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Two-photon absorption of few-electron heavy ions
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The two-photon absorption of few-electron ions has been studied by using second-order perturbation theory
and Dirac’s relativistic equation. Within this framework, the general expressions for the excitation cross sections
and rates are derived including a full account of the higher-order multipole terms in the expansion of the
electron-photon interaction. While these expressions can be applied to any ion, independent of its particular
shell structure, detailed computations are carried out for the two-photon absorption of hydrogen-, helium-, and
berylliumlike ions and are compared with the available theoretical and experimental data. The importance of
relativistic and nondipole effects in the analysis and computation of induced two-photon transitions is pointed
out. Moreover, we discuss the potential of these transitions for atomic parity-violation studies in the high-Z
domain.
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I. INTRODUCTION

The recent advances in the setup of coherent-light sources
within the optical, ultraviolet (UV), and even x-ray domains
have opened up different avenues to explore two-photon
transitions between bound atomic states. During recent years,
for example, a series of experiments has been performed on
the ns → n′s and ns → n′d two-photon excitation of neutral
hydrogen and deuterium atoms [1–4]. These measurements
revealed information about quantum electrodynamical (QED)
effects in simple atomic systems and, moreover, helped to
determine fundamental physical constants with unprecedented
accuracy [5]. Apart from hydrogen atom and hydrogenic
systems, studies on the outer-shell (two-photon) excitation
of low- and medium-Z neutral atoms have been reported
extensively in the literature [6–10]. These studies were found
to be of particular interest not only for improving our
understanding of the electronic structure of complex atoms,
but also for the diagnostics of laboratory plasmas.

In contrast to neutral hydrogen and rather light atoms, less
attention on studying two-photon absorption processes has
been paid in the past to medium- and high-Z atoms and ions.
With the help of modern sources of coherent-vacuum UV and
x-ray radiation, however, such experiments become feasible
today. They may provide valuable insight into relativistic,
many-body, and QED phenomena in strong electromagnetic
fields and, hence, may serve as a complementary technique
to the well-established x-ray absorption spectroscopy [11,12].
Moreover, in recent years, two-photon-induced transitions in
heavy highly charged ions have attracted much attention as
a promising tool for studying atomic parity-violation (PV)
effects [13–15]. In order to understand these effects better,
currently, a different generation of experiments on the two-
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photon absorption of heliumlike ions is being planned at the
GSI facility in Darmstadt and the Helmholtz Institute in Jena.

Despite the recent interest in the two-photon spectroscopy
of heavy ions, not much theoretical work has been performed
in this area that might help in developing and analyzing future
experiments. In particular, there is a lack of reliable predictions
of the absorption rates that account for the relativistic and
nondipole effects and allow for detailed investigations of the
excitation process in the dependence on the directions and
polarizations of the incident photons. Although first steps
toward such an analysis have been taken for hydrogenlike
[11,12,16,17] and few-electron [13,14] heavy ions, most of
these previous studies were restricted to a particular geometry
of the two-photon absorption experiment as well as to just
some particular atom or ion. Instead, in the present paper,
we lay out a unified formalism for the two-photon excitation
of many-electron systems, independent of their particular
initial- and final-state shell structures as well as the properties
of the incident light. This analysis is performed within the
framework of second-order perturbation theory whose basic
expressions are summarized in Sec. II A. In particular, here,
we introduce the transition amplitudes that describe a bound-
state transition under the simultaneous absorption of two
photons. By making use of the multipole expansion of the
electron-photon interaction operator and angular momentum
algebra, we are able to factorize these amplitudes into
reduced second-order matrix elements, which depend on
the electronic structure of a particular ion and a (so-called)
angular polarization tensor. The latter contains the complete
information about the direction and polarization states of the
incident photons and is discussed in detail in Sec. II B. Based
on the general formula for the second-order amplitude, in
Sec. II C, we then derive the two-photon absorption cross
sections and transition rates. While these expressions are
general and can be employed to analyze the two-photon
excitation of any ion or atom, in Sec. III A, we restrict our
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analysis to hydrogenlike ions. For these ions, we employ the
well-established finite-basis-set method to calculate the rates
for several ns → n′s and ns → n′p transitions. The results
from these computations indicate the importance of a proper
account of relativistic and nondipole effects for the accurate
evaluation of the transition rates especially for medium- and
high-Z ions. Apart from the hydrogenlike systems, we also
use our approach to re-investigate the two-photon excitation
of helium- and berylliumlike heavy ions. The (excitation)
probabilities for the 1s2p3P0 → 1s2s1S0- and 1s22s2 1S0 →
1s22s2p 3P0-induced two-photon transitions in these ions,
obtained within the multiconfiguration Dirac-Fock (MCDF)
approach, are displayed in Sec. III B and are compared with
the previous theoretical predictions. Here, special emphasis
is placed on the electric dipole 2E1 excitations, which may
proceed only because of a parity mixing of the ionic states.

Finally, a brief summary of these results and outlook is given
in Sec. IV.

Atomic units (h̄ = me = e = 1) are used throughout the
paper, unless stated otherwise.

