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Absorbing boundary conditions in the form of a complex absorbing potential are routinely introduced in
the Schrödinger equation to limit the computational domain or to study reactive scattering events using the
multiconfigurational time-dependent Hartree (MCTDH) method. However, it is known that a pure wave-function
description does not allow the modeling and propagation of the remnants of a system of which some parts are
removed by the absorbing boundary. It was recently shown [S. Selstø and S. Kvaal, J. Phys. B: At. Mol. Opt. Phys.
43, 065004 (2010)] that a master equation of Lindblad form was necessary for such a description. We formulate
a MCTDH method for this master equation, usable for any quantum system composed of any mixture of species.
The formulation is a strict generalization of pure-state propagation using standard MCTDH for identical particles
and mixtures. We demonstrate the formulation with a numerical experiment.
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I. INTRODUCTION

Today, the de facto standard approach in ab initio quantum-
mechanical many-particle propagation is the multiconfigu-
rational time-dependent Hartree (MCTDH) method and its
variations [1–7]. Already for N = 2 electrons in three dimen-
sions, the full six-dimensional time-dependent Schrödinger
equation is very hard to solve and can only be handled
on supercomputers. With the MCTDH method for identical
particles the exponential scaling of the Hilbert space dimension
with respect to N is “postponed” to a higher number of
particles, and the N = 2 propagation can be done on a single
desktop computer. Current implementations can handle N � 8
electrons in cylindrical geometries reliably [8,9]. For bosons,
the Pauli exclusion principle is absent, and the MCTDH
method can treat hundreds [10] and even thousands of particles
[11] in one-dimensional geometries, and recent multilayer
MCTDH techniques allow distinguishable dimensions in the
thousands with relative ease [7], showing great promise for
extending the domain of application of MCTDH methods.

The MCTDH class of methods is derived using the time-
dependent variational principle [12,13]. As such, it is energy
conserving, unitary, and quasioptimal in the sense that the
growth of the error in the 2-norm is locally minimized.

Ab initio dynamical problems in quantum mechanics are
formulated on an infinite domain which must be truncated for
numerical calculations. The numerical reflections implied by
the truncations are usually dealt with using absorbing boundary
conditions of some sort. The most common approach is to
introduce a complex absorbing potential (CAP) in a region
around the truncated domain [14]. That is, the Hamiltonian
H is mapped to H − i�, where � � 0 is a local one-body
potential vanishing on the domain of interest, and only taking
nonzero values outside the domain. This approach is also used
in order to calculate properties like reaction and ionization
probabilities, and CAPs are routinely implemented in MCTDH
codes [4,8,15–17].
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Other absorbing operators are also common, such as the
so-called transformative CAP (TCAP) [18], which is more or
less equivalent with the nonlocal CAP obtained using smooth
exterior scaling [19] or perfectly matched layers [20]. While
exact and space-local absorbing boundary conditions may be
formulated [21], they are in general nonlocal in time, and
therefore impractical. In this work, we focus solely on a local
CAP for simplicity, but any absorbing operator can be used.

Given a system of N particles, the wave function �N is
normalized to the probability of finding all particles within the
computational domain. With a CAP, �N evolves according to
the non-Hermitian Schrödinger equation

i
d

dt
�N = (H − i�)�N. (1)

An elementary calculation gives d
dt

‖�N‖2 = −2〈�N |�|�N 〉
for the probability derivative. Consequently, if the wave
function overlaps the CAP, the whole wave function decays
and eventually vanishes; it does not approach a wave function
with a different number of particles. In other words, even
with an absorbing boundary, one is stuck with an N -particle
description. Information like ionization probabilities and
reaction rates may be obtained from evolving Eq. (1) alone,
but if the remainder of the system is desired, i.e., a description
of the N − 1, N − 2 particle systems, etc., one is at a loss.

In a recent article it was argued that the solution is a
density operator approach [22] because the loss of particles
is an irreversible process; H − i� is a non-Hermitian operator
implying a preferred direction of time. The necessity of the
quantum dynamical semigroup describing the evolution to be
trace preserving, Markovian, and completely positive implies
the applicability of the famous theorems due to Lindblad and
Gorini and coworkers [23–25], giving a master equation in the
so-called Lindblad form. The resulting equation is

d

dt
ρn = −i[H,ρn] − {�,ρn}

+ 2
∫

�(x)ψ(x)ρn+1ψ(x)† dx, (2)

022512-11050-2947/2011/84(2)/022512(13) ©2011 American Physical Society

http://dx.doi.org/10.1088/0953-4075/43/6/065004
http://dx.doi.org/10.1088/0953-4075/43/6/065004
http://dx.doi.org/10.1103/PhysRevA.84.022512


SIMEN KVAAL PHYSICAL REVIEW A 84, 022512 (2011)

where ρn is the density operator for the n-particle subsystem,
0 � n � N . The integral is over all discrete and continuous
degrees of freedom. It should be noted that the non-Hermitian
Schrödinger equation (1) is equivalent to the von Neumann
equation

d

dt
ρn = −i[H,ρn] − {�,ρn}

for each n-particle system. The original formulation of the
N -particle problem is not changed, but extended to yield n �
N particle systems as a by-product. Importantly, nowhere is
an ad hoc hypothesis introduced.

Let us point out, that Eq. (2) does not address other general
and important problems concerning the CAP approach to
absorbing boundary conditions, such as missing correlation
effects. Such arise if, say, the computational domain is too
small, so that particles can be removed “prematurely” by the
CAP. This correlation information is lost forever and cannot
be “built into” the fewer-particle systems.

Equation (2) describes the evolution of a mixed state due to
irreversibility. The mixedness has two main sources: First, as
the probability tr(ρN ) of having N particles present is gradually
reduced, the probability of N ′ < N particles increases. In this
intermediate stage ρ is a mixed state [22]. Second, the block
ρN ′ alone may be nonpure in the limit t → ∞, as information
about the absorbed particles is thrown away and since the exact
N -body wave function depends on all particle coordinates.
This limits the information that can be extracted from the
decayed N ′ < N -body systems compared to a full evolution
of the total wave function—a feature inherent in the the CAP
approach to absorbing boundaries.

In this article, we formulate a MCTDH method for Eq. (2)
for identical particles and mixtures. It is based on a so-called
type II density operator manifold [3,26] and is fully variational.
Such methods are usually called ρ-MCTDH methods (as
opposed to �-MCTDH methods for pure states), and ours can
be viewed as a special case since the dissipative operators are
in a very special form. On the other hand our point of view is
more general as the problem is formulated in Fock space which
is not considered for standard ρ-MCTDH methods; indeed
the dissipative operators change the number of particles.
The method, which we call ρ-CAP-MCTDH, turns out to
be exactly trace preserving and a strict generalization of
the �-MCTDH method for pure states evolving according to
the non-Hermitian Schrödinger equation with a CAP (1). The
method is first formulated for identical fermions and bosons
and then extended to arbitrary mixtures of species. We use
the acronym ρ-CAP-MCTDH for all variations for clarity,
instead of the distinction between MCTDHF (for fermions)
and MCTDHB (for bosons), and so on. The derivation for
identical particles is done in Sec. III, while the generalization
is done in Sec. V, after a numerical experiment on a system of
identical fermions is presented in Sec. IV. Not surprisingly, the
resulting formulation is a direct generalization of the pure-state
MCTDH treatment of mixtures [27].

