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Electron loss from fast heavy ions: Target-scaling dependence
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The target dependence for projectile electron loss is investigated using experimental data taken from the
literature. Impact energies range from a few tens of eV/u to tens of MeV/u. For energies less than several
MeV/u, the target dependences are shown to be very similar, independent of projectile species and charge
state. Overall, however, with increasing impact energy the cross-section dependence on the target nuclear charge
systematically increases. It is shown that none of the existing cross-section target scaling models reproduce these
features. A model, based on Born scaling and including both the antiscreening and screening contributions to
projectile electron loss, is developed. With the inclusion of relativistic effects, which increase the contribution
from both channels at high energies, and “target saturation” effects, which reduce the contribution from the
screening term for heavy targets and lower impact energies, this model describes quite reasonably all available
experimental data. A simple scaling formula that reproduces the measured atomic number and impact velocity
dependences is provided. This formula is applicable for projectile electron loss in collisions with either atomic
or molecular targets and for impact energies ranging from a few to tens of MeV/u.
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I. INTRODUCTION

Fast ions traversing any medium, e.g., a dilute gas,
condensed matter, biological material, or a plasma, undergo
inelastic interactions with the atomic and molecular compo-
nents of the medium. This transfers energy from the ion to
the media. As a result, the media is altered both chemically
and physically, and the kinetic energy of the ion is reduced.
Also, in particular at higher impact energies, the projectile
can be ionized. The current work was initiated to address
a long-standing question as to how projectile ionization
scales for different targets. Another long-standing question
has also been addressed, namely, the velocity dependence
in the intermediate- to high-energy regime for electron-loss
processes.

Projectile ionization is also referred to as projectile strip-
ping or electron loss. For interactions with atomic targets, it
has the form

P q+ + T → P (q+n)+ + T i+ + (n + i)e−. (1)

Here P represents the fast ion (the projectile) with charge
q, T is the target atom, and n and i are the number of projectile
and target electrons that are liberated during the collision,
respectively. Note that projectile ionization requires n � 1,
while the target can either be simultaneously ionized or remain
in its initial state. Hence, i � 0. Equation (1) also applies
for neutral (q = 0) and negative projectiles (q < 0). For
interactions with molecular targets, Eq. (1) must be altered
to include target fragmentation into charged and uncharged
components.

Numerous electron-loss studies have been performed over
the decades due to its fundamental and applied importance.
From a basic atomic physics viewpoint, they are useful
for investigating and understanding atomic processes and
interactions. For example, they have an advantage over target
ionization studies in that few- to many-electron systems can be

systematically studied simply by altering the projectile nuclear,
ZP , and total, q, charges. They can be used to investigate the
passive and active participation of bound target electrons by
comparing electron-loss data obtained using different targets
or by using data obtained for the same target but where
simultaneous and independent ionization of the target and
projectile are compared.

Electron-loss studies have also been performed for applied
purposes. One major reason is associated with radiation dam-
age of materials and/or of biological tissues by high-energy
particles. Another is with regard to the creation, acceleration,
transport, and storage of ions for research purposes. For
example, electron loss occurring when high-energy beams
interact with background gases within beamlines or storage
rings has serious detrimental effects. These include loss of
beam luminosity (due to scattering), decreased storage times
(due to losses at bending magnets or focusing elements because
of altered charge states or degraded energies), and possible ero-
sion, heating, or vacuum loading in the accelerator and storage
rings (due to interactions with the vacuum walls, lenses, etc.
by the lost beam components). Any lost beam components can
lead to localized heating of surfaces. This desorbs gases or
atoms from the surfaces, which further degrades the vacuum,
which increases the loss processes, etc. In the worst case,
an avalanche effect takes place resulting in complete loss
of the beam. Increased radiation levels during operation in
addition to nuclear activation of beamline components are also
major concerns. All of these are crucial technical problems at
high-energy accelerator laboratories, e.g., at GSI, Brookhaven,
CERN, Dubna, etc., where considerable effort and expense
are being devoted in order to predict and circumvent such
problems [1–3].