II. THEORETICAL BACKGROUND

A. Evaluation of the transition amplitude

Theoretical studies on two-photon transitions in atomic
systems have a long tradition that goes back to the seminal
papers by Göppert-Mayer [18] and Breit and Teller [19]. In
these papers, the analysis of the decay (or excitation) rates
has been traced back usually to the second-order transition
amplitudes. For the absorption of two photons with the wave
vectors ki and polarizations εi (i = 1,2), such amplitudes read
as

Mf i(Mf ,Mi) =
∑

ανJνMν

〈αf Jf Mf |R̂(k1,ε1)|ανJνMν〉〈ανJνMν |R̂(k2,ε2)|αiJiMi〉
Eν − Ei − ω2

+
∑

ανJνMν

〈αf Jf Mf |R̂(k2,ε2)|ανJνMν〉〈ανJνMν |R̂(k1,ε1)|αiJiMi〉
Eν − Ei − ω1

, (1)

where |αiJiMi〉 and |αf Jf Mf 〉 denote general (many-
electron) initial- and final-ionic states with well-defined total
angular momenta Ji,f and their projections Mi,f and where the
αi,f refer to all the additional quantum numbers. Moreover,
in Eq. (1), ω1,2 = k1,2/α are the energies of the absorbed
photons. In the calculations below, we always assume that the
incident light has been tuned into resonance with a two-photon
absorption and, hence, that ω1,2 are related to the final- and
initial-state energies Ei and Ef by the condition

Ef − Ei = ω1 + ω2. (2)

Furthermore, in Eq. (1), R̂ is the transition operator that de-
scribes the interaction of the electrons with the electromagnetic
radiation and that can be written as a sum of one-particle
operators,

R̂(k,ε) =
∑
m

Am(k,ε) =
∑
m

[αm · (ε+Gk̂)eik·rm−Geik·rm ].

(3)

Here, αm = (αx,m,αy,m,αz,m) denotes the vector of the Dirac
matrices for the mth particle, and G is an arbitrary gauge
parameter. In the calculations below, we use two different
gauges that are known to lead to well-known nonrelativistic

operators. The so-called Coulomb gauge is obtained for G = 0
and corresponds to the velocity form of electron-photon inter-
action operator in the nonrelativistic limit. In the Babushkin
gauge, in contrast, one adopts G = √

(L + 1)/L, and this
simplifies, for the particular case of L = 1, to the dipole
length form of the transition operator in the nonrelativistic
case.

A further simplification of the two-photon absorption
amplitude (1) can be achieved with the help of Racah’s algebra
if use is made of the radial-angular representation of the
Dirac wave functions and if the operator R̂ = ∑

m Am(k,ε)
is decomposed into spherical tensors. For the emission of the
photon in the direction k̂ = (θ,φ) with respect to the z axis,
taken as the quantization axis, such a decomposition reads
[20,21]

Am(k,ε) = 4π
∑
pLM

iL−|p|[ε · Y (p)∗
LM (k̂)]ap

LM,m(k), (4)

where Y (p)
LM (k̂) is a vector spherical harmonics [22] and the

index p describes electric (p = 1), magnetic (p = 0), and lon-
gitudinal (p = −1) components of the electromagnetic field.
The explicit form of these components has been discussed in
several places in the literature; cf. Refs. [20,21].

By inserting Eqs. (3) and (4) into the amplitude (1) and employing the Wigner-Eckart theorem, we obtain

Mf i(Mf ,Mi) =
∑

ανJνMν

∑
p1L1M1

∑
p2L2M2

[
ε1 · Y (p1)∗

L1M1
(k̂1)

][
ε2 · Y (p2)∗

L2M2
(k̂2)

] (4π )2iL1+L2−|p1|−|p2|

[Jf ,Jν]1/2
[〈JiMi]L2M2 | JνMν〉

×〈JνMνL1M1 | Jf Mf 〉SJν

L1p1,L2p2
(ω2) + 〈JiMi L1M1 | JνMν〉〈JνMνL2M2 | Jf Mf 〉SJν

L2p2,L1p1
(ω1)], (5)
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where the notation [a,b, . . .] = (2a + 1)(2b + 1) · · · is used and the reduced (second-order) matrix element is given by

S
Jν

L1p1,L2p2
(ω2) =

∑
αν

〈
αf Jf

∥∥∥ ∑
m â

p1
L1,m

(k1)
∥∥∥ανJν

〉〈
ανJν

∥∥∥∑
m â

p2
L2,m

(k2)
∥∥∥αiJi

〉
Eν − Ei − ω2

. (6)

In order to perform the summation over the projections
M1, M2, and Mν of the angular momenta and, hence, to rewrite
Eq. (5) in a more compact form, we introduce the irreducible
tensor,

T
L1p1,L2p2
kq = {[

ε1 · Y (p1)∗
L1

(k1)
] ⊗ [

ε2 · Y (p2)∗
L2

(k2)
]}

kmk

=
∑
M1M2

〈L1M1L2M2 | kq〉 [
ε1 · Y (p1)∗

L1M1
(k̂1)

]

× [
ε2 · Y (p2)∗

L2M2
(k̂2)

]
, (7)

which completely defines the polarization as well as the
angular dependence of the two-photon absorption process.
With the help of this tensor, the second-order amplitude then
simplifies to

Mf i(Mf ,Mi) =
∑
kq

√
2k + 1〈kqJf Mf | JiMi〉

×Ukq(αf Jf ,αiJi), (8)

and where the function Ukq is defined by

Ukq(αf Jf ,αiJi) = (4π )2

√
2Ji + 1

∑
L1p1

∑
L2p2

iL1+L2−|p1|−|p2|(−1)Jf +Ji+p1+p2T
L1p1,L2p2
kq

×
∑
Jν

({
L2 L1 k

Ji Jf Jν

}
S

Jν

L2p2,L1p1
(ω1) + (−1)L1+L2+k

{
L2 L1 k

Jf Ji Jν

}
S

Jν

L1p1,L2p2
(ω2)

)
. (9)

It follows immediately from the properties of Wigner’s 6j

symbols that the Ukq are nonzero only if k satisfies the
condition |Ji − Jf | � k � Ji + Jf . Therefore, the charac-
teristics of the two-photon Ji = 0 → Jf = 0 transitions are
described by a single U00 function, while four components
with k = 0,1 and q = −k, . . . ,k are required, in general,
to analyze the two-photon absorption or emission for some
Ji = 1/2 → Jf = 1/2 transition.