To prepare for the ρ-CAP-MCTDH method, we give a brief
derivation of Eq. (2) in Sec. II that underlines the inevitability
and uniqueness of the master equation in the Lindblad form.
We also show how the probability interpretation of ‖�N‖2,

which is not purely quantum mechanical, can be interpreted in
terms of measurements performed continuously in time.

II. LINDBLAD EQUATION FOR SYSTEMS WITH A CAP

A. Classical probabilities from a CAP

The evolution of �N under the non-Hermitian Schrödinger
equation (1) is irreversible. It introduces a preferred direction
in time, which is easily seen from the fact that the evolution
cannot be reversed: eventually ‖�N‖ > 1, and the backward
propagation may be nonexistent, even mathematically.

We now give an interpretation of the square norm ‖�N‖2

in terms of measurements performed continuously in time,
thereby exposing the irreversibility. We stress that this is
meant as an illustration and a helpful device for understanding
the dynamics due to a CAP, and has no bearing on the
mathematical discussion leading up to the Lindblad master
equation (2). To this end, consider first a closed single-particle
system, described by the Hamiltonian H—without a CAP—in
the Hilbert space H1. Quantum mechanically, the squared
norm ‖�1‖2 of the wave function is the probability of finding
the particle somewhere in configuration space. Equivalently, it
is the probability of obtaining the value 1 upon measurement
of trivial observable I (the identity operator).

Adding a CAP −i� to the Hamiltonian and keeping the
probability interpretation of ‖�1‖2 has nontrivial implications.
The description is obviously no longer in accordance with the
basic postulates of quantum mechanics, since

d

dt
‖�1‖2 = −2〈�1|�|�1〉 � 0,

that is to say, total probability is not conserved.
Suppose we perform a single measurement on the observ-

able P given by

P =
∫

�

|x〉〈x|dx,

i.e., of the projection operator P onto �, the truncated
computational domain. It has two eigenvalues, 0 and 1,
corresponding to finding the particle outside or inside �,
respectively. We obtain the answer 0 with probability 1 −
‖�1‖2

� = 1 − 〈�1|P |�1〉 and the answer 1 with probability
‖�1‖2

�. After measurement, the wave function collapses onto
(I − P )�1 in the former case and P�1 in the latter (up
to normalization constants). Note that the wave-function
collapse is irreversible, as the original wave function cannot
be reconstructed after the event.

Suppose we perform many experiments at short time inter-
vals t = nτ , n = 0,1,2, . . .. Each experiment yields certain
information about the system after the measurement: we
know with certainty if the particle is in � or not. After n

experiments, all giving 1 as the answer, the wave function is
readily computed to be

�1(nτ ) = [Pe−iτH ]n�1(0)

‖[Pe−iτH ]n�1(0)‖ ,

and the probability that n positive answers have been given is

pn = ‖[Pe−iτH ]n�1(0)‖2.
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This probability is classical in the sense that it is a probability
description of the history of our macroscopic measurement
device, or of its printout on a sheet of paper if one prefers.

Let us define �̃1(nτ ) = √
pn�1(nτ ) = [Pe−iτH ]n�1(0), so

that ‖�̃1(nτ )‖2 = pn. If we allow the approximation

P ≈ exp(−τ�),

which dampens �1 strongly outside �, we get

Pe−iτH ≈ e−τ�e−iτH = e−iτ (H−i�) + O(τ 2).

In the limit of small τ , we see that �̃1(t) is the solution to
the Schrödinger equation with a CAP. ‖�̃1(t)‖2 is then the
probability of finding the measurement apparatus in the state
“the particle has not yet been detected outside �” at time t .

Our discussion is immediately suggestive of interpreting
the CAP as an actual model for some external detecting
device, which was already pointed out in an early publication
on CAPs in quantum mechanics [14]. Although it is likely
that Eq. (2) can be derived in such a way, it is not relevant
here, as the Schrödinger equation with a CAP is our starting
point. The above discussion is only intended as a means
for understanding the irreversibility of the non-Hermitian
dynamics. Whatever interpretation we use, we see that the
single-particle system undergoes a transition to a zero-particle
state (i.e., zero particles in �) in an irreversible way and that the
probability of having n = 1 or n = 0 particles is not quantum
mechanical.

A complete specification of the quantum state of the n �
1-particle system is a density operator in the Hilbert space
H1 ⊕ H0, where Hn is the Hilbert space of n particles. In this
case, the density operator is, in block form,

ρ =
(

|�̃1〉〈�̃1| 0

0 (1 − 〈�̃1|�̃1〉)

)
.

Note that H0 is one dimensional, and the lower right block
is just a non-negative real number, the probability of zero
particles in �.

For a rigorous treatment of the above limiting process, see
Chap. 7.4 in Ref. [28].

Generalizing the discussion to N particles is analogous to
our discussion approximating P ≈ exp(−i�) in the same way.
‖�̃N‖2 is then the probability of the measurement apparatus
showing that all particles are inside �.

B. N-fermion systems with a CAP

Suppose a complete set of fermionic or bosonic creation
operators {c†j }, j = 1,2, . . ., is given. An important formal

property of c
†
j is that it defines a map from Hn to Hn+1, the

Hilbert spaces of n and n + 1 fermions, respectively, and that
they fulfill the (anti-)commutator relation

{c†j ,ck}± ≡ c
†
j ck ± ckc

†
j = δjk, (3)

with the plus sign for fermions and the minus sign for bosons.
For us, it is natural to work within Fock space H , defined

by

H ≡
∞⊕

n=0

Hn,

containing all possible states with any number of particles. As
operators in H , the cj are orthogonal in the Hilbert-Schmidt
inner product,

〈〈cj ,ck〉〉 = tr(c†j ck) = 0, j �= k,

and traceless,

tr(cj ) = 0.

Given an n-particle Hamiltonian in first-quantized form,
viz.,

Hn =
n∑

i=1

h(i) +
n−1∑
i=1

n∑
j=i+1

u(i,j ),

(where the indices i and j in the operators indicate which
particles’ degrees of freedom they act on) we may write it
compactly in n-independent form using the expression

H =
∑
jk

hjkc
†
j ck + 1

2

∑
jklm

ujklmc
†
j c

†
kcmcl, (4)

where hjk and ujklm are the usual one- and two-particle
integrals, respectively.

Adding a cap � = ∑n
i=1 �(i) amounts to modifying the

single-particle coefficients since

� =
∑
jk

�jkc
†
j ck. (5)

It is important to note, that given the set {c†j }, the second-
quantized expressions of H and � are unique, and vice versa.

C. The Lindblad equation

We now discuss the master equation (2), introduced in
Ref. [22], for a system of identical particles. We underline
that the master equation follows uniquely from the probability
interpretation of ‖�n‖2 for an n-particle wave function and the
requirement of a Markovian, trace-preserving, and completely
positive evolution. We also address some mathematical points
omitted in Ref. [22].