As an example, a goal of the new Facility for Antiproton
and Ion Research (FAIR) at the GSI Helmholzzentrum für
Schwerionenforschung in Darmstadt, Germany, is to produce
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intense beams of high-energy heavy ions [4]. To obtain high
beam intensities and densities, the lowest possible charge-state
ions must be used in order to reduce the space charge.
For such ions traveling with MeV/u to GeV/u velocities,
electron loss is the dominant mechanism. Thus, to avoid or to
minimize problems, information about total loss probabilities,
and information about what charge states are produced and
with what relative probabilities, are needed for a broad range
of systems and energies. The systems include interactions
with few-electron targets such as H2 and He, i.e., the
primary components found in high vacuum environments,
plus interactions with many-electron targets such as N2, CO,
CO2, H2O, etc., which occur as lesser components in the
vacuum or which can be desorbed from surfaces. Even though
they may be far less abundant, interactions with heavier
gases are especially important because they have large cross
sections. Hence, locally or on average, they can contribute
significantly to the total beam losses. In addition, interactions
with heavier atoms and molecules are primarily responsible for
multiple-electron loss from the ion. This is important because
ions which have suffered multiple, as opposed to single,
electron loss will follow different trajectories and will impact
surfaces at different locations depending upon their charge.
For these reasons, numerous experimental and theoretical
studies of electron loss have been performed throughout the
years.

Calculating or measuring all possible systems and energies
can be avoided if scaling rules can be established. However,
as will be shown, the different scaling models which have
been suggested do not account for the similarities and trends
found in the experimental data. Here, we present a method
of determining the number of target electrons which actively
and passively contribute to projectile electron loss. Our
method includes relativistic and “target saturation” effects
which, respectively, increase the number of active and passive
target electrons at high energies and reduce the number of
passive electrons for heavy targets and lower energies. A
simple scaling formula that reproduces observed experimental
features for a wide variety of systems and impact energies is
provided.

II. TARGET SCALING: EXPERIMENTAL OVERVIEW

Electron-loss cross sections have been measured for atomic
targets ranging from helium to xenon [5–14]. These studies
have shown that for lighter targets, typically meaning for ZT

< 10, where ZT is the target nuclear charge, the cross sections
increase rapidly, e.g., approximately as Zn

T , where n ∼ 1.4–1.7.
But, for heavier targets the cross sections increase more slowly
and appear to saturate in some cases. Examples of some of
these data are shown in Fig. 1 where, for comparison purposes,
the target dependence for each ion has been normalized to unity
at ZT = 10. Because of this normalization and the different
target dependences, the curves for different energies intersect
and cross at ZT = 10. The data in Fig. 1 cover an extremely
broad range of energies, e.g., over six orders of magnitude
with the highest velocities being approximately a quarter of the
speed of light. They also cover a wide range of ion species, e.g.,
singly charged ions ranging from He+ to Kr+, one-electron
ions such as He+ and N6+, low- and medium-charge state, and

FIG. 1. (Color online) Single-electron-loss cross sections mea-
sured for various ions and ion energies as a function of the target
atomic number, ZT , normalized to unity at ZT = 10. Because of this
normalization and the different target dependences, the curves for
different energies intersect and cross at ZT = 10. The experimental
data are from the following sources: Kr+, Ref. [12]; 0.25 MeV/u
He+, Ref. [6]; C3+, Ref. [7]; Fe4+, Refs. [5,13]; U4+, U6+, and U10+,
Ref. [11]; Pb54+, Ref. [14]; Xe18+, Ref. [8]; Ar6+ and Ar8+, 30 MeV/u
He+ and N6+, Refs. [9,10].

heavy ions such as Ar6+, Ar8+, Fe4+, Xe18+, U4+, U6+, U10+,
and Pb54+.

As seen, in spite of the vast differences in velocities and
ion species, the normalized electron-loss data for energies
between 60 eV/u and 19 MeV/u have very similar target
dependences which agree in shape within approximately a
factor of 2. These dependences are in sharp contrast to the
much steeper dependences and no apparent change in slope
between the “light” and “heavy” target regime that is observed
for the two highest energies.

A closer look, however, shows that there is a general trend
toward steeper and steeper slopes with increasing energy. It
should be noted that although the comparisons shown are made
using single-electron-loss data, similar comparisons using total
(the sum of all single- and multiple-loss cross sections) and
weighted (the sum of the individual cross sections multiplied
by the number of projectile electrons lost in each case)
electron-loss cross-section data yield similar features. The
only difference is that in going from single loss to total loss to
weighted loss, the spread in the data for ZT < 10 significantly
decreases.

III. OVERVIEW OF THEORETICAL MODELS AND
COMPARISON WITH EXPERIMENT

Over the years, numerous theoretical models for calculating
electron loss and for describing how electron loss scales as a
function of impact velocity or target have been introduced. In
this section we briefly outline many of these methods with
emphasis on what scaling features they predict.

