitting to Eq. (15) confirmed that for
the MOT densities of this experiment, the two-body intratrap
collision-induced loss rates were negligible in comparison with
the losses arising from 87Rb-40Ar collisions.

When atoms are transferred from the MOT into the
quadrupole magnetic trap (QMT) we find similarly that the
atom number evolution in our MT is well described by

N (t) = N (0)e−�t . (19)

For a MT R = 0. In the absence of light the confining forces
are much weaker, leading to an increase in trapping volume
of around 104 times with a corresponding decrease in trapped-
particle density so that the two-body inelastic losses can again
be neglected.

Figure 1 shows an example of the atom number evolution
in a MOT and a MT under the condition that the density-
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate � is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying nj and
measuring the loss rate, �. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
� varies linearly with a slope of 〈σv〉Rb,j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 × 10−8 to 6 × 10−8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate 〈σv〉Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (∼2 K) than the MT (filled
circles) where the |F = 1,mF = −1〉 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 × 10−8 to 6 × 10−8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
〈σv〉Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient, 〈σv〉Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 Eh a6

B
[49,65,66]. The experimental data for trap depths Utrap/kB <

10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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FIG. 3. (Color online) The experimentally measured (squares
and open circles) and theoretically computed (solid circles) loss-rate
constant 〈σv〉Rb,Ar versus trap depth for trapped 87Rb atoms and
room-temperature 40Ar atoms. The line is only a guide for the eye.
The data above 100 mK (squares) were obtained with a MOT while
the data below 10 mK (open circles) were obtained with a quadrupole
magnetic trap and are reproduced from [34]. Due to the difference
in axial and radial magnetic field gradients, the MT depth limited
by the vacuum cell walls is anisotropic. The resulting range of trap
depths is indicated by the horizontal error bars on the MT data.
The MOT depth was experimentally verified using an independent
technique described in the text.

the quadrupole field and the physical size of the vacuum
cell similar to that described in [67]. The magnetic coils
here are external to the vacuum and the experimental cell
(similar to that described in [59]) is square and only 1 cm
wide. Atoms with sufficient energy could move from the
center of the QMT to the cell wall where they would contact
it, thermalize, and thus be lost from the trap. Due to the
factor of two difference in axial and radial magnetic field
gradients (as well as the effect of gravity), the QMT depth
as limited by the walls is anisotropic. The resulting range
of trap depths is indicated by the horizontal error bars on
the QMT data in Fig. 3. The data for trap depths Utrap/kB >

100 mK were obtained with a MOT operating under different
pump detunings and intensities, and the trap depth was
measured in each case using the photo-association technique
pioneered by Walker’s group [42,52]. The details of this
measurement are described below. The maximum MT depth
that could be achieved in our experiment was limited to 10 mK
set by the maximum field gradient we could produce with our
quadrupole coil pair, while the minimum trap depth we could
work with for the MOT (600 mK) was limited by the signal
to noise of our atom detection scheme. MOT depths as low
as 200 mK have been achieved using large magnetic field
gradients [57].

B. MOT depth measurement from photoassociation

As a verification of our proposed technique for mea-
surements of the MOT depth, an independent trap-depth
measurement was performed using the technique described by

Hoffmann et al. [42]. In this scheme, an additional tunable
laser (referred to as a catalysis laser) is focused onto the
MOT. For our experiment the intensity was ∼2 W/cm2. Its
frequency is chosen to be close to but above (typically by a few
GHz) the atomic resonance (in this case, the 5 2S1/2 → 5 2P3/2

transition in 87Rb) by an amount �. Since atoms in the
MOT are predominantly in the upper hyperfine ground state,
the detuning reported here is measured with respect to the
F = 2 → F ′ = 3 transition. When two colliding Rb atoms
within the MOT approach each other, they can resonantly
absorb a photon from the catalysis laser field which excites
them to a dissociative molecular state with an energy of
h� above threshold [68,69]. The molecule then dissociates
in a time much less than the excited-state lifetime, and the
two atoms fly apart with equal and opposite momenta in
the center-of-mass frame, each acquiring a kinetic energy of
Ecl = h�

2 . If this kinetic energy is small compared to the trap
depth, the atoms will remain in the MOT and will be cooled
again. However, when the acquired kinetic energy approaches
the MOT depth (h� � 2Utrap), the atoms will escape with
high probability and trap loss will be observed. Since a MOT
includes both conservative and dissipative forces, the trap
depth of the MOT is defined as the kinetic energy associated
with a particle moving at the escape velocity. The aim of this
technique, therefore, is to determine the trap loss probability
dependence on the energy Ecl.