B. Properties of the angular-polarization tensor

As seen from formulas (8) and (9), the computation of the
amplitude Mf i(Mf ,Mi) requires some knowledge about the
angular polarization tensor (7) as well as the reduced matrix
elements (6). While these matrix elements will be discussed
later in Sec. III, here we will briefly recall the basic properties
of the Tkq . The most general form of this tensor has been
derived by Manakov and co-workers in Refs. [21,23]. In
the present section, therefore, we do not repeat those (rather
elaborate) evaluations but restrict ourselves to the particular
case of the linearly polarized photons whose polarization
vectors ε1,2 are described by the tilt angles χ1 and χ2 with
respect to the reaction plane, which is spanned by the momenta
k1 and k2, respectively. For such a photon pair, the angular
polarization tensor reads

T
L1p1,L2p2
kq = [L1,L2]1/2

16π

×
∑
M1M2

∑
λ1,λ2=−1,1

e−i(λ1χ1+λ2χ2)(−λ1)p1 (−λ2)p2

×〈L1M1L2M2 | kq〉 D
L1
M1λ1

(k̂1)DL2
M2λ2

(k̂2), (10)

with D being the Wigner rotation matrix. This expression can
be simplified further by a proper choice of the quantization
axis. Since there was no direction initially preferred for the
excitation of unpolarized (as well as unaligned) ions or atoms,
we adopted ẑ as the quantization axis along the momentum of
the first photon, i.e., k̂1||ẑ. Therefore, a single opening angle θ

is only required to characterize the emission of γ quanta with
respect to each other,

T
L1p1,L2p2
kq (θ ) = [L1,L2]1/2

16π

×
∑

λ1,λ2=−1,1

e−i(λ1χ1+λ2χ2)(−λ1)p1 (−λ2)p2

×〈L1λ1L2M2 | kq〉 D
L2
M2λ2

(0,θ,0), (11)

where M2 = q − λ1, as it follows immediately from the
properties of the Clebsch-Gordan coefficients.

With the help of Eq. (11), one can evaluate the tensor
Tkq for any combination (L1p1,L2p2) of multipoles that is
allowed for a particular |αiJi〉 + γ1 + γ2 → |αf Jf 〉 transition.
Of special interest, however, are the angular and polarization
properties of the leading term(s) in the multipole expansion,
which dominate(s) the two-photon absorption for any given
pair of initial- and final-bound states. For example, if we
assume a transition to be induced between two J = 0 states
of equal parity, it will most likely occur due to the absorption
of two electric dipole (2E1) photons. The characteristics of
such a transition are described by a single zero-rank tensor
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FIG. 1. (Color online) The zero-rank angular polarization tensor
T00 for the 2E1 transition (left panel) and the E1-M1 transition (right
panel) as a function of the opening angle θ . The polarization vector
of the first photon lies within the reaction plane χ1 = 0, while the
second photon is polarized under the angle χ2 = 0 (solid line), π/4
(dashed line), and π/2 (dashed–dotted line) with respect to this plane.

T00, which is given by

T
L1=1, p1=1; L2=1, p2=1

00 (θ )

= −
√

3

8π
(sin χ1 sin χ2 + cos χ1 cos χ2 cos θ )

= −
√

3

8π
(ε1 · ε2). (12)

This expression includes the well-known result that any
n 1S0 → n′ 1S0 transition in heliumlike and ns → n′s transi-
tions in (nonrelativistic low-Z) hydrogenlike ions is forbidden
if the polarization vectors of the two photons are orthogonal
to each other (see also the right panel of Fig. 1). If, in contrast,
we consider a Ji = 0 → Jf = 0 excitation for ionic states of
different parity, the tensor T00 reads as

T
L1=1, p1=1; L2=1, p2=0

00 (θ )

= i
√

3

8π
(sin χ1 cos χ2 − cos χ1 sin χ2 cos θ )

= − i
√

3

8π
k̂1 · (ε1 × ε2) (13)

for the electric dipole magnetic dipole (E1-M1) channel. Apart
from this channel, of course, one has to also account for
the M1-E1 term that corresponds to the combination (L1 =
1, p1 = 0; L2 = 1, p2 = 1). Together, these two pathways
give rise to the two-photon amplitude, which is proportional
to (k̂1 − k̂2) · (ε1 × ε2) and which immediately indicates that
such E1-M1–M1-E1 transitions cannot be induced by a single
coherent laser beam [13].