One of the first models was introduced in 1948 by Bohr
who used the Thomas-Fermi model to estimate the screened
Coulomb potential between two approaching atoms [15].
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He predicted that in collisions of heavy systems the cross
section for single-electron loss should scale as (ZP

1/3 +
ZT

1/3)2, where ZP is the projectile nuclear charge. A few
years later Firsov [16] numerically derived the interatomic
potentials of two colliding Thomas-Fermi atoms and fitted
these potentials using the Thomas-Fermi screening length.
He obtained a slightly different scaling, namely, (ZP

1/3 +
ZT

1/3)2/3. Several decades later, Alton et al. [5] modified
the Bohr formula slightly by multiplying by the number of
target electrons in the outermost subshell and dividing by their
ionization potential. With this modification, better agreement
with the experimental measurements as a function of ZT was
found.

Bates and Griffing outlined the basic method for performing
quantitative calculations of electron loss many years ago [17].
They showed that two interaction channels, one involving
the interaction of a partially screened target nucleus with
the projectile electron, the other involving a direct interaction
between a target and a projectile electron, must be considered.
The first mechanism—where the target electrons remain in
their initial state and have a passive role of shielding the nuclear
charge—decreases the ionization amplitude with respect to
that from an unscreened nucleus. It has been referred to as
the screening, the e-n, or the elastic channel. The second
mechanism—where the target electrons actively participate in
ionization of the projectile—has been called the antiscreening
(reflecting the fact that it increases the electron-loss cross
section), the e-e, or the inelastic channel [18–20].

Using the Born approximation, Bates and Griffing showed
that these channels contribute to the differential cross sections
for projectile ionization by neutral targets as follows:

screening : d2σ (ε) =
∫

q min
A(ε,q)[|ZT − ZT F (q)|2] dq

(2)

and

antiscreening : d2σ (ε) =
∫

q ′ min
A(ε,q)

× [ZT − ZT |F (q)|2] dq, (3)

where F(q) is the target electron form factor as a function of the
momentum transfer, q, and A(ε,q) contains information about
the projectile. For the screening channel, Eq. (2), the brack-
eted term represents the target nuclear charge, ZT , partially
screened by some of its bound electrons, and is referred to as
the effective target nuclear charge, ZT eff . Thus, the screening
cross section scales as Z2

T eff . In contrast, for the antiscreening
channel, Eq. (3), the term within brackets represents the
number of target electrons which interact directly with those
of the projectile. We will refer to this as NT eff , the effective
number of target electrons. The antiscreening cross section
scales linearly with NT eff . Since the values of F(q) lie between
0 and 1, both ZT eff and NT eff can vary from ZT to 0. Additional
details can be found in [21].

One important point to note is that the calculations of e-n
and e-e channels in Eqs. (2) and (3) have different integration
lower limits for the momentum transfer. For the e-n channel
only the projectile electron is ionized, while for the e-e channel
the momentum transfer is required to remove electrons from

both the projectile and the target. For few-electron projectiles
and energies well above threshold, these differences are
unimportant and the Born model predicts that the electron-loss
cross sections will scale as Z2

T eff + NT eff . For many-electron
targets, inner shell electrons must also be included and these
electrons are much more tightly bound. Thus, Eqs. (2) and (3)
have to be applied shell by shell which makes the values for
ZT eff and NT eff depend on the impact energy. This complicates
the calculations or requires information about “average” values
for ZT eff and NT eff .

Another complicating issue regarding heavy targets is the
breakdown of the perturbative treatment, which is the basis
of Eqs. (2) and (3), due to the large field of the target
nucleus in collisions with small impact parameters. One
approach to include this was introduced by Voitkiv, Sigaud, and
Montenegro [22]. They used the sudden approximation and
accounted for the nonperturbative character of the collision
and the possibility of multielectron transitions in the target
atom to calculate electron loss from He+ projectiles in
collisions with heavy targets. They determined the cross
sections for the screening contribution for He+ ions in noble
gases and were able to describe rather well the saturation
of this contribution as the atomic number of the target
increases.

In contrast with the screening, the antiscreening mode can
be well treated using perturbative approaches. Following the
ideas of Anholt [18], Montenegro and co-workers [23,24]
showed that the antiscreening contribution, within the im-
pulse approximation [25], was equal to the electron-impact
ionization cross section times the average number of active
target electrons, e.g., σanti = 〈n〉σe. Thus, from measured
antiscreening cross sections, i.e., cross sections where pro-
jectile and target ionization are measured in coincidence, and
calculated or measured electron-impact cross sections, the
average number of active target electrons, i.e., 〈n〉, could be
determined.