The population dynamics in the trap including the two-body
inelastic loss induced by the catalysis laser can be modeled as

dN

dt
= R − �N − (β + d · βcl)

∫
n2(r,t)d3r, (20)

where βcl is the loss-rate coefficient for photoassociative
collisions induced by the catalysis laser, and d is the duty
factor of the catalysis laser. Following the treatment given in
Ref. [42], we note that the term βcl ∝ P (Ecl)σcl, where P (Ecl)
is the trap loss probability at energy Ecl and σcl is the cross
section for the photoassociative collision. At low total pump
laser intensity, σcl = πr2

Cf , where rC (the “Condon radius”)
is the interatomic separation at which the laser is resonant
with the energy of the dissociative molecular state. Given
the interaction potential energy above threshold is V (R), rC

is defined by V (rC) = h�. The factor f is the excitation
probability and is proportional to the resonant interaction
time. Since the interaction time is inversely proportional to
the slope of the potential dV/dR at rC, we can write σcl ∝
R2(dV/dR)−1|R=rC . In the case of 87Rb-87Rb∗ collisions, the
resonant dipole-dipole interaction is of the form V (R) ∼ R−3,
and so σcl ∝ �−2 [52,70]. We find, therefore, that the loss-rate
coefficient βcl ∝ P (Ecl)/�2 should theoretically remain small
for Ecl < Utrap, exhibit a sharp rise to a maximum when
Ecl = Utrap, and decrease as the detuning is increased beyond
this point. Since the MOT depth may be anisotropic and since
there are two ground states (in the case of 87Rb, separated
by 6.8 GHz) from which the Rb atoms can be excited, the
probability of loss P (Ecl) will not be a perfect step function
equal to 1 when h� = 2Utrap. Nevertheless, we still expect the
peak in the catalysis laser-induced loss rate to occur at or near
the value of the detuning corresponding to the depth of the
trap or, more precisely, the effective escape kinetic energy of
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FIG. 4. (Color online) J = N0
ss

Nss
− 1 as a function of the duty factor

d for three different catalysis laser detunings �1 = 27.3 GHz (solid
triangles), �2 = 16.2 GHz (open squares), and �3 = 5.7 GHz (solid
circles) with a MOT pump detuning of −5 MHz and pump intensity

of 2.7 mW/cm2. N0
ss

Nss
is the ratio of the steady-state number with the

catalysis laser off to the number with the laser on. The dotted lines
are guides for the eye, while the solid lines are linear fits to the data
excluding the points at large d where the variation is nonlinear. The
slope of this ratio versus d is equal to βclnss

(�+βnss) and is proportional to
the catalysis laser-induced loss rate, βcl.

atoms from the MOT. The aim, therefore, is to determine the
catalysis laser-induced loss rate, βcl, as a function of �.

Equation (20) can be solved for the steady-state trap
population

Nss = R

� + (β + dβcl)nss
, (21)

where nss is the average steady-state density distribution
of the trapped atoms. The loss rate per atom due to the
catalysis laser-induced photoassociation is βclnssd. If this loss
rate is too significant, the MOT atom number can reduce
to the point where nss is suppressed with respect to its
value when the catalysis laser is off, and this variation can
complicate the interpretation. Hoffmann et al. limited the
density variation induced by the catalysis laser while ensuring

that the instantaneous intensity was always the same by turning
on and off the laser with a variable duty factor, d ∈ [0,1] .
This was done, instead of simply lowering the intensity of the
catalysis laser, to avoid additional complications arising from
the nontrivial intensity dependence of the photoassociation
process [52]. The duty factor was controlled via feedback
to maintain a constant steady-state atom number and density
in the MOT as the catalysis laser detuning was varied. The
loss-rate coefficient, βcl, was, then, proportional to the inverse
of the duty factor.