C. Cross sections and transition rates

Equations (8) and (9) display the general form of the
second-order matrix element that describes the excitation of
the ion (or atom) under the simultaneous absorption of two
photons. This matrix element represents the central building
block from which all the (two-photon) properties can be
calculated. For example, experimental results on the two-
photon absorption are often presented in terms of the parameter

α0 that can be calculated as

α0 = (2π )3

4α2ω3

1

2Ji + 1

∑
MiMf

|Mf i(Mf ,Mi)|2

= (2π )3

4α2ω3

∑
kq

|Ukq(αf Jf ,αiJi)|2. (14)

This parameter, which—in Système International units—is
expressed in (cm2/s)/(W/cm2), is directly related to the
effective excitation cross section (given in cm4/W),

σ = α0g(ω)G(2), (15)

and to the two-photon rate (in s−1):

W = I 2

ω
α0g(ω)G(2). (16)

In these expressions, I is the intensity of the incident
light, G(2) is the two-photon statistical factor, which takes
the value G(2) = 1 for a single-mode laser and G(2) = 2
for an incoherent source [24,25], and g(ω) is the line-
shape function. By choosing the resonance condition (2) and
the Gaussian profile of the laser beam, we can write this
function as

g(ω) =
(

4 ln(2)

π

)1/2 1(
�ω2

D + 2�ω2
L

)1/2 , (17)

where �ωD and �ωL are the Doppler width and laser
linewidth, respectively. Here, both these widths are assumed
to be larger than the radiative (natural) width of the excited
ionic state. This assumption might not always be true for
the two-photon absorption of high-Z ions. For such ions, one
should use the generalization of Eq. (17) as given, for example,
in Ref. [26].

III. RESULTS AND DISCUSSIONS

A. Two-photon absorption of hydrogenlike ions

The expressions for the second-order amplitudes (8) and
(9) and transition rates (14)–(16), derived in the previous
section, can be utilized for any shell structure of the atoms and
ions, if the corresponding (reduced) elements SJν are properly
generated. Within the relativistic framework, however, the
evaluation of the two-photon matrix elements is generally
not a simple task since it requires a summation over the
complete Dirac spectrum [cf. Eq. (6)]. A number of methods
has been developed in the past to perform such an intermediate-
state summation consistently. For the hydrogenlike ions, the
matrix elements SJν can be calculated very accurately by
making use of either the relativistic Coulomb-Green’s function
approach [27–29] or the various finite-basis-set methods
[30–35]. In the present paper, we followed the second line
and employed the finite-basis solutions constructed from a
B-spline set. Based on this approach, the second-order matrix
elements and, in turn, the parameter α0 were evaluated for the
two-photon excitation of hydrogenlike systems for a single
linearly polarized laser. For this particular case, the results
are obtained immediately from Eqs. (8)–(10) by choosing
ω1 = ω2 = (Ef − Ei)/2, k̂1 = k̂2, and χ1 = χ2.
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TABLE I. The parameter (14) for the two-photon absorption of neutral hydrogen. Predictions have been obtained for two gauges for the
coupling of the radiation field within the electric dipole (2E1) approximation as well as by taking the higher (nondipole) terms into account.
Our fully relativistic predictions are compared with the results of the nonrelativistic dipole calculations by Tung et al. [38]. Powers of 10 are
given in brackets.

α0 (cm2/s)/(W/cm2)

Transition Multipolarity Coulomb Babushkin

1s1/2 → 2s1/2 2E1 2.747 952[−17] 2.747 952[−17]
2.75[−17]a

Total 2.747 935[−17] 2.747 935[−17]
1s1/2 → 3s1/2 2E1 2.419 411[−18] 2.419 411[−18]

2.42[−18]a

Total 2.419 404[−18] 2.419 404[−18]
1s1/2 → 4s1/2 2E1 6.687 125[−19] 6.687 125[−19]

6.69[−19]a

Total 6.687 113[−19] 6.687 113[−19]
2s1/2 → 3s1/2 2E1 5.709 419[−15] 5.709 419[−15]

5.72[−17]a

Total 5.709 405[−15] 5.709 405[−15]
2s1/2 → 4s1/2 2E1 3.079 139[−17] 3.079 139[−17]

3.52[−17]a

Total 3.079 124[−17] 3.079 124[−17]

aTung et al. [38].

Tables I, II, and III display parameter α0 for various ns →
n′s transitions in neutral hydrogen as well as hydrogenlike
xenon Xe53+ and uranium U91+ ions. The calculations have
been performed in Coulomb (velocity) as well as Babushkin
(length) gauges for the coupling of the radiation field. Although
an agreement between these two gauges does not prove the
correctness of the predicted data directly, it is usually used as an
indicator for the accuracy of the atomic-structure calculations
[36,37]. Moreover, predictions of the exact relativistic theory
that account for all allowed multipole components (p1L1,
p2L2) in the amplitude (9) are compared with those from the
electric dipole approximation, i.e., if the multipole summation
is restricted to the single term with L1 = L2 = 1 and p1 =
p2 = 1. As expected, both approaches yield almost identical
results for neutral hydrogen, for which the relativistic and
nondipole effects are known to be negligible. For Z = 1,

moreover, our calculations reproduce the nonrelativistic dipole
calculations by Tung et al. [38] as well as by Gontier and
Trahin [39] very well, and they also show good agreement with
the experimental finding for the 1s → 2s effective excitation
cross section σ from Ref. [40]. In that paper, a value of
σ exp = 3.3 ± 0.8 × 10−28 cm4/W was determined, which can
be compared directly to our prediction of σ th = 5.2 ± 1.3 ×
10−28 cm4/W and where the latter value has been obtained
from Eq. (15) for the two-photon statistical factor G(2) = 2
and the line-shape function g(ω) = 9.6 ± 2.5 × 1012 s (as
recommended in Ref. [40]). One may note that, despite the
numerical accuracy of the α0 parameters in Table I, the
theoretical value σ th(1s → 2s) has an uncertainty of about
25%. As seen from Eq. (17), for the line-shape function, this
uncertainty accounts for the incomplete knowledge about the
properties of the laser beam as well as of the ensemble of target

TABLE II. The same as Table I but for the two-photon excitation of hydrogenlike xenon Xe53+.