Describing a system with a variable number of particles,
we work with states in Fock space. Our starting point, the
non-Hermitian Schrödinger equation with a given CAP, then
reads

i
d

dt
� = (H − i�)�. (6)

With an initial condition with exactly N particles, i.e., �(0) =
�N ∈ HN , this equation is equivalent to Eq. (1), which we
repeat here for convenience:

i
d

dt
�N = (H − i�)�N. (7)

This description is valid for all particle numbers N .
As Eq. (6) is irreversible, it is not possible to find some

new Hamiltonian H ′ in Fock space that generates a unitary
evolution which describes a decreasing number of particles
and also reproduces Eq. (7). Instead, one must turn to a density
operator description. For a density operator ρ ∈ TC(H ),
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FIG. 1. Illustration of the block structure of the density operator
in Fock space with at most N identical particles. In general, each
block is infinite dimensional (except for ρ0 which is 1 × 1). The
diagonal blocks are emphasized, as for pure-state initial conditions
ρ = |�N 〉〈�N | the density operator turns out to be block diagonal.

the trace-class operators in Fock space [25,28], Eq. (6) is
equivalent to the nontrace conserving von Neumann equation

d

dt
ρ = −i[H,ρ] − {�,ρ}, (8)

which is verified by a simple computation. The density
operator ρ has a natural block structure. Letting Pn be the
orthogonal projector onto Hn, we have the resolution of the
identity

I =
∞∑

n=0

Pn.

Applying this to either side of ρ gives the decomposition

ρ =
∞∑

n=0

∞∑
m=0

ρn,m, ρn,m ≡ PnρPm.

This block structure is depicted in Fig. 1. Projecting Eq. (8)
from the left and right with Pn, we obtain

d

dt
ρn,n = −i[H,ρn,n] − {�,ρn,n}, (9)

which is equivalent to Eq. (7).
We wish to obtain a master equation for ρ that does preserve

total probability. At all times, there is a probability tr(ρn) of
having n particles (we define ρn ≡ ρn,n), and these should
add up to tr(ρ) = ∑

n tr(ρn) = 1. Since the von Neumann
equation is local in time, we require the master equation to be
Markovian. Our master equation must reproduce Eq. (9) for
n = N , where N is the number of particles initially present.
Of course, for n < N the master equation will end up with
some source terms. This must hold for all N , i.e., our master
equation should not depend on N ; only the initial condition
depends on N .

We also require the master equation to describe a physical
system which in turn may interact with other quantum systems.
A minimal requirement for such master equations is that
its quantum semigroup be completely positive. Complete
positivity roughly states that if our system is described together
with a different system with Hilbert space V , so that the

combined state is σ ∈ TC(H ⊗ V ), then the semigroup of
σ preserves the self-adjoint positive semidefiniteness of σ .
Surprisingly, requiring this property for the flow of ρ alone is
not enough [24,25].

Let us for the moment assume that Fock space has a
finite dimension, i.e., it is defined by a finite number L of
creation operators. The theorem of Gorini and coworkers
is now applicable [24]: Any trace-preserving, Markovian,
and completely positive quantum dynamical semigroup has
a master equation of the form

d

dt
ρ = −i[H,ρ] + D(ρ), (10)

where the dissipative terms have the generic form

D(ρ) =
∑
αβ

dαβ(2LβρL†
α − {L†

αLβ,ρ}). (11)

The operators Lα form a traceless, orthogonal set with
the Hilbert-Schmidt inner product 〈〈ρ,σ 〉〉 = tr(ρ†σ ) [the
operators are then linearly independent in TC(H )], and
[dαβ] is a Hermitian positive semidefinite matrix. Importantly,
the quantum dynamical semigroup generated by Eq. (10) is
uniquely given by H and D and vice versa.

The Lα play the role of a basis in TC(H ), which is of
dimension dim(H )2. It is of course not unique, but given a
choice of basis, the coefficients [dαβ] are unique. Notice that
the trace of the anticommutator term in Eq. (11) is equal to
but of opposite magnitude compared to the term where ρ is
sandwiched between Lβ and L†

α .
The von Neumann equation is almost of the form of

Eq. (10); it lacks the “sandwiched terms” responsible for a
compensation of the trace decrease due to the anticommutator,
i.e.,

d

dt
ρ = −i[H,ρ] −

∑
jk

�jk{c†j ck,ρ}.

As the operators {cj } are indeed traceless and orthogonal, it is
immediately clear that the correct master equation is obtained
by simply adding the sandwiched terms, i.e.,

d

dt
ρ = − i[H,ρ] −

∑
jk

�jk{c†j ck,ρ} + 2
∑
jk

�jkckρc
†
j . (12)

If the dissipative terms are not chosen in exactly this form,
Eq. (9) will not be reproduced for all N .

Indeed, consider an initial condition of the form

ρ(0) = |�N 〉〈�N |. (13)

Projecting Eq. (12) from the left and right with Pn and Pm,
respectively, we obtain the differential equation obeyed by the
block ρn,m,

d

dt
ρn,m = −i[H,ρn,m] − {�,ρn,m} + 2

∑
jk

�jkckρn+1,m+1c
†
j .

(14)

We see that the off-diagonal blocks ρn,m with n �= m are iden-
tically zero with the initial condition (13). The compensating
sandwich terms are seen to be responsible for transporting
probability from the N -particle system into the N − 1-particle
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system, and so on, downward along the diagonal blocks
in Fig. 1. Moreover, the evolution of ρN,N is equivalent
to Eq. (7). Modifying the coefficients �jk or adding more
linearly independent operators to the set {cj } will void this for
some N .

The theorem by Gorini and coworkers is only valid in
a finite-dimensional Hilbert space. For infinite-dimensional
spaces, Lindblad discovered a generalization for norm-
continuous semigroups [23], for which H and � are necessarily
bounded operators. This is rarely the case, but a Lindblad-
type theorem for the general unbounded cases is simply
not known [25]. On the other hand, all known examples
of completely positive semigroups in infinite-dimensional
spaces have generators in the generic form (11), with possibly
unbounded H or [dαβ].

It now seems reasonable to remove the restriction of a finite-
dimensional Fock space, which does not change the formal
appearance of the Lindblad equation (12). Using the relation

ψ(x)† ≡
∑

j

ϕj (x)c†j

for the field creation operators (creating a particle at x),
where ϕj (x) is the orthonormal single-particle basis function
associated with c

†
j , we arrive at the master equation

d

dt
ρ = −i[H,ρ] − {�,ρ} + 2

∫
�(x)ψ(x)ρψ(x)†dx,

(15)

which in block form becomes

d

dt
ρn = −i[H,ρn] − {�,ρn}

+ 2
∫

�(x)ψ(x)ρn+1ψ(x)†dx, (16)

where we have assumed an N -particle initial condition
ρ(0) = ρN .

We stress that the Lindblad equation (16) followed only
from the probability interpretation of ‖�N‖2 and from the
requirement that the master equation generates a Markovian,
trace-preserving, and completely positive semigroup.