More recently, Santos et al. [7,26] further explored these
concepts and used C3+ and He+ data to determine the ratio
σanti/σe, which combined with the impulse approximation,
enabled them to estimate the average number of active target
electrons for the antiscreening mode. This was done as a
function of collision energy and fitted to

〈n〉E = f (E)〈n∞〉, (4)

where 〈n∞〉 is the value of the average number of active target
electrons at a very high impact energy and f(E) is a function of
the collision energy, E. Based on the impulse approximation,
estimates for 〈n∞〉 were obtained which included contributions
from all target subshells, providing the following values:
1.4 for He, 5 for N, 5.8 for Ne, 7.8 for Ar, 12.4 for Kr, and 15.1
for Xe. However, this method yielded a result where the active
number of electrons for the antiscreening channel decreased
with increasing impact energy. This is counterintuitive to
the idea that more bound electrons become energetically
accessible at higher energies, a point that was addressed in
their recent He+ paper [26].

If we limit ourselves to few-electron targets or where
only a single shell is involved, reasonable values for the
screening and antiscreening cross sections result. For example,
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Meyerhof et al. [27] used the PWBA (plane wave Born
approximation) to calculate electron loss from few-electron
ions such as He+ and O7+ colliding with molecular hydrogen.
They found that even though the binding energies of the
ionized electrons are quite different for the two projectiles,
the antiscreening and screening processes have the same
relative magnitudes and energy dependences. Several studies
by Montenegro and co-workers [6,7,28–30] also used the
PWBA to calculate electron loss from few-electron ions such
as He+, C3+, and O5+. Of particular relevance to the present
work is that these studies implied that the scaling for the
screening channel is influenced by saturation effects occurring
for heavy targets, i.e., for large ZT [29,31],.

Concomitantly, with these and other studies which mainly
focused on the understanding of the dynamical details of the
electron-loss processes, other studies concentrated on cross-
section scaling. Shevelko developed the LOSS-R code [32,33]
which used the PWBA to calculate single-electron-removal
processes induced by protons and electrons. These were
then scaled to simulate ionization by the nucleus and bound
electrons of various atomic and molecular targets. For electron
loss from Pb-like ions [34] the cross sections were found to
scale as (ZT /IP )1.4 and the energy to scale with IP , where
IP is the projectile ionization potential. This code was further
developed and modified into the DEPOSIT code which was
based upon a semiclassical model [33].

In 1985, Kaneko used a unitarized impact-parameter
method to calculate electron loss and excitation from He+
colliding with various atoms [35]. With regard to the target
dependence, he found that the cross sections scale roughly
as ZT

1.3 for ZT < 10. For ZT > 10, the scaling is slower,
e.g., with powers decreasing from 0.39 to 0.17 as the impact
velocity increases from 0.1 to 0.9 MeV/u.

Extensive calculations of single- and multiple-electron
loss for a variety of systems were performed by Olson
who used an n-body classical trajectory Monte Carlo
(nCTMC) method [8,36–39]. This theory includes multiple-
electron removal processes and has been applied to many
types of atomic interactions between many-electron projec-
tiles and targets. However, these studies primarily concen-
trated on energy and charge-state dependences for specific
systems, and target-scaling properties were not explicitly
discussed.

Many models and calculations appearing in the litera-
ture were applied to specific cases and are not suitable to
obtain general scalings valid for a broad range of targets
and projectile velocities. Therefore, in Fig. 2 we compare
available experimental data with theories which have clearly
defined predictions for the target-scaling dependences. The
experimental data (normalized to unity at ZT = 10) are the
same as in Fig. 1. Here 38 MeV/u N6+ are the solid black
circles, 30 MeV/u He+ are the solid gray triangles, and the
open red stars are average values calculated for all energies
smaller than 10 MeV/u. The solid line, Born ZT , is a Born
dependence which assumes stripping by the full nuclear charge
and all of the bound electrons, e.g., ZT

2 + ZT . It can be seen
that this scaling yields a much steeper dependence than is
observed for even the highest-energy data and yields no change
in slope such as that observed in the lower-energy data. Better
agreement to the high-energy data is obtained if, instead of

FIG. 2. (Color online) Single-electron-loss cross sections com-
pared to various theoretical models as a function of the target atomic
number, ZT , normalized to unity at ZT = 10. The experimental data
are the same as in Fig. 1. Here, the filled circles and triangles are the 38
and 30 MeV/u data, respectively, and the open stars represent average
values calculated for energies less than 10 MeV/u. For explanations
of the theoretical calculations, see text.

using the full nuclear and bound electron charges, we use a
simple assumption that at a particular impact energy there
is an average impact parameter outside which all electrons
contribute to the antiscreening channel and inside which all
electrons screen the nuclear charge. Under this assumption, the
overall scaling becomes N2

T eff + NT eff , shown by the dashed
curve, Born NT eff . For the effective number of electrons, NT eff ,
we used the values averaged for all target subshells suggested
by Santos et al. [7] that were listed above. This improves the
Born model somewhat at the higher energies but predicts cross
sections that are much too large for heavy targets and lower
energies.