α0 (cm2/s)/(W/cm2)

Transition Multipolarity Coulomb Babushkin

1s1/2 → 2s1/2 2E1 8.495 884[−28] 8.495 884[−28]
Total 8.338 306[−28] 8.338 306[−28]

1s1/2 → 3s1/2 2E1 6.421 630[−29] 6.421 630[−29]
Total 6.369 145[−29] 6.369 145[−29]

1s1/2 → 4s1/2 2E1 1.650 110[−29] 1.650 117[−29]
Total 1.643 400[−29] 1.643 405[−29]

2s1/2 → 3s1/2 2E1 1.311 563[−25] 1.311 563[−25]
Total 1.299 959[−25] 1.299 959[−25]

2s1/2 → 4s1/2 2E1 1.471 467[−28] 1.471 465[−28]
Total 1.529 490[−28] 1.529 488[−28]
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TABLE III. The same as Table I but for the two-photon excitation of hydrogenlike uranium U91+.

α0 (cm2/s)/(W/cm2)

Transition Multipolarity Coulomb Babushkin

1s1/2 → 2s1/2 2E1 1.849 824[−29] 1.849 824[−29]
Total 1.743 653[−29] 1.743 653[−29]

1s1/2 → 3s1/2 2E1 9.063 289[−31] 9.063 420[−31]
Total 8.937 087[−31] 8.937 237[−31]

1s1/2 → 4s1/2 2E1 1.856 756[−31] 1.856 662[−31]
Total 1.868 169[−31] 1.867 428[−31]

2s1/2 → 3s1/2 2E1 5.398 854[−28] 5.398 855[−28]
Total 5.053 379[−28] 5.053 380[−28]

2s1/2 → 4s1/2 2E1 2.422 525[−29] 2.422 506[−29]
Total 2.306 343[−29] 2.306 325[−29]

atoms in a particular experiment. For example, in the paper
reported by Bickel and McRae in Ref. [40], a 243-nm XeCl dye
laser was used for which the linewidth �ωL = 18.8 GHz was
known only within about 20% uncertainty. An almost equally
large uncertainty was found for the Doppler width �ωD and
was attributed to the wide velocity spread of the (target)
hydrogen atoms, which were produced by the laser ablation of
the zirconium alloys. Any improvement in the accuracy of the
two-photon absorption studies, therefore, will require a better
control of the temporal and spatial laser-beam characteristics
and of the target properties. This can be achieved, for
example, by using cold-atomic targets together with the single-
frequency high-power lasers (see, e.g., Ref. [41]) or narrow
cw single-mode lasers as well as by performing Doppler-free
spectroscopy [2,42–46].

As seen from Tables II and III, we observe a significant
reduction in parameter α0 as the nuclear charge Z increases.
This Z behavior can easily be understood—at least, within
the framework of the nonrelativistic dipole approximation—if
we consider the individual trends of the matrix elements and
energy denominator in expression (14): While the two-photon
matrix element (8) is weakly dependent on Z [11,12,47], the
transition energy 2ω = Ef − Ei follows a Z2 law. That yields
a simple estimate α0 ∼ Z−6 which, however, takes neither
the relativistic contraction of the wave functions toward the
nucleus nor the nondipole effects in the electron-photon inter-
action into account. The relativistic contraction is known to fur-
ther reduce the two-photon cross sections by a factor of about 2
for high-Z ions (see, for example, Refs. [11,48]). In contrast,
the influence of the higher-multipole contributions is not so
significant. As seen from Tables II and III, for example, the
probability of the 1s → 2s two-photon absorption is decreased
only by about 2% for Xe53+ and by 6% for U91+ if, apart
from the leading 2E1 channel, the nondipole terms are taken
into account. This reduction, which was also predicted for
the two-photon decay of the 2s metastable state [27,49], arises
mainly from the interference between the 2E1, 2M1, and 2E2
multipole components as can be deduced from Eq. (14),

α0(1s → ns) 
 8π5

α2ω3
|SE1|2

(
1 + 2

SM1

SE1
+ 2

SE2

SE1
+ · · ·

)
,

(18)

and where we have assumed again that both incident photons
have the same polarization and wave vectors. Moreover,
for the sake of brevity, here, we introduced the notation

SLp = S
J ′

ν

Lp, Lp(ω) − S
J ′

ν+1/2
Lp,Lp (ω) where J ′

ν = 1/2 for 2E1 and
2M1 transitions and J ′

ν = 3/2 in the 2E2 case. As seen from
Eq. (18), no photon pair with different multiplicities (for
example, E1-M2) contribute to the ns → ns ′ (two-photon)
absorption process. Also, this immediately follows from the
properties of the angular polarization tensor (7) which—in
the absorption of photons from a single polarized laser
beam—does not allow any photon pair with multipole
combination L1 �= L2.