III. MCTDH FORMULATION FOR
IDENTICAL PARTICLES

A. The ρ-CAP-MCTDH manifold

We now derive the ρ-CAP-MCTDH approximation to the
Lindblad equation (15). This method is in a sense a combina-
tion of the �-MCTDH method for identical particles [4–6,27],
using second quantization, and the ρ-MCTDH method [3,26]
for general density operators. Our method is necessarily
formulated in Fock space and describes a variable number of
particles. To the best of our knowledge, the general ρ-MCTDH
method has not been formulated using second quantization
in the literature. Moreover, the global variational principle
employed in the �-MCTDH method (the action integral point
of view) is not applicable for dissipative systems, since D(ρ)
is not self-adjoint. The second-quantization techniques used
here are therefore somewhat different from the one usually
taken in the pure-state approach. As the particular properties

of the equations of motion for the present problem are more
easily exposed in a thorough investigation, we choose to do a
detailed derivation.

We repeat the Lindblad equation (15) for convenience:

d

dt
ρ = L (ρ) = −i[H,ρ] + D(ρ) = −i[H,ρ] − {�,ρ}

+ 2
∫

�(x)ψ(x)ρψ(x)†dx. (17)

Here, ρ ∈ TC(H ) is a Fock-space density operator, which
(in the exact equation) is block diagonal. ψ(x) destroys a
particle at the configuration-space point x ∈ X. Typically X =
R3 × {↑ , ↓} for a spin-1/2 fermion, i.e., x = (�r,m), although
our derivations are completely independent of X.

For all t � 0, ρ(t) is approximated by an element in
the manifold M ⊂ TC(H ), with the inner product 〈〈·,·〉〉
inherited from TC(M ). (Strictly speaking, the inner product is
inherited from the Hilbert space of Hilbert-Schmidt operators,
in which TC(H ) is dense. Not all Hilbert-Schmidt opera-
tors are trace class.) An approximate variational differential
equation on M is sought. The time-dependent variational
principle [2,12,13] chooses the time derivative ρ̇ = dρ/dt to
minimize the local error in the norm induced by 〈〈·,·〉〉 as
follows:

〈〈δρ,ρ̇ − L (ρ)〉〉 = 0, ∀δρ ∈ TρM , (18)

where TρM is the tangent space at ρ, i.e., the space of all
possible time derivatives of ρ. Consequently, the right-hand-
side L (ρ) of Eq. (17) is projected orthogonally onto TρM ,
and we have

ρ̇ = argmin
σ∈TρM

‖σ − L ρ‖.

We choose M as the so-called “type II” density operator
manifold [3,17,26], albeit with a slight generalization as we
consider Fock space instead of a fixed number of particles.
There is an alternate way of defining a variational manifold,
the “type I” manifold, but it does not reduce to the usual
MCTDH method in the case of a pure state.

The manifold M is defined as follows. Given a finite set
ϕ of L single-particle functions (SPFs) ϕj ∈ H1, 1 � j � L,
and their corresponding creation operators c

†
j ,

c
†
j =

∫
X

ϕj (x)ψ(x)†dx,

we consider the subspace Vn of Hn spanned by all possible
linearly independent n-body functions built using products of
c
†
j ,

�J [n] = c
†
j1
c
†
j2

· · · c†jn
�vac.

The notation J [n] means an ordered tuple (j1,j2, . . . ,jn) of n

single-particle indices, i.e., j1 � j2 � · · · � jn. For fermions,
�J [n] is a Slater determinant and j1 < j2 < · · · < jn, while
for bosons it is a permanent. We then consider the subspace V
of Fock space,

V =
N⊕

n=0

Vn,
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spanned by all the �J , where J means an ordered tuple with n

indeterminate. As we describe at most N particles, we truncate
at n � N in order to ensure a finite-dimensional space. (For
bosons any number of particles may occupy each ϕj , creating
an infinite-dimensional space if we do not truncate the sum,
even with L finite.)

Each ρ ∈ M is now defined as an arbitrary linear operator
in V , viz.,

ρ =
∑
JK

|�J 〉BJK〈�K |, BJK ∈ C.

We see that ρ is a matrix with respect to a time-dependent
orthonormal basis. We denote by B the matrix formed by the
BJK , i.e., the Galerkin matrix. To sum up, ρ is parametrized
in terms of an arbitrary matrix B with respect to the basis
generated by an arbitrary set of L SPFs ϕ.

The set ϕ may formally be extended to a complete
orthonormal basis ϕ̃ for H1, a (usually infinite) set of functions
ϕs , s > L, such that the second-quantized Hamiltonian is given
by Eq. (4) and the CAP by Eq. (5), but where the expansion
coefficients in general depend on the particular value for ϕ and
ϕ̃. This will be of use later on.

B. Parametric redundancy and tangent space

For a given ρ ∈ M , the parameters ϕ and B are not unique.
Since V is determined only by the subspace spanned by ϕ, not
the individual ϕj , any unitary change

ϕj −→
∑

k

ϕkGkj , G = U(L),

where U(L) is the unitary group of L × L matrices, yields
the same space V , and therefore the same operators ρ can be
parametrized. Under the group element G, the basis functions
transform as

�J [n] −→
∑
k1

· · ·
∑
kn

Gk1j1 · · ·Gjnkn
�K[n]

≡
∑
K[N]

′
GK[n],J [n]�K[n],

where the sum
∑′

K[n] is over all multi-indices of length n, and
not only ordered ones. Defining the transformation of B by

BJK −→
∑
J ′K ′

′
G ∗

J ′J BJ ′K ′GK ′K,

we see that

ρ −→ ρ.

Moreover, BJK are all independent parameters, showing that
U(L) is in fact the largest group of transformations leaving ρ

invariant.
The nonuniqueness of ϕ and B implies that given a

derivative (tangent vector) ρ̇ ∈ TρM , the derivatives ϕ̇ and
Ḃ are not unique. This phenomenon arises in all MCTDH-
type methods, and we give a somewhat more mathematical
description than the usual one.

Suppose ρ(t) ∈ M is a given smooth path. There exists
ϕ0(t) and B0(t) such that ρ(t) = ρ(ϕ0(t),B0(t)). By the con-
siderations above, any other possible parameter path is of the

form (ϕ(t),B(t)) = (ϕ0(t)G(t),G (t)†B0G (t)), where ϕ0(t)G(t)
stands for the transformation

ϕ0,j (t) −→ ϕj (t) =
∑

k

ϕ0,k(t)Gkj (t).

(We consider ϕ a “matrix” whose columns are ϕj .) All
derivatives of ϕ0 are of the form

ϕ̇0 = ϕ0η + χ, 〈ϕ0,j |χk〉 = 0.

The functions χj are all independent. Since GG† = IL, we
find that Ġ = gG, with −g† = g ∈ u(L), the Lie algebra of
the Lie group U(L). The transformed ϕ = ϕ0G then has the
derivative

ϕ̇ = d

dt
ϕ0G = [ϕ0(η + g) + χ ]G,

and it is seen that if we choose g = −η, then ϕ is in fact unique,
since Ġ = ηG uniquely specifies G(t). This is equivalent to
the condition

〈ϕj |ϕ̇k〉 = 0, ∀j, k.

This condition is the standard one in all MCTDH-type methods
and is described already in one of the founding MCTDH theory
publications [1].