The blue band shows Bohr scaling [15], namely, (ZP
1/3 +

ZT
1/3)2, which agrees reasonably well with the low-energy

data for heavy targets but drastically overestimates the relative
cross sections for light targets. The green band represents
the Alton model [5] without the division by the ionization
potentials. With this division, the slope in the low ZT region
will decrease with relatively little change in the higher ZT

region. Thus, although the Alton model yields much better
agreement for lighter targets, it produces poorer agreement
for heavy targets. The scaling suggested by Firsov [16], e.g.,
(ZP

1/3 + ZT
1/3)2/3, the magenta band, has a very flat target

dependence and agrees poorly with experiment. Since these
models all have projectile, as well as target, nuclear charge
dependences, the bands show limiting values obtained using
ZP = 1 and 92.

Although for ionization of 0.09 MeV/u He+, the calcu-
lations of Kaneko [35] (the small blue filled circles) predict
a target dependence that matches the low-energy data very
well. However, with increasing velocity, this theory predicts
that the target dependence should become flatter, whereas the
available data indicate just the opposite. Thus, the apparently
good agreement seen in Fig. 2 is coincidental.
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IV. PRESENT WORK AND FINDINGS

The comparisons presented in the last section lead to the
conclusion that none of these scaling rules are compatible
with experiment over the entire range of energies and targets.
In this section, a model is developed aiming to improve
the agreement. The model is based on using the closure
approximation, as outlined by Montenegro and Meyerhof [31],
to obtain estimates for ZT eff and NT eff . The screening and
antiscreening cross sections can be written as [20,31]

σscreen = 8π(
v
v0

)2

∫ ∞

q0

dq

q3
|Fsf (q)| 2

∣∣∣∣ZT − 〈φ0|
∑

i

ei �q· �ri |φ0〉
∣∣∣∣

2

(5)

and

σanti = 8π(
v
v0

)2

∑
n 	= 0

∫ ∞

qmin

dq

q3
|Fsf (q)|2

∣∣∣∣〈φn|
∑

i

ei �q· �ri |φ0〉
∣∣∣∣
2

. (6)

Here, v0 is the Bohr velocity, v is the projectile velocity,
and q is the momentum transfer with qmin = q0 + qnwhich in-
cludes both target and projectile ionization and excitation. Val-
ues for q0 and qn are given by q0 = (�E)projectile/h̄v and qn =
(�E)target/h̄v. Thus, for the screening channel with the target
remaining in its initial state, qn = 0, qmin = q0. ϕ0 and ϕn are
the initial and final target wave functions, respectively. Fsf (q)
is defined as Fsf (q) = 〈φf |ei �q· �r |φs〉, where ϕs and ϕf are the
initial and final projectile wave functions, respectively.

Recalling that F0(q) = 〈φ0|
∑

i e
i �q· �ri |φ0〉 is the form factor

for the target initial state, the screening cross section can be
written as

σscreen = 8π(
v
v0

)2

∫ ∞

q0

dq

q3
|Fsf (q)|2|ZT − F0(q)|2. (7)

The term |〈φn|
∑

i e
i �q· �ri |φ0〉|2 which appears in the antis-

creening cross section, e.g., Eq. (5), can be approximated by∣∣∣∣∣〈φn|
∑

i

ei �q· �ri |φ0〉
∣∣∣∣∣
2

∼= |F0(q)|2
ZT

. (8)

This is a reasonable approximation for the antiscreening
as the major contribution for this channel comes from the
equivalent electrons in the outermost shells.