Up to the present, we have discussed the ns → ns ′ two-
photon excitations of hydrogenlike ions. Besides this case,
which has been reasonably established in the literature, we
also consider the ns → n′p induced transitions. Although
these transitions are rather weak, they can provide a very
promising playground for studying PV phenomena in simple
atomic systems. For the two-photon excitation to the p states,
moreover, one expects that nondipole terms in the electron-
photon interaction play a more significant role than for the
ns → ns ′ excitations. This is due to the fact that s and p states
can be coupled by two E1 photons only owing to the tiny
PV term and, hence, the ns → n′p transitions proceed mainly
via the leading E1-M1–M1-E1 and E1-E2–E2-E1 channels.
In order to investigate the role of these (and higher-order)
multipole terms, in Table IV, we present the α0 parameter
for the excitation of neutral hydrogen as well as hydrogenlike
xenon and uranium ions by a single linearly polarized laser
(i.e., k̂1 = k̂2, ε1 = ε2). The angular polarization tensor T00

identically vanishes for such a beam according to Eq. (13),
and the properties of the ns → n′p1/2 two-photon transitions
are defined by just the tensor component T10. As we see later
in Sec. III B, this is not the case for the S0 → P0 transitions
in helium- and berylliumlike ions for which rank k cannot be
greater than zero [cf. Eq. (9)] and, hence, α0(k̂1 = k̂2, ε1 =
ε2) = 0.

Calculations for the two-photon excitation to the np1/2

levels have been performed within both, the rigorous rel-
ativistic theory (9), where the summation runs over all
allowed multipole combinations, and the E1-M1 + E1-E2
approximation, which only includes the leading channels.
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TABLE IV. The parameter (14) for the ns → n′p two-photon transitions in neutral hydrogen as well as hydrogenlike xenon and uranium
ions. Predictions have been obtained within the leading E1-M1 + E1-E2 approximation as well as by taking the higher multipole terms using
the Babushkin gauge into account. Powers of 10 are given in brackets.

α0 (cm2/s)/(W/cm2)

Transition Multipolarity Z = 1 Z = 54 Z = 92

1s1/2 → 2p1/2 E1-M1–E1-E2 1.277 404[−22] 1.028 584[−29] 4.753 682[−31]
Total 1.277 407[−22] 1.035 005[−29] 4.857 008[−31]

1s1/2 → 3p1/2 E1-M1–E1-E2 1.406 394[−24] 5.340 185[−32] 5.354 621[−35]
Total 1.406 396[−24] 5.341 826[−32] 7.417 931[−35]

1s1/2 → 4p1/2 E1-M1–E1-E2 3.289 574[−26] 1.622 427[−34] 1.171 781[−33]
Total 3.289 564[−26] 1.814 492[−34] 1.271 929[−33]

2s1/2 → 3p1/2 E1-M1–E1-E2 7.462 732[−21] 6.096 173[−28] 2.620 305[−29]
Total 7.462 732[−21] 6.092 971[−28] 2.596 358[−29]

2s1/2 → 4p1/2 E1-M1–E1-E2 1.728 988[−22] 1.424 077[−29] 5.300 456[−31]
Total 1.728 992[−22] 1.435 945[−29] 5.549 392[−31]

As seen from Table IV, this approximation provides a good
estimate of the parameter α0 along the entire isoelectronic
sequence. That is, the discrepancy between the E1-M1 +
E1-E2 calculations and rigorous results does not exceed
5%–7% for the heaviest species. The leading role of the
E1-M1 and E1-E2 excitation channels also allows us to
qualitatively understand the Z scaling of the α0 parameter
for the ns → n′p transitions. The matrix elements for these
two channels scale approximately as Z, thus, leading to an
α0 ∼ Z−4 dependence. In the relativistic case, again, this
dependence has to be corrected for the relativistic contraction
and higher-term effects.

B. Intrashell transitions in few-electron ions

Apart from analyzing the transitions in hydrogenlike ions,
Eqs. (8)–(16) can be employed to investigate the two-photon
absorption of many-electron atoms and ions. Similar to before,
the reduced matrix elements (6) contain complete information
about the electronic structure of the particular system. In
contrast to hydrogenlike ions, however, the relativistic second-
order calculations of SJν are more intricate for few-electron
ions since we then have to account for the interelectronic
interaction effects. For the radiative transitions between the
ground and the excited states of high-Z ions, whose (excita-
tion) energies usually reach thousands of eV, the independent
particle model was found suitable to treat these effects and to
compute the total and differential rates [50–52]. During the
past decades, however, laser-induced Ji = 0 + 2γ → Jf =
0 intrashell transitions have attracted much attention, both
in theory and in experiment. Having transition energies in
the optical-to-extreme-UV range, these induced two-photon
excitations may provide an alternative and very promising tool
for studying many-body and PV phenomena in heavy atomic
systems [13–15].

For the theoretical analysis of such two-photon absorption
processes, however, a more systematic treatment of the
electron-electron interaction and QED effects is needed, which
cannot be performed within the independent particle model
[53]. In the present paper, for example, we make use of

the MCDF approach [36,54] in order to generate the ionic
spectrum and to perform the intermediate-state summation
in Eq. (6). Since the excitation energies of the intrashell
transitions are orders of magnitude smaller than the binding
energies of the active electron in the (initial and final) levels,
such a summation can be restricted to just a few states that
contribute most to the absorption rates. By applying such a
direct summation method, we have re-investigated, in partic-
ular, the 1s22s21S0 → 1s22s2p3P0 transition in berylliumlike
ions. The two-photon absorption rates for these ions, reported
by Maul et al. [14], have to be questioned since wrong
energies were employed at that time in the electron-photon
interaction operators R̂(k,ε) that enter the amplitudes (6).
Instead of ω1 = ω2 = (Ef − Ei)/2, the authors of Ref. [14]
have mistakenly used the energies of transitions between
the initial and the intermediate ω1 = Eν − Ei as well as
the intermediate and final states ω2 = Ef − Eν . As we
see below, this results in a misestimation of the excitation
probabilities.