In our experiment we have simplified this approach by
recording the steady-state MOT number at each catalysis laser
detuning for a range of duty factors, Nss, and we compare these
to the steady-state MOT number in the absence of the catalysis
laser, N0

ss. The ratio of these two steady-state signals is

N0
ss

Nss
= 1 + βclnssd

� + βnss
. (22)

From Eq. (22) we define the parameter,

J = N0
ss

Nss
− 1 =

(
βclnss

� + βnss

)
d. (23)

A plot of J as a function of the duty factor is linearly pro-
portional to βcl provided the steady-state density is constant.
When this assumption breaks down, namely when the duty
factor is high, the variation of J with d is no longer strictly
linear. Figure 4 shows this ratio for various values of d at
different values of the detuning � and for a MOT with a cooling
laser detuning of −5 MHz and a total pump laser intensity of
2.7 mW/cm2. In the range of small d, where the dependence
is linear, we extract the slopes which are proportional to the
catalysis laser-induced loss rate and plot them as a function of
detuning � in Fig. 5. The peak loss rate for the data shown
occurred at 27(5) GHz, corresponding to an effective trap depth
of 0.64(0.12) K.

FIG. 5. The quantity βclnss
� + βnss

, proportional to the photoassociation
induced loss rate, measured as a function of the catalysis laser
detuning, �. These data correspond to a MOT with a cooling laser
detuning of −5 MHz and a total pump laser intensity of 2.7 mW/cm2

(corresponding to a total power of 1.4 mW for the MOT). The peak
loss rate occurred at 27(5) GHz and indicates that the effective trap
depth was 0.64(0.12) K.
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V. RESULTS AND DISCUSSION

Table I lists the observed loss-rate coefficients 〈σv〉Rb,Ar for
different MOT pump detunings and intensities. For trap depths
in the range from 0.5 K to 3.0 K, we have approximated the
model loss-rate coefficient by

〈σv〉 = [0.702 − 0.132 ln(Utrap/1 mK)] × 10−9 cm3 s−1.

(24)

This approximation is a fit to calculated values of 〈σv〉Rb,Ar

at discrete trap depths. The effective MOT depth is deduced
for each value of 〈σv〉 by inverting Eq. (24) and solving for
Utrap. The results, compared to the trap depths deduced via
the catalysis laser measurements are summarized in Table II.
Figure 6 shows a plot of the measured loss-rate coefficient
as a function of the MOT depth deduced from the catalysis
laser photoassociation. Overlaid on these data is the model
elastic collision loss-rate coefficient (solid curve). The close
agreement between the data and the prediction indicates that
the trap depth as determined by the loss rate is consistent with
the depth as determined by the catalysis laser method. Figure 7
displays the same results in a different format. Here the MOT
depths deduced from the collision loss-rate coefficient are
plotted versus the depths measured by the catalysis laser
method. The uncertainties in the measurements translate into
a range of trap depths. These values are plotted as a function
of the effective MOT depths deduced using the catalysis laser
technique. The solid line indicates ideal agreement and, as is
seen, the two methods agree within our measurement error.

The loss-rate method for determining trap depth has several
advantages. It is a simpler to implement than the catalysis
laser technique. Trap loss, deduced from a MOT loading
curve or from population decay from a magnetic (or optical
dipole) trap is readily measured. By contrast, the catalysis
technique requires the use of an additional, widely tunable
laser which must be carefully controlled to ensure that the
trap density is not significantly perturbed. As the total pump
laser intensity increases, the two-body loss rate of atoms from
the MOT increases, increasing � + βnss and reducing the
relative size of the peak in βclnss

�+βnss
as a function of catalysis laser

detuning (see Fig. 8). This leads to larger uncertainty in the trap
depth determination using the photoassociation technique. The
catalysis method also suffers from the complication of having
several nondegenerate ground states and several repulsive
states that are excited by the catalysis laser, leading to a
broadening of the peak loss rate versus detuning. This and

TABLE I. Measured loss-rate coefficients 〈σv〉Rb,Ar from the
MOTs under different trapping conditions. The intensity is the total
pump intensity for the six-beam MOT.

MOT detuning Intensity Loss-rate coefficient
(MHz) (mW cm−2) (×10−9 cm3 s−1)

−5 2.7 0.780 (0.043)
−8 2.7 0.737 (0.033)
−10 2.7 0.696 (0.031)
−12 6.9 0.637 (0.008)
−12 9.6 0.615 (0.006)
−12 34.5 0.598 (0.003)

TABLE II. Measured effective trap depth for a 87Rb MOT based
on loss-rate coefficient measurements (U〈σv〉) and on catalysis laser
photoassociation losses (Ucl). The intensity is the total pump intensity
for the six-beam MOT.