Substituting Eq. (8) into Eq. (6), the antiscreening cross
section becomes

σanti = 8π(
v
v0

)2

∫ ∞

q0

dq

q3
|Fsf (q)|2

[
ZT − |F0(q)|2

ZT

]
. (9)

In Eqs. (7) and (9) we define the effective charges seen by
the projectile electron to be

ZT eff = ZT − F0(q) and NT eff = ZT − |F0(q)|2
ZT

(10)

for the screening and antiscreening channels, respectively.
Within the impulse approximation, the antiscreening cross

section can be written as [7,24–26]

σ anti =
∑
nl

Nnlσif

(
qnl

min

)
. (11)

Here Nnl is the number of electrons in the nl target subshell
which actively participate in the antiscreening channel and

σif (qmin) = σscreen = 8π(
v
v0

)2

∫ ∞

qmin

dq

q3
|Fsf (q)|2 (12)

is the PWBA cross section for ionization of the projectile by
a pointlike particle of unit charge [24,25]. In Eq. (11), qnl

min is
the minimum momentum transfer for an electron occupying
the nl subshell of the target [7,26].

Since outershell electrons of the target give the largest
contribution to the antiscreening channel, the values of qnl

min
do not vary significantly for the nl target subshells which
effectively contribute to the projectile loss. Thus, from the
above equations,

σanti = NT effσif (qmin), where NT eff
∼=

∑
nl

Nnl = 〈n0〉.

(13)

Here, 〈n0〉 is the average number of active target electrons
in the antiscreening channel as given by Santos et al. [7,26].

Finally, rewriting the right half of Eq. (10) as

F0(q) ∼=
√

ZT (ZT − NT eff), (14)

and combining it with the left half of Eq. (10) yields

ZT eff
∼= ZT

[
1 −

√
1 − NT eff

ZT

]
. (15)

Thus, the number of active electrons participating in the
antiscreening channel, i.e., those which interact directly with
projectile electrons, NT eff , is given by 〈n0〉, while the number
of electrons which participate indirectly by partially screening
the target nuclear charge is given by

ZT

√
1 − NT eff

ZT

. (16)

Equation (13) predicts that the number of target electrons
that participate directly is 〈n0〉, which defines NT eff , while,
from Eq. (15), the screened nuclear charge of the target, ZT eff ,
is given by ZT [1 − {1−NT eff /ZT }1/2]. Using the 〈n0〉 values
from Refs. [7] and [26] results in ZT eff ≈ 1

2 NT eff .
However, this overlooks two details. First, at high impact

velocities, one would expect that eventually all target electrons
will actively participate in the ionization process and that their
ability to screen a portion of the target nuclear charge will
decrease. Thus, at high velocities, both NT eff and ZT eff should
increase and ultimately approach the full nuclear charge.
Second, the ionization probabilities must be less than unity.
Since the screening probabilities scale as the square of effective
target nuclear charge, this means that at low energies and heavy
targets the ZT eff values predicted by Eq. (15) will be too large.

To model the increases in NT eff and ZT eff at high energies,
the following scenario was used. Our method of determining
these parameters assumed a standard Coulomb field from
a point particle. However, relativistic effects increase the
transverse electric field of a point charge by a factor of
1/

√
1 − (v/c)2. This means that, with increasing velocity,

relativistic effects will cause the field of the target electrons—
in the projectile frame—to extend further and further. This
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will enhance the role of distant collisions and “activate” more
and more target electrons which were not participating in
the projectile ionization at lower velocities. This activation
of additional electrons should be approximately true for all
impact parameters. To model this increase, we multiplied the
number of “inactive” electrons by the increase in the field
beyond that of a normal Coulomb field. This increase was
added in an ad hoc, phenomenological way, to our original
fixed values of 〈n0〉 to determine NT eff . Hence,

NT eff = 〈n0〉 + A{ZT − 〈n0〉}
{

−1 + 1

/√
1 −

(
v

c

)2
}

.

(17)

Here, ZT − 〈n0〉 is the number of electrons which were
previously considered to be inactive, and the final bracketed
term incorporates the effect of the increase in the transverse
field of the target electrons in the projectile frame. The quantity
A is a free parameter which, by trial and error, was found to be
approximately 10 in order to provide the best fit to the data. It
must be noted that in applying this model, the maximum values
for NT eff and ZT eff are limited to be ZT . Whereas previous
work considered relativistic effects to affect only the screening
mode [40], our procedure includes relativistic effects in both
screening and antiscreening modes through Eqs. (15) and (17).

To model the decreases required at low energies and
avoid violating the constraint that the ionization probabilities
cannot exceed unity, we followed the suggestion of Sant’Anna
et al. [29]. They observed that the electron-loss cross section
saturates as ZT /v increases and that this was associated with
the screening component of the cross section. Therefore we
multiplied ZT eff by e−ZT eff/v (in a.u.), where v is the impact
velocity in atomic units. With this addition, extremely good
agreement with experimental data was achieved for energies
up to several MeV/u.