In Table V, we display the α0 parameter for the leading
E1-M1–M1-E1 1s22s21S0 → 1s22s2p3P0 excitation chan-
nel in berylliumlike iron Fe22+, barium Ba52+, and uranium
U88+ ions. Since, according to Eq. (13), such a transition can-
not be induced by a single (coherent) beam, calculations have
been performed for two counterpropagating photons, having
equal energies ω = (Ef − Ei)/2 and orthogonal polarization
vectors (ε1 × ε2) = 1. For this two-photon configuration,
moreover, the competing E1-E2–E2-E1 channel is forbidden
owing to the selection rules. As before, predictions have been
obtained within two (Coulomb and Babushkin) gauges for
the coupling of the radiation field. As seen from the table,
the agreement between the gauges is worse than what was
obtained for the hydrogenlike ions (cf. Tables I, II, and III).
Although our calculations show a very rapid convergence
of the summation over the 1s22snlj intermediate states in
both gauges, the convergence limits differ by about 30%
for medium-Z and 15% for high-Z ions. We attribute these
differences to the fact that the summation over the intermediate
states in Eq. (6) has been restricted to the bound spectrum of
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TABLE V. The parameter (14) for the 1s22s2 1S0 → 1s22s2p 3P0

two-photon transition in berylliumlike iron, barium, and ura-
nium ions. Calculations have been performed within the leading
E1-M1–M1-E1 approximation and by making use of the direct sum-
mation approach. Within this approach, the intermediate-state sum-
mation in Eq. (6) is restricted to all (allowed) levels 1s nlj

2S+1LJ=1

with n � Nmax. Powers of 10 are given in brackets.

α0 (cm2/s)/(W/cm2)

Nuclear charge Nmax Coulomb Babushkin

Z = 26 2 1.989[−27] 2.924[−27]
3 2.113[−27] 2.927[−27]

Z = 56 2 1.494[−27] 2.383[−27]
3 1.638[−27] 2.384[−27]
4 1.668[−27] 2.384[−27]

Z = 92 2 3.832[−28] 5.458[−28]
3 4.399[−28] 5.462[−28]
4 4.521[−28] 5.463[−28]

the ion. As known from previous theoretical studies on the
two-photon transitions of one-electron systems [34,55,56],
the continuum part of the spectrum also contributes to the
absorption (and emission) rates, although its contribution is
usually less important in the length (Babushkin) gauge. There-
fore, our discussion below is based on the Babushkin-gauge
results whose accuracy we (conservatively) estimate at about
±20%. We note that such an accuracy is definitely sufficient
for the analysis of the forthcoming two-photon absorption
experiments that will be carried out at the GSI facility in
Darmstadt.

Having calculated the α0 parameters, now, we are ready to
estimate the two-photon rates for the induced 1s22s2 1S0 →
1s22s2p 3P0 transition. As seen from Eqs. (16) and (17), these
calculations require some knowledge about the laser param-
eters. By choosing a spatially and temporally incoherent UV
radiation with an energy width of 
laser = 1 eV as suggested
in Ref. [14], we obtain the reduced rates W/I 2 = 1.06 ×
10−24, 3.55 × 10−25, and 3.46 × 10−26 cm4/(W2 s) for iron,
barium, and uranium ions, respectively, which are about 1
order of magnitude larger than those predicted by Maul et al.
As already mentioned above, this is due to the fact that wrong
energies were used in Ref. [14] for the evaluation of the
second-order transition amplitudes SJν . A further enhancement
of the (theoretically predicted) rates W/I 2 can be achieved
by using the energy widths 
laser in the meV range. This
range is easily accessible at present-day optical- and UV-light
facilities.

Until now, our calculations were based on the usual
assumption that the parity is well defined for each state of
an atom or ions. This conservation of parity places certain
restrictions on the choice of allowed multipole components
(L1p1,L2p2) in the summation in Eq. (9). These restrictions,
however, do not apply if the parity conservation is violated
due to some mechanism as, for instance, mediated by the
weak interaction between the nucleons and the electrons of
the ion. For berylliumlike ions, such a PV mechanism leads
to a mixing between the 1S0 and 3P0 berylliumlike states and

allows the 1s22s2 1S0 → 1s22s2p 3P0 two-photon transition
to proceed via the electric dipole (2E1) channel if both photons
are absorbed from a single (coherent) laser beam. In order
to estimate the rate of such an excitation process, again, we
may use Eqs. (6)–(9) and (14)–(16) but may now consider the
initial- and final-ionic states,

|1s22s2 1S0〉PV ≈ |1s22s2 1S0〉 + ηPV|1s22s2p 3P0〉,
|1s22s2p 3P0〉PV ≈ |1s22s2p 3P0〉 + ηPV|1s22s2 1S0〉, (19)

where ηPV is the parity-mixing coefficient. For beryllium-
like ions, this coefficient takes the values ηPV = −9.929 ×
10−12, − 6.029 × 10−10, and −1.916 × 10−8 for Z = 26, 56,
and 92, respectively (cf. Table I in Ref. [14]). By using
these values and the energy width of the laser of 1 eV,
we obtain the reduced rates for the PV 2E1 1s22s2 1S0 →
1s22s2p 3P0 transition: W/I 2 = 2.79 × 10−42, 3.48 × 10−41,
and 5.21 × 10−40 cm4/(W2 s). Apart from the low-Z end of
the isoelectronic sequence, these predictions are about ten
times smaller than those reported by Maul et al. [14] but
can be increased further if more realistic laser parameters are
applied.