In this way, there is a there is a one-to-one map between
triples (ϕ̇,Ḃ,g) and ρ̇, with g ∈ u(L). The element g is then
called a gauge choice, and the gauge choice induces a unique
parametrization (ϕ(t),B(t)) of ρ(t). This kind of differential
geometrical structure is called a principal bundle [29] and is
familiar in quantum field theory—but it arises in a completely
different way!

It is easily verified that
d

dt
�J = d

dt
c
†
j1

· · · c†jn
�vac = D�J ,

where D is the operator

D ≡
L∑

j=1

ċ
†
j cj

and where ċ
†
j is as the operator that creates the single-particle

function ϕ̇j . We observe that for any two single-particle
functions u and v, not necessarily normalized, the relation

{c(u),c†(v)}± ≡ c(u)c†(v) ± c†(v)c(u) = 〈u|v〉
is obtained by expanding each operator in the field creation
operators.

We are now ready to consider an arbitrary time derivative
of an element ρ(t) ∈ M :

ρ̇ =
∑
J,K

|�̇J 〉BJ,K〈�K | + |�J 〉ḂJ,K〈�K | + |�J 〉BJ,K〈�̇K |

= Dρ + ρD† +
∑
J,K

|�J 〉ḂJ,K〈�K |. (19)

In order to perform the projections in Eq. (18), we must
identify all linearly independent tangent vectors, i.e., all
independent admissible infinitesimal variations of ρ. This
amounts to varying the BJ,K independently, and the ϕj

independently, but according to a specific choice of gauge.
For simplicity, we consider the choice 〈ϕj |ϕ̇k〉 = 0, which
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generates the simplest equations and is also the most common
in MCTDH theory.

From this it follows that the admissible time derivatives of
ϕj are arbitrary functions ϑ = Qϑ , where

Q ≡ I −
∑

k

|ϕk〉〈ϕk|.

Moreover,

〈�J |�̇K〉 = 〈�J |D|�K〉 = 0, ∀J, K.

Now, the independent variations of ρ can be divided into
two groups: For each pair J , K , the matrix element BJ,K can
be changed, giving the tangent vector

δρ = |�J 〉〈�K |. (20)

An arbitrary change ϑ = Qϑ in ϕj consistent with the gauge
choice gives

δρ = c†(ϑ)cjρ + ρc
†
j c(ϑ). (21)

Inserting these two expressions into the variational principle
yields a complete set of differential equations for B in the first
case and ϕ in the latter.

C. Equations of motion

We use the notation
∑̃

j to indicate a sum over the complete
set of SPFs. We let H be the Galerkin matrix of H , i.e.,

HJK ≡ 〈�J |H |�K〉,

and analogously define G to be the Galerkin matrix of �. We
let cj be the Galerkin matrix of cj , which in fact is independent
of ϕ:

(cj )JK = 〈�J |cj |�K〉 = 〈�′
J |c′

j |�′
K〉. (22)

The primed quantities correspond to any other choice of SPFs.
The independence follows from the (anti-)commutator (3)
which only depends on orthonormality.

The Galerkin matrices of H and � can be expressed as

H =
∑
jk

h(ϕ)jkc†j ck + 1

2

∑
jklm

u(ϕ)jklmc†j c†kcmcl , (23)

G =
∑
jk

�(ϕ)jkc†j ck. (24)

The expansion coefficients are dependent on ϕ at time t , but
the creation and annihilation matrices are not. The Galerkin
matrices are naturally expressed using some fixed, abstract
basis due to Eq. (22). Existing methodology for computing
matrix-vector and matrix-matrix products can be re-used by
referring to this basis.

To derive the equations of motion, we begin by inserting δρ

from Eq. (20) into the variational principle (18). For the term
〈〈δρ,ρ̇〉〉 and the term containing [H,ρ], and for the sandwich
term, we obtain, respectively,

〈
〈|�J 〉〈�K |,

∑
J ′K ′

ḂJ ′K ′ |�J ′ 〉〈�K ′ | + Dρ + ρD†〉
〉

= tr

[
|�K〉〈�J |

( ∑
J ′K ′

|�J ′ 〉ḂJ ′K ′ 〈�K ′ | + Dρ + ρD†
)]

= ḂJK, (25)

〈〈|�J 〉〈�K |, − i[H,ρ]〉〉 = −itr

[
|�K〉〈�J |

(
H

∑
J ′K ′

|�J ′ 〉BJ ′K ′ 〈�K ′ | −
∑
J ′K ′

|�J ′ 〉BJ ′K ′ 〈�K ′ |H
)]

= (−i[H,B])JK, (26)〈
〈|�J 〉〈�K |,

∑̃
jk

�jkckρc
†
j 〉

〉
= tr

[
|�K〉〈�J |

(∑̃
jk

�jkck

∑
J ′K ′

|�J ′ 〉BJ ′K ′ 〈�K ′ |c†j
)]

=
∑
jk

�jk(ckBc†j )JK. (27)

In Eq. (25) the terms containing D vanish since 〈ϕj |ϕ̇k〉 =
{cj ,ċ

†
k}± = 0. A calculation similar to Eq. (26) yields

〈〈|�J 〉〈�K |,{�,ρ}〉〉 = ({G,B})JK. (28)

Assembling Eqs. (25) through (28), we get the equation of
motion for B:

Ḃ = −i[H,B] − {G,B} + 2
∑
jk

�jkckBc†j .

We now make the observation that Ḃ† = Ḃ, showing that ρ† =
ρ is preserved during evolution, which we may use when we
turn to the projection onto the tangent vector in Eq. (21). Let
F be an arbitrary operator, and calculate

〈〈δρ,Fρ + ρF †〉〉 = tr{[c(ϑ)†cjρ + ρc
†
j c(ϑ)](Fρ + ρF †)}

= tr[c(ϑ)†cjρFρ + c(ϑ)†cjρ
2F †

+ ρc
†
j c(ϑ)Fρ + ρc

†
j c(ϑ)ρF †]

= 2Re tr[c†j c(ϑ)Fρ2],

since c(ϑ)ρ ≡ 0, as c(ϑ) annihilates a function orthogonal to
all the ϕj .

Setting F = D = ∑
k ċ

†
kck we obtain

〈〈δρ,Dρ + ρD†〉〉 =
∑

k

2Re tr[c†j c(ϑ)ċ†kckρ
2]

=
∑

k

2Re〈ϑ |ϕ̇k〉tr(c†j ckρ
2),

and we note in passing that 〈〈δρ,|�J 〉ḂJK〈�K |〉〉 = 0, again
since c(ϑ)|�J 〉 = 0.
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The “sandwich” term in the master equation also gives zero
contribution, since

tr[c(ϑ)†cjρclρc†m] = tr[ρc†mc(ϑ)†cjρ] = 0,

since c(ϑ)cm|�J 〉 = 0.
In these calculations ϑ = Qϑ is arbitrary. Choosing −iϑ

instead turns “Re” into “Im,” so we may drop taking the real
part. Assembling this, we get the equation

i
∑

k

〈ϑ |ϕ̇k〉tr(c†j ckρ
2) = tr[c†j c(ϑ)Fρ2], (29)

with F = H − i�, and the equation must hold for all ϑ and
all j .