Summarizing, our “modified Born” model which is appli-
cable for electron loss from any projectile colliding with any
target predicts that the electron-loss cross sections will scale as

σ = σH [NT eff + (ZT effe
−ZT eff/v (in a.u.))2]. (18)

Here σ is the projectile electron-loss cross section per target
atom, σH is the cross section for stripping via interactions
with atomic hydrogen, NT eff and ZT eff are determined using
Eqs. (17) and (15), respectively. Values used for the various
quantities were A = 10 (determined by trial and error);

log10(〈n0〉) = −0.16 + 1.08 log10(ZT ) − 0.177 log10(ZT )2

(19)

(determined from fitting a polynomial to the asymptotic values
given in Ref. [26]); v in the exponential saturation term is the
projectile velocity in atomic units; and, in all cases, relativistic
values were used for the velocities. ZT is the full nuclear charge
of the target. For applying the above formula for molecular
targets, the average nuclear charge for the molecule as obtained
using the procedure outlined by Watson et al. [8] is used for
ZT . For example, for projectile ionization by a water molecule,
ZT = 1(2/3) + 8(1/3) = 3.3, i.e., the full nuclear charge of
each component atom multiplied by the fractional number of
total atoms that this atom represents.

FIG. 3. (Color online) Normalized single-electron-loss cross
sections as a function of target atomic number, ZT , compared to
the present model. Data are the same as in Fig. 1.

This scaling and these values imply that above approxi-
mately 80 MeV/u, both NT eff and ZT eff can exceed the full
target nuclear charge. This occurs when NT eff =ZT in Eq. (17),
i.e., for v/c ∼ 0.42 when A = 10. Therefore, in applying this
formula, both quantities were limited to their maximum values
of ZT for energies above ∼80 MeV/u. Also, because NT eff

and ZT eff are changing rather rapidly as they approach their
limiting values, the scaling factors and scaled cross sections
will have small changes in slope for energies near 80 MeV/u.
These are artificial in nature. To avoid such features, in the
following we have limited the maximum energy of our model
to 70 MeV/u. As a final note, the scaling calculations become
more amenable if v (in a.u.) is replaced by the collision energy
in MeV/u divided by 0.025 in the saturation exponential and
(v/c)2 in Eq. (17) for NT eff is replaced by twice the collision
energy in MeV/u divided by 931.

FIG. 4. (Color online) Normalized single-electron-loss cross
sections as a function of impact energy, E/u, compared to the present
model. Data are He, circles; N, squares; Ar, triangles; and Xe, stars,
from the same references as in Fig. 1.

022702-6



ELECTRON LOSS FROM FAST HEAVY IONS: TARGET- . . . PHYSICAL REVIEW A 84, 022702 (2011)

FIG. 5. (Color online) Total-electron-loss cross sections for U28+

ions colliding with H, N, and Ar atoms. The symbols are experimental
data from Refs. [38,41,42]. The lines are scaled cross sections ob-
tained using the present model and normalization to the experimental
H data.

Figures 3–5 present comparisons of this model to available
experimental data. In Figs. 3 and 4, the experimental data
and our model results are normalized to unity for Ne targets.
Figure 3 shows a comparison as a function of the target atomic
number, ZT , and Fig. 4 shows a comparison as a function of the
collision energy E in MeV/u. In both cases, the experimental
data are the same as in Fig. 1. The present model is seen to have
the correct qualitative features, with the largest quantitative
discrepancies with experiment occurring for the highest impact
energies and heaviest targets. Although the original intent of
this study was to address the target dependence question, our
model also answers a second long-standing question with
regard to electron loss at high energies, namely, why do
light targets yield an E−1 cross-section dependence, whereas
heavier targets yield a slower dependence on the order of v−1.
Figure 4 shows that the energy dependences of the normalized
cross sections systematically increase as the target becomes
heavier. This is because both NT eff and ZT eff are changing,
in part because of relativistic effects and in part because of
saturation effects. Thus, with respect to stripping by a Ne
target, the cross sections for stripping by a light target such as
hydrogen will decrease faster as a function of impact energy
than they will for stripping by a heavier target.