Besides the two-photon excitation from the ground state of
the berylliumlike species, the 1s2p 3P0 → 1s2s 1S0-induced
transition in heliumlike heavy ions has attracted some recent
interest as an alternative for probing atomic PV [13]. Similar
as above, this transition should proceed via the PV electric
dipole (2E1) channel if induced by two equivalent photons.
In the past, a more detailed analysis of this excitation process
was hampered by a lack of reliable data on the energies of the
low-lying ionic levels. Only recently, systematic investigations
of the (heliumlike) spectra and transition energies have been
carried out within the QED framework [57–60]. Special
attention has been paid to the heliumlike uranium 238U, which
is considered to be the most suitable candidate for atomic PV
studies in the high-Z domain. For this ion, the 3P0-1S0 energy
splitting was found to be as small as �E 
 −2.8 eV, thus,
implying a very strong PV mixing of about ηPV = 1.7 × 10−6.
For such a splitting, moreover, the 1s2p 3P0 → 1s2s 1S0

(2E1) transition can be induced by an optical light. For this
transition, if we assume a mixing between the |1s2s 1S0〉
and |1s2p 3P0〉 states, analog to Eq. (19), we find a reduced
rate W/I 2 = 1.26 × 10−33 cm4/(W2 s), which agrees with
the previous prediction W/I 2 ≈ 10−33 cm4/(W2 s) by Schäfer
et al. [13]. This value is of direct interest, first, for preparing
and analyzing heavy-ion PV experiments that hopefully are
to be carried out at the GSI storage ring in Darmstadt and
the Helmholtz Institute in Jena. In such experiments, (a
beam of) singly excited heliumlike (U90+ ions, produced by
ion-atom collisions [61], will be irradiated with optical light.
As mentioned above, a polarized optical laser will stimulate
the 2E1 PV transition between the 2 3P0 and 2 1S0 levels
and, hence, will change the lifetime of the metastable ions
(owing to the fact that lifetimes of the triplet-P and the
singlet-S states differ by a factor of about 400). In order to
perform such lifetime measurements in the high-Z domain,
however, one needs to apply lasers that are intense enough
so that the induced 2E1 transition can compete with the
spontaneous decay of metastable ionic states. Because of this
requirement and making use of our theoretical (stimulated)
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two-photon absorption rate, one can estimate the necessary
laser intensity I ∼ 1020–1021 W/cm2. Today, these intensities
are accessible with modern laser sources (see, for example,
Ref. [62]). Apart from the determination of the required laser
intensity, an accurate theoretical prediction for this rate will
also be employed to extract the information on the mixing
parameter ηPV from the measured lifetimes (as a function of
the laser intensity). A more detailed proposal and analysis of
such a PV experiment with highly charged heliumlike ions
will be presented elsewhere [63]; here, let us just mention
that the estimated 20% accuracy for parameter α0 appears to
be sufficient for a first generation of such PV experiments
owing to the limitations in controlling the properties of the ion
beam, the target for the excitation of the ions, and the overlap
of the beams with the profile of the (high-intensity) optical
laser.

IV. SUMMARY AND OUTLOOK

Second-order perturbation theory, based on Dirac’s rela-
tivistic equation, has been applied to investigate the excitation
of few-electron ions under the simultaneous absorption of
two photons. In particular, we have derived the general
expressions for the two-photon transition rates, which include
a full account of the higher-order multipole effects in the
electron-photon interaction. These expressions can be applied
to all many-electron ions, independent of their particular shell
structure, if they are exposed to two incident light beams with
arbitrary propagation directions and polarization properties.
In order to illustrate the application of the approach, detailed
calculations have been carried out for the ns → n′s and
ns → n′p two-photon-induced transitions in neutral hydrogen
as well as hydrogenlike xenon Xe53+ and uranium U91+ ions.
These calculations, which made use of the finite-basis-set
approach, demonstrated the importance of the relativistic
contraction of the wave functions as well as the nondipole
excitation channels for the accurate analysis of the absorption
rates.

Apart from the excitation of single-electron systems, we
have also revisited the two-photon intrashell transitions in
helium- and berylliumlike ions. During the last two decades,

these transitions have attracted a good deal of interest since
they may provide an alternative and very promising route for
studying PVs in medium- and high-Z ions. Reliable theoretical
estimates for the (two-photon) absorption rates are required to
plan and to prepare future PV experiments. In this contribution,
we employed the MCDF approach in order to compute
the probabilities for the parity-allowed E1-M1–M1-E1 as
well as the PV 2E1 1s22s2 1S0 → 1s22s2p 3P0 transitions
in berylliumlike ions and the PV 2E1 1s2p 3P0 → 1s2s 1S0

transition in heliumlike ions. Results of these calculations are
found in good agreement with the nonrelativistic predictions of
Schäfer et al. [13] for the two-electron species but yield some
discrepancies with the previously reported excitation rates for
berylliumlike ions. These discrepancies can be assigned to the
wrong energies, which were used in Ref. [14] in the evaluation
of the second-order transition amplitudes.

Theoretical predictions for the PV two-photon transitions
in few-electron ions, reported in our and previous publications,
clearly indicate the need for high-intensity lasers in order
to make these transitions visible. However, such intense
laser fields also may lead to sizable Stark shift and mixing
of different ionic levels even in the high-Z regime. An
accurate treatment of these effects will be required for a better
understanding and analysis of future two-photon absorption
experiments and is currently under the way.

ACKNOWLEDGMENTS

The work reported in this paper was supported by the
Helmholtz Gemeinschaft (Nachwuchsgruppe VH-NG-421).
S.F. acknowledges support by the FiDiPro programme of the
Finnish Academy. Laboratoire Kastler Brossel is Unité Mixte
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