We now compute the right-hand side of Eq. (29) for
arbitrary single-particle and two-particle operators F . Suppose
at first

F =
∑̃
jk

fjkc
†
j ck, fjk = 〈ϕj |f |ϕk〉.

Upon insertion in Eq. (29), we find

tr[c†j c(ϑ)Fρ2] =
∑̃
kl

fkl tr[c
†
j c(ϑ)c†kclρ

2]

=
∑̃

k

∑
l

〈ϑ |ϕk〉〈ϕk|f |ϕl〉tr(c†j clρ
2)

=
∑

l

〈ϑ |f |ϕl〉tr(c†j clρ
2).

In the last calculation, we used
∑̃

j |ϕj 〉〈ϕj | = I .
Second, suppose F is a two-particle operator, viz.,

F = 1

2

∑̃
jklm

fjklmc
†
j c

†
kcmcl, fjklm = 〈ϕjϕk|f |ϕlϕm〉,

where we assume fjklm = fkjml . The inner product is on H1 ⊗
H1, i.e., the brackets are not antisymmetrized. Now the right-
hand side of Eq. (29) becomes

tr[c†j c(ϑ)Fρ2]

= 1

2

∑̃
klmn

fklmntr[c†j c(ϑ)c†kc
†
l cncmρ2]

= 2

2

∑̃
k

∑
lmn

〈ϑ |ϕk〉〈ϕkϕl|f |ϕmϕn〉tr(c†j c†l cncmρ2)

=
∑
lmn

〈ϑϕl|f |ϕmϕn〉tr(c†j c†l cncmρ2).

In the first step, we used the symmetry of fklmn and the
(anti-)commutator relation for the creation operators, the result
being the same regardless of particle statistics.

Three-particle operators, or even higher, are computed in a
similar fashion. For a three-body operator,

F = 1

3!

∑̃
jkl

∑̃
pqr

fjklpqrc
†
j c

†
kc

†
l crcqcp,

we obtain the right-hand side

tr[c†j c(u)Fρ2] = 1

2!

∑
klpqr

〈ϑϕkϕl|f |ϕpϕqϕr〉tr(c†j c†kc†l crcqcpρ2).

Generally, the combinatorial factor n!−1 in front of the n-body
operator becomes (n − 1)!−1 due to symmetry properties.

The matrix

Sjk ≡ tr(c†j ckρ
2) = tr(c†j ckB2) (30)

defines the ρ-CAP-MCTDH analog of the reduced one-body
density matrix entering at the same location in standard �-
MCTDH theory. Similarly, the analog of the reduced two-body
density matrix is defined by

S
(2)
jklm ≡ tr(c†j c

†
kcmclρ

2) = tr(c†j c†kcmclB2), (31)

and so on.
We may now assemble the various one- and two-body

contributions to the SPF equation of motion:

i
∑

k

〈ϑ |ϕ̇k〉Sjk =
∑

k

〈ϑ |(h − i�)|ϕk〉Sjk

+
∑
klm

〈ϑϕk|u|ϕlϕm〉ϕlS
(2)
jklm,

which holds for all ϑ = Qϑ . Since ϕ̇j = Qϕ̇j , we arrive at
the final single-particle equations of motion:

i
∑

k

ϕ̇kSjk = Q
∑

k

(h − i�)ϕkSjk

+
∑
klm

Q〈 · ϕk|u|ϕlϕm〉ϕlS
(2)
jklm

= Q
∑

k

(h − i�)ϕkSjk +
∑
klm

QUkmϕlS
(2)
jklm,

where

〈 · ϕk|u|ϕlϕm〉 ≡
∫

ϕk(y)u(x,y)ϕl(x)ϕm(y)dy,

and where the mean-field potentials Ukm are defined by

Ukm(x) ≡
∫

ϕk(y)u(x,y)ϕm(y)dy. (32)

Assuming u(x,y) to be a local potential, Ukm(x) is also a local
one-body potential.

D. Discussion

Let us sum up the equations of motion for the density
operator ρ. The Galerkin matrix elements BJ,K evolves
according to

Ḃ = −i[H,B] − {G,B} + 2
∑
jk

�jkckBc†j , (33)

while the SPFs evolve according to

i
∑

k

ϕ̇kSjk = Q
∑

k

(h − i�)ϕkSjk +
∑
klm

QUkmϕlS
(2)
jklm,

(34)

where Sjk , S
(2)
jklm, and Ukm(x) are defined in Eqs. (30), (31),

and (32), respectively.
Equation (34) is virtually identical to the standard �-

MCTDH equation of motion for the SPFs. The only difference
lies in the definitions of S and S(2). As for Eq. (33), we see that
the main difference lies in the evolution of a matrix B instead
of a coefficient vector.
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Equation (34) is typically discretized using discrete-
variable representation techniques, FFT methods, and finite
differences or similar [17], and the single-particle operator
h − i� is then represented correspondingly. Equivalently,
the single-particle space H1 is approximated by the finite-
dimensional space dictated by the discretization, inducing
a finite-dimensional Fock space to begin with. Note that
even though h − i� is non-Hermitian, orthonormality of ϕ

is conserved during evolution.
Like in standard �-MCTDH methods, the matrix S needs

to be inverted to evaluate the SPF differential equation; a
well-known issue with MCTDH-type methods. It may happen
that S becomes singular for some reason, in which case a
regularization approach is needed [17]. In most applications,
this happens very rarely; typically at t = 0 due to the choice of
initial conditions, but experience suggests it does not affect the
final results. This is, however, not trivial from a mathematical
point of view, and for the sake of definiteness in the present
work, we check that S is nonsingular for our numerical
experiment in Sec. IV.

Equation (33) should be compared with the original Lind-
blad equation (12). Also, if ϕ̇ ≡ 0, we obtain the variational
equation of motion in a fixed linear basis, i.e., what is obtained
using a full configuration-interaction-type approach. However,
the Galerkin matrices defined in Eqs. (23) and (24) have
the time-dependent coefficients hjk , ujklm, and �jk which
must be computed along the flow. This is a nontrivial task
in general, and techniques common for �-MCTDH methods
can be employed to deal with this in approximate ways [8,17].

Note that B retains the natural block structure with respect
to the number of particles [cf. Eq. (14)]. Equation (33) can be
written as

Ḃn = −i[H,Bn] − {G,Bn} + 2
∑
jk

�jkckBn+1c†j

and this is the most memory-economical representation, since
the off-diagonal blocks vanish if ρ(0) is a pure state with
N particles. In that case, BN can furthermore be represented
by a vector �N ∈ VN at all times, and there is no need to
propagate the full block. Due to the presence of all the blocks
in the definition of S and S(2), however, this pure state cannot
be evolved with the �-MCTDH method independently of the
other blocks.

If the dissipative terms vanish (i.e., if � = 0), and if ρ(0) is
a pure state, the evolution is easily seen to be equivalent to a
�-MCTDH calculation. In the ρ-MCTDH method, tr(ρ) is not
in general conserved [17], but it is so for closed systems, i.e.,
when D(ρ) ≡ 0. However, it is easily checked in the present
case that, indeed,

d

dt
tr(ρ) = d

dt
tr(B) = 0.