Detuning Intensity U〈σv〉 Ucl

(MHz) (mW cm−2) (K) (K)

−5 2.7 0.55 (0.15) 0.64 (0.12)
−8 2.7 0.77 (0.17) 0.88 (0.12)
−10 2.7 1.05 (0.22) 1.03 (0.12)
−12 6.9 1.64 (0.10) 1.80 (0.18)
−12 9.6 1.93 (0.07) 1.99 (0.18)
−12 34.5 2.20 (0.05) 2.23 (0.24)

a nontrivial intensity dependence on the photoassociation rate
can complicate the trap depth determination [52]. Moreover,
we note that the photoassociative method relies on intratrap
collisions between particles in a known internal state and is
therefore not useful if the trap density is too low or if the
trapped ensemble includes particles in different internal states
with significantly different excitation energies.

Finally, some complications of determining the MOT trap
depth from trap loss measurements should be pointed out.
In the MOT a fraction of the trapped atoms are in an
excited electronic state (2P3/2). The collision rate between
a background gas atom or molecule and atoms in the trap will
depend on the collision partners and the electronic state of
the trapped atoms. The analysis presented in this paper has
assumed that the majority of the atoms in the MOT are in
the ground electronic state and that the long-range interaction
potential can be characterized by a single van der Waals C6

coefficient. If a sufficient fraction of the atoms are in an excited
electronic state, then one would expect to observe deviations
from the ground-state prediction presented here since the C6

coefficient for 87Rb and 40Ar depends on the electronic state

FIG. 6. (Color online) The open squares are the measured trap
loss coefficients plotted at the trap depths deduced by the catalysis
laser technique. The solid curve is the model trap loss-rate coefficient
as a function of trap depth. The agreement between the data and the
model indicate that the trap depth can be deduced from a measurement
of the loss-rate coefficient.
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FIG. 7. (Color online) The measured MOT trap depths using
the trap loss method, U〈σv〉, versus the depth determined by the
catalysis laser method, UCL. The line indicates the locus of values
corresponding to hypothetically perfect agreement. As is evident,
the two techniques yield the same results within measurement
error.

of 87Rb. To quantify the effect of excited-state collisions
we compute the excited-state fraction, f , using a simple
two-level model with a correction for the saturation intensity
as described in [51]. From the expected dispersion coefficients
for interactions between 87Rb in the 2P3/2 state and 40Ar in its
ground electronic state [50], we estimate that deviations from
the predicted loss-rate coefficients presented would be less
than 10% for all MOT settings studied, within the uncertainty
of the current measurements. This estimate is based on the

FIG. 8. (Color online) Catalysis laser data for MOTs with pump
laser settings of −5 MHz 2.7 mW/cm2 (circles), −10 MHz 2.7
mW/cm2 (squares), and −12 MHz 9.6 mW/cm 2 (triangles),
corresponding to measured trap depths of 0.64 (0.12) K, 1.03 (0.12) K,
and 1.99 (0.18) K, respectively. As the trap depth increases, and/or
the photoassisted two-body losses induced by the MOT pump
laser increase, the less sensitive is the catalysis laser trap depth
measurement.

assumption that the loss-rate coefficient measured, 〈σv〉meas,
can be expressed in terms of the loss-rate coefficients from
collisions of 40Ar with trapped 87Rb in its ground state, 〈σv〉g,
and its excited state,〈σv〉e, as

〈σv〉meas = f 〈σv〉e + (1 − f )〈σv〉g. (25)

Higher-precision measurements, measurements on MOTs
with a higher fraction of excited state atoms, or loss-rate
measurements of rubidium atoms due to collisions with hot
rubidium atoms (where the long range Rb-Rb∗ interaction
is dominated by a 1/R3 dependence) would provide a
method of precisely measuring the excited-state fraction
in a MOT.

Our proposed trap depth determination method depends on
measurements of density of an introduced species. A bootstrap
method for correcting for systematic deviations in pressure
measurements was described in Sec. IV, which relied upon
the presence of an additional type of trap whose depth could
be known more readily. In our case we used the measurement
of the loss rate from a 3.14 (0.84)-mK-deep QMT to quantify
and correct for systematic errors in the argon pressure readings
from the RGA. Without the bootstrap correction, the trap
loss technique of inferring trap depth from measurement of
loss-rate coefficient remains valuable but its accuracy will be
subject to the accuracy at which the density of the introduced
background gas species (Ar in our case) can be measured.