Although our scaling formula was derived using cross
sections for single-electron loss, Fig. 5 shows that it can
also be applied to total loss cross sections. This is because,
as stated earlier, the cross sections for single-electron loss
and total electron loss showed very similar dependences as
a function of ZT and E. Figure 5 illustrates the quantitative
predictability of the present model using measured total cross
sections for electron loss by U28+ ions. Here, the experimental
cross sections for a hydrogen target were multiplied by Eq. (18)
to generate cross sections for stripping by nitrogen and argon
targets. The procedure used was to first determine values for
〈n0〉 using Eq. (19). Next, Eq. (17) was used to determine
NT eff and the exponential saturation term was calculated using
Eq. (18). Finally, scaling ratios with respect to H, e.g., N/H and
Ar/H ratios, were calculated at each energy and multiplying
by a curve fitted through the measured cross sections (divided
by two) for an H2 target to obtain absolute cross sections for
interactions with N and Ar targets. Examples of the various
values determined at 10 and 50 MeV/u are provided in Table I.
For extrapolation to higher energies, it is suggested that the
hydrogen cross sections be extended using an E−1 fit between
10 and 50 MeV/u and that these cross sections be multiplied
by ratios determined from our model. Although not shown, in
Fig. 5 such an extrapolation would yield cross sections that are
approximately 10% larger at 100 MeV/u than those obtained
by direct application of our model.

Figure 5 shows that the agreement using our model
predictions is very good for energies above a few MeV/u.
For comparison purposes, a Born scaling using the full nuclear
charge for the antiscreening and screening terms would predict
N and Ar cross sections that are too large by a factor of 4 and
12, respectively, in the few to tens of MeV/u range. More
important is that a pure Born scaling would predict entirely
different velocity dependences. This means that, even after
division by the above factors in order to achieve reasonable
agreement with experiment between 1 and 50 MeV/u, at
100 MeV/u a pure Born scaling would yield Ar and N values
that are 3.5 and 1.5 times smaller than those predicted by
our model. At higher energies, the deviation between a “pure
Born” and our model will be even greater.

As a final note, our scaling model requires normalization
to absolute cross sections. These can be obtained from exper-
iment or theory and can be done for any atomic or molecular
target. For extrapolation to higher energies, normalization to
absolute H or He cross sections is best since, at high energies,
these cross sections can be assumed to decrease as E−1.
Also note that the method just outlined provides projectile

TABLE I. Examples of quantities used to calculate the scaled cross sections for stripping of U28+ ions by H, N, and Ar atoms. Where two
values are shown, they are for 10 and 50 MeV/u, respectively.

H N Ar

〈n0〉 [from Eq. (19)] 0.7 4.2 8.3
NT eff [from Eq. (17)] 0.7 / 0.9 4.5 / 5.8 9.3 / 14
ZT eff [from Eq. (15)] 0.5 / 0.5 2.8 / 4.2 5.8 / 9.5
Saturation factor (e−ZT eff/v (in a.u.)) 0.98 / 0.99 0.87 / 0.91 0.76 / 0.80
Scaling factor [bracketed term in Eq. (18)] 0.94 / 1.27 10.6 / 20.2 26.7 / 71.9
Scaling factor ratio (with respect to H) 1.00 / 1.00 11.3 / 15.8 28.4 / 56.5
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electron-loss cross sections per target atom. For molecular
targets, the same procedure is used, but in calculating the
scaling factor, the target nuclear charge ZT is replaced by
the average target nuclear charge per atom as suggested by
Watson et al. [8]. Additionally, in the final conversion to cross
sections, the scaling factor thus obtained is multiplied by the
total number of atoms in the molecule.

V. SUMMARY

Electron-loss scaling as a function of the target was
investigated using data taken from the literature. Strong
similarities in the target Z dependences were found for a
wide range of projectile species and for impact velocities
ranging from some tens of eV/u to fractions of the speed
of light. The comparison of the available scaling models with
experiment showed that none provides a good fit of the data
for a wide range of targets and collision energies. A model,
based on a Born scaling and including both the antiscreening
and screening contributions to projectile electron loss, was
developed. It was found that, with the inclusion of relativistic

effects which increase the contributions from both channels at
high energies, and “target saturation” effects which reduce the
contribution from the screening channel for heavy targets and
lower impact energies, this modified Born model provides a
reasonable fit to all available data. It was shown that this model
is in qualitative agreement with the available data, independent
of projectile species or charge state, impact energy, and target.
Quantitatively, the maximum disagreement occurred at the
highest energies and heaviest targets, being of ∼30%. One
outcome of this model was the insight into why projectile
stripping by light and heavy targets have different velocity
dependences A simple formula which can be applied for both
atomic and molecular targets and for impact energies ranging
from a few to many tens of MeV/u or higher was provided.
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