Also, energy tr(Hρ) is exactly conserved if tr(�ρ) = 0, that is
to say, whenever the system does not touch the CAP.

For the actual implementation of the evolution equations,
it is useful to employ a generic enumeration scheme for the
many-body basis states. In many-body codes, the Galerkin
matrices (other than B) are rarely constructed in memory;
instead the single- and double-particle integrals are kept in
memory and the explicit action of H is computed using

Eq. (23), for which the actions of cj and c†j are implemented,
for example, via mapping techniques as suggested in Ref. [30]
or simply using binary integers to represent a fermion state and
bitwise manipulations to define the action of cj , etc., a common
technique in many-body nuclear physics calculations [31].

As for choosing initial conditions, we observe that as a
generalization of the �-MCTDH method capable of treating
particle loss, a pure state ρ(0) = |�N 〉〈�N | will be the usual
choice. In that case, experience from the �-MCTDH method
can be applied [17]. Typical choices are single determinants
and permanents or stationary states computed by imaginary-
time propagation, or combinations thereof as in the numerical
experiment below.

IV. NUMERICAL EXPERIMENT

We present a numerical experiment for a model problem
consisting of spin-polarized fermions in one spatial dimension.
We study a situation where the initial state is a pure state with
N = 3 particles whose norm gradually decreases due to a CAP.
The situation is similar to the study in Ref. [9].

We truncate the domain R to [−R, +R], where R = 20.
The single-particle Hamiltonian of our model is

h = T + V (x) = −1

2

∂2

∂x2
+ V (x),

where the one-body potential is of Gaussian shape

V (x) = −8 exp[−1.25x2]. (35)

Numerically we find that V (x) supports four bound one-body
states. We choose a very simple CAP of standard power form:

�(x) = θ (|x| − R′)(|x| − R′)2, (36)

where θ (x) is the Heaviside function. The particles are
unaffected by the CAP in the region [−R′,R′], where we set
R′ = 16. We have verified that in the energy ranges of the
calculations, very little reflection or transmission is generated
by �. Figure 2 shows the Gaussian well and the absorber.
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FIG. 2. Single-particle trap potential V (x) and complex absorb-
ing potential �(x) used in the numerical experiment. The trap
potential is Gaussian [see Eq. (35)], and the absorber is quadratic
outside [−16,16] [see Eq. (36)].
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The particles interact via a smoothed Coulomb potential,

u(x1,x2) = 2[(x1 − x2)2 + 0.12]−1/2,

which is long ranged.
For discretizing the one-body space, we choose the stan-

dard fast-Fourier-transform-based method with Ngrid = 128
equidistant points with spacing �x = 2R/Ngrid [32].

For propagating the master equation, we choose a varia-
tional splitting scheme [29,33], propagating the equations of
motion with H ′ = T , i.e., kinetic energy only for a time step
τ/2, then H ′ = H − T for a time step τ , and finally H ′ = T

for a time step τ/2 again. This constitutes the propagation
of a complete time step τ . While being simple, the scheme
has the advantage of having local error O(τ 3), that the T

propagation is numerically exact, and that the time step is not
restricted to be τ = O(�x2). The potential step is integrated
using a standard explicit fourth-order Runge-Kutta method for
simplicity, which is sufficient for our purposes.

The initial condition is chosen as follows. Let �2(x1,x2)
be the two-body ground state of the CAP-less Hamiltonian.
This is computed numerically by propagating the standard
�-MCTDH equations in imaginary time t = −is using L = 4
single-particle states. It follows that this state is also a
stationary for the present ρ-CAP-MCTDH method with a CAP
as long as the overlap with the CAP is negligible. We have
checked that this is indeed the case: Propagating the master
equation with the two-body state as the initial condition leads
to an absorption probability of 2.7 × 10−10 at t = tfinal = 30
which can safely be ignored.

We act upon �2 with a creation operator c(g)†, where g(x)
is a Gaussian of the form

g(x) = QC exp[−(x + 2)2/0.75 + i3x],

where Q projects away the four SPFs in the initial condition.
g(x) describes an incoming particle of momentum k = 3
starting out at x0 = −2. The final three-body initial state is
then

ρ(0) = c†(g)|�2〉〈�2|c(g).

The initial ϕ then consists of the L = 5 functions consisting
of the four SPFs from the ground-state computation and the
single state g(x).

Using this initial condition, we propagate ρ(t) for t �
tfinal = 30. Figure 3 shows a space-time graph of the particle
density n(x,t) given by

n(x,t) ≡ tr[ψ†(x)ψ(x)ρ(t)].

As expected, the plot shows the initial advance of the Gaussian
wave packet and its scattering off the well and the two-particle
ground state. It is seen that scattering occurs both in the forward
and in the backward direction. The scattered probability is
absorbed upon entering the region |x| � R′, and a system
composed of less than three particles is seen to remain.
Superficially, it is an oscillating two-particle system. The
system’s energy is E ≈ −7.355.

However, the process is more complex, and by computing
the probabilities pn(t) = tr[ρn(t)] of having n particles in
the system we may see what happens in more detail. In
Fig. 4, pn is plotted for each 1 � n � 3. As the scattered

FIG. 3. Space-time graph of square root
√

n(x,t) of particle
density in the numerical experiment. Darker areas have higher density.
The square root enhances contrast, but exaggerates low densities.
From the plot, we can see that a single-particle function of Gaussian
form is scattered off a bound two-particle state in a Gaussian well. The
reflected and transmitted parts are absorbed by the CAP, revealing an
oscillating trapped function of fewer particles.

probability density is absorbed, the probability of having n = 3
particles decreases and the probability of n = 2 increases
correspondingly. However, especially the absorption of the
backscattered wave reveals something interesting: the proba-
bility of having n = 1 particle in the system clearly becomes
significant in this process: the bound two-particle system has
a significant probability of being ionized by the collision,
leaving a single particle. By inspecting the probability density
n1(x,t) = tr[ψ†(x)ψ(x)ρ1(t)] we verify that it corresponds to
a bound one-body state superimposed on the two-body state.
The probability p0 ≈ 3.43 × 10−4 at t = tfinal, showing a very
small probability of all particles vanishing. It is therefore not
plotted.

Although the initial bound two-particle state had negligible
overlap with the CAP, there may still be errors introduced

FIG. 4. Plot of the probabilities pn = tr(ρn) of having n particles
in the system as a function of t . The absorption events seen in Fig. 3
are seen to correspond to marked changes in the probabilities. p0 is
too small to merit an interesting plot.
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FIG. 5. Smallest eigenvalue of the matrix S which needs to be
inverted at each t . As one particle is almost entirely absorbed, the
smallest eigenvalue falls off rapidly. It peters out at ≈ 1.57 × 10−4,
safely away from zero.

by placing the CAP too close to the interacting system. For
example, if a particle is absorbed prematurely, the remaining
system may miss some correlations. Moreover, there seems
to be a finite remaining probability of having three particles
in the system. This is most likely due to reflections off or
transmissions through the nonideal absorber � (which only
was chosen for illustrative purposes), and not a bound three-
body state. We have not investigated this in detail for the
present experiment.