Finally, we note that this method is most accurate for
regions where the loss-rate coefficient, 〈σv〉, changes the most
rapidly with trap depth which corresponds to trap depths
on the order of the energy scale for quantum diffractive
collisions, εd = 4πh̄2/mσ , where m is the trapped atom
mass and σ is the total collision cross section between the
trapped particle and the background particle [34,71]. For
Ar-Rb collisions, this energy scale is approximately 10 mK,
and a trap of this depth would exhibit roughly half the
loss rate of a trap with vanishingly small depth. With the
proper choice of a different background gas with a larger
(smaller) total cross section, this energy scale of maximum
sensitivity can be conveniently shifted to lower (higher)
values.

VI. CONCLUSIONS

In summary, a technique for measuring the depth of any
type of trap based on particle loss-rate measurements induced
by elastic collisions with a background gas is presented. This
technique is demonstrated with the use of trapped, laser-cooled
rubidium atoms to measure the trap depth of a MOT based on
the cross section for 87Rb-40Ar collisions. The trap depth is
extracted by comparing the measured elastic collision loss-rate
coefficients over the range of 0.5 K to 2.5 K to the values
predicted using the known long-range C6 coefficient. The
trap depth results obtained from this method are verified by
trap depth measurements based on trap loss induced with a
catalysis laser. The two techniques agree within experimental
uncertainties. An advantage offered by the collision loss-rate
measurement is its simplicity of implementation. The trap loss
technique for a MOT has a convenient bootstrap in that one can
eliminate systematic errors introduced by inaccurate pressure
measurements by comparing the loss-rate coefficient from a
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trap of known depth (for example, a QMT) to that of the
MOT. The trap loss technique is applicable to any type of trap,
including an optical or a QMT, and at extremely low densities
where intratrap collisions are rare. When used for a MOT,
the loss rate will be sensitive to the presence of excited-state
atom collisions (for example, Rb-Rb∗) and may provide a
method for sensitively measuring the excited-state fraction in
the MOT.

ACKNOWLEDGMENTS

The authors acknowledge the support of the Canadian
Institute for Advanced Research (CIfAR), the Natural Sciences
and Engineering Research Council of Canada (NSERC), the
Canadian Foundation for Innovation (CFI), the Peter Wall
Institute for Advanced Studies, and the BCIT School of Com-
puting and Academic Studies Professional Development Fund.

[1] D. Sesko, T. Walker, C. Monroe, A. Gallagher, and C. Wieman,
Phys. Rev. Lett. 63, 961 (1989).

[2] C. D. Wallace, T. P. Dinneen, K.-Y. N. Tan, T. T. Grove, and
P. L. Gould, Phys. Rev. Lett. 69, 897 (1992).

[3] J. Kawanaka, K. Shimizu, H. Takuma, and F. Shimizu, Phys.
Rev. A 48, R883 (1993).

[4] N. W. M. Ritchie, E. R. I. Abraham, and R. G. Hulet, Laser Phys.
4, 1066 (1994).

[5] N. W. M. Ritchie, E. R. I. Abraham, Y. Y. Xiao, C. C. Bradley,
R. G. Hulet, and P. S. Julienne, Phys. Rev. A 51, R890 (1995).

[6] S. D. Gensemer, V. Sanchez-Villicana, K. Y. N. Tan, T. T. Grove,
and P. L. Gould, Phys. Rev. A 56, 4055 (1997).

[7] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Rev. Mod.
Phys. 71, 1 (1999).

[8] G. D. Telles, W. Garcia, L. G. Marcassa, V. S. Bagnato,
D. Ciampini, M. Fazzi, J. H. Müller, D. Wilkowski, and
E. Arimondo, Phys. Rev. A 63, 033406 (2001).

[9] A. R. L. Caires, G. D. Telles, M. W. Mancini, L. G. Marcassa,
V. S. Bagnato, D. Wilkowski, and R. Kaiser, Braz. J. Phys. 34,
1504 (2004).

[10] B. Ueberholz, S. Kuhr, D. Frese, V. Gomer, and D. Meschede,
J. Phys. B 35, 4899 (2002).
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A. Dalgarno, Phys. Rev. A 82, 022704 (2010).

[24] B. C. Sawyer, B. K. Stuhl, D. Wang, M. Yeo, and J. Ye, Phys.
Rev. Lett. 101, 203203 (2008).

[25] R. S. Schappe, T. Walker, L. W. Anderson, and C. C. Lin, Phys.
Rev. Lett. 76, 4328 (1996).
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Lett. 102, 223201 (2009).

[30] C. Zipkes, S. Palzer, L. Ratschbacher, C. Sias, and M. Köhl,
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