Finally, we address the nonsingularity of the matrix S in
Eq. (34). In Fig. 5 the smallest eigenvalue of S is plotted
as a function of t . At the very last leg of the evolution, this
eigenvalue σmin drops off quickly.

A sharp falloff of σmin is to be expected when a particle
is almost entirely absorbed. This may be understood in terms
of a noninteracting system. If interactions are not present,
the whole system may be described by the SPFs alone,
each evolving according to the non-Hermitian Schrödinger
equation under the single-particle Hamiltonian h − i�. Thus,
the eigenvalues σj only change because of the CAP. As a
particle is absorbed, one eigenvalue goes to zero.

Usually, small eigenvalues σj give very rapidly changing
SPFs. However, we have observed that the natural orbital
corresponding to σmin, which we observe resides in the CAP
region and thus represents the absorbed particle, does not
change significantly in the last leg of the evolution. This
indicates that the SPF no longer becomes relevant for the
description in the sense that the right-hand side of Eq. (34)
decouples from this SPF. In this way, the near-singularity of S

stemming from particle absorption may in fact have no impact
at all on the evolution. This may be related to the simple
fact that for a pure two-fermion system, the single-particle
reduced density matrix is singular whenever L is an odd
number. (It is easy to show that the eigenvalues are zero or of
multiplicity 2 in the two-fermion case.) We cannot draw any
firm conclusions concerning this from our simple experiment,
except for pointing out that S becoming singular may have
different causes and consequences compared to pure-state
MCTDH.

V. MIXTURES OF SPECIES

The ρ-CAP-MCTDH formulation for identical particles is
readily generalized to mixtures of arbitrary number of species
of particles, such as mixtures of 3He and 4He (fermions and
bosons). Using second quantization, the derivation becomes
analogous to the treatment in Sec. III and Ref. [27], so we only
state the main results here.

Like Ref. [27] we consider two different species of particles
A and B for simplicity, as the generalization to the K species
follows immediately. Each species has a Fock space H (i),
i = A,B. The total Hilbert space is the product space

H = H (A) ⊗ H (B).

Each species is assigned a set ϕ(i) of single-particle states
ϕ(A)(x) and ϕ(B)(y), but they have no a priori connection, as
the single-particle spaces may be very different. Consequently,
the operators a

(†)
j (for species A) and b

(†)
k (for species B) all

commute since the species are distinguishable from each other.
As previously, the creation operators are used to construct
finite-dimensional Fock spaces V (i) with determinant or
permanent basis functions �

(i)
J . For the product space, the

basis functions are

�
(A)
J [n] ⊗ �

(B)
K[m] = a

†
j1

· · · a†
jn

b
†
k1

· · · b†km
�vac.

Note that as the particles are distinguishable, we speak of
(n,m)-particle states. Fock space is divided into subspaces
with n particles of species A and m particles of species B. The
density operator ρ will then be block diagonal with respect to
the particle numbers:

ρ =
NA∑
n=0

NB∑
m=0

ρn,m,

where Ni are the maximum number of particles in the system,
determined by the initial condition.

Each species has its internal Hamiltonian, but for the
equations not to separate into the previously studied case,
we need an interaction. A generic two-body interspecies
interaction may be written as

W =
n∑

i=1

m∑
j=1

w(xi,yj ) =
L(A)∑
j,l=1

L(B)∑
k,m=1

wjklma
†
j alb

†
kbm

in first and second quantization form, respectively. Here,

wjklm = 〈
ϕ

(A)
j ϕ

(B)
k

∣∣w(x,y)
∣∣ϕ(A)

l ϕ(B)
m

〉
.

The usual factor 1/2 is not present, since the particles are not
identical.

Each species also has its own absorber �(i), which need not
have any a priori relation.

Working through the equations of motion, noting that each
species’ SPFs are independent from each other, we obtain the
following equation for the Galerkin matrix blocks Bn,m:

Ḃn,m = −i[H,Bn,m] − {G(A) + G(B),Bn,m}
+ 2

∑
jk

�
(A)
jk akBn+1,ma†j + 2

∑
jk

�
(B)
jk bkBn,m+1b†

j ,
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with H = H(A) + H(B) + W and an otherwise obvious nota-
tion.

We obtain an SPF equation of motion for each species.
They contain species-specific analogs S(i) of S, and of the
mean fields U (i) of U , and also interspecies analogs of the
reduced two-body density matrix elements S(AB,2) and mean
fields due to W , exactly as in the �-MCTDH method [27].
These are defined by

S
(AB,2)
jklm ≡ S

(BA,2)
kjml ≡ tr(ρ2a

†
j alb

†
kbm),

W
(A)
km ≡

∫
ϕ(B)(y)w(x,y)ϕ(B)(y)dy,andW

(B)
km

and

W
(B)
km ≡

∫
ϕ(A)(x)w(x,y)ϕ(A)(x)dx,

respectively. We get the SPF equations of motion

i
∑

j

ϕ̇
(A)
j S

(A)
kj = Q(A)

[ ∑
j

(h(A) − i�(A))ϕ(A)
j S

(A)
kj

+
∑
klm

U
(A)
km ϕ

(A)
l S

(A,2)
jklm +

∑
klm

W
(A)
km ϕ

(A)
l S

(AB,2)
jklm

]
,

i
∑

j

ϕ̇
(B)
j S

(B)
kj = Q(B)

[∑
j

(h(B) − i�(B))ϕ(B)
j S

(B)
kj

+
∑
klm

U
(B)
km ϕ

(B)
l S

(B,2)
jklm +

∑
klm

W
(B)
km ϕ

(B)
l S

(AB,2)
lmjk

]
.

These equations have an obvious symmetry with respect to
particle species interchange. These equations are identical
to those given in Ref. [27], except for the reduced density
matrices being defined in terms of a density operator and not
a pure state.

The generalization to K species is straightforward, and we
refrain from going into further detail. Note, however, that one
interesting special case is obtained when the number of species

equals the number of initial particles, so that the initial state is
a density operator in the space

H = H (1)
1 ⊗ H (2)

1 ⊗ · · · ⊗ H (K)
1 .

In this case it seen that, as all particles in the system are
in fact distinguishable, we have obtained the usual ρ-MCTDH
method for distinguishable degrees of freedom, but with a CAP.
Of course, the same can be said of the pure-state MCTDH
method for mixtures of particles—as we approach K = N

species, where N is the number of particles, we are back at
the plain MCTDH method for distinguishable particles, and
the circle is closed: the MCTDH method for identical particles
can be viewed as a MCTDH method with (anti-)symmetry
constraints on the coefficients, and the plain MCTDH
method can be viewed as an N -species MCTDH method for
mixtures.

VI. CONCLUSION

A system of N particles described by a Hamiltonian with
a CAP evolves irreversibly in time. In order to describe
the remaining particles as some are lost to the absorber,
a master equation in Lindblad form in Fock space is
needed, as first demonstrated in Ref. [22]. This equation
was discussed at length, and a Fock space ρ-MCTDH
method, ρ-CAP-MCTDH, was presented that is a strict
generalization of a standard pure-state MCTDH evolution
for identical particles or mixtures. A numerical experiment
on a simple system of N = 3 spin-polarized fermions was
reported.
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