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Antibinding of atomic electrons in strong inhomogeneous magnetic fields
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The ground-state energy of heavy one-electron ions in an inhomogeneous locally bounded magnetic field
is estimated by the variational principle. The ions are described by means of the pseudorelativistic Herbst-
Chandrasekhar operator. Two classes of magnetic fields are considered which model a field-free region around
the central charge. It is shown that for a certain size of this region the ground-state energy becomes positive
and increases strongly with the magnetic field strength. This behavior is in contrast to the two-dimensional case
where electrons can be bound by such a field-free region.
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I. INTRODUCTION

The interest in electrons subject to inhomogeneous mag-
netic fields was revived by the preparation of graphene
monolayers which give rise to a purely two-dimensional
electronic motion. It was suggested by Egger and coworkers
to apply a static magnetic field, oriented perpendicular to the
monolayer, which is constant outside a cylinder of radius r0

and zero inside (Fig. 1(a)). In a rigorous theoretical approach,
based on the two-dimensional Dirac-Weyl equation, it was
shown that an electron gets bound in such a field-free disk,
the number of bound states increasing with r0 [1,2]. In
accordance with the experimental spectrum, the electron mass
is thereby set equal to zero [1]. Also a mathematical analysis
of the two-dimensional confinement by this magnetic field was
provided for the case of interacting massless multifermions [3].

In the three-dimensional atomic case where the confinement
in the x3 direction (the field direction) is achieved by a fixed
central Coulomb potential, a massless particle can be simulated
by an appropriate magnetic field of very large strength. A
magnetic field which shows this feature was introduced in [4]
and is of asymptotic growth but has also a depleted interior
region (Fig. 1(b)). In the presence of such a field the Herbst
operator, used to model relativistic atomic systems [5], exhibits
a scaling property which reduces the mass term, the more so,
the larger the field strength B.

In the present work the question is addressed whether, for
magnetic fields of the type discussed above, the binding of
the electron increases with the size of the depleted region as
in the two-dimensional case. Taken into consideration that
the influence of magnetic fields in two and three dimensions
is often quite different (e.g., the ground-state binding of the
atomic electron in a homogeneous magnetic field increases
with B; see, e.g., the review by Lai [6]), the answer is not
easily predictable.

Rather than progressing with a fully relativistic approach we
estimate the ground-state energy of the electron by means of a
more transparent variational calculation. A trial function which
is suitable in a wide range of magnetic fields was introduced by
Rau and coworkers [7] in the context of Schrödinger operators.
It was shown for homogeneous magnetic fields that this trial
function not only provides the correct limits for B → 0 and
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B → ∞, but that also for intermediate field strengths it is able
to reproduce the binding energies from accurate numerical
calculations [8]. Slightly modified trial functions were used in
the context of the pseudorelativistic Brown-Ravenhall operator
[9,10] and the Herbst operator [4]. However, restriction was
made to the presence of very strong magnetic fields.

The paper is organized as follows. For the two types of
magnetic fields discussed above the ground-state energy of the
Herbst operator is estimated in Secs. II A and III B, respectively
(using the trial function from [7]), and its dependence on the
field parameters is investigated for the fixed central charge
Z = 80. In Secs. III and IV the stability of these results is
tested by choosing different types of trial functions, including
such which mimic relativistic effects. A short conclusion is
given in Sec. V.

II. VARIATIONAL PRINCIPLE FOR
THE HERBST OPERATOR

Relativistic one-electron ions are conventionally described
by the Dirac operator H [11]. In the presence of a Coulomb
field V and a magnetic field BA generated by a vector potential
A, this operator is given by (in relativistic units, h̄ = c = 1)

H = DA + V, DA = α · (p − eA) + β m,

V = −γ

x
. (2.1)

In this expression α and β are the Dirac matrices, p = −i∇ is
the momentum operator, x = |x|, and γ = Ze2 is the electric
potential strength (Z is the charge of the point-like nucleus
which is fixed at the origin and e2 ≈ 1/137.036 is the fine
structure constant).

One way to avoid dealing with the negative continuum,
which, in contrast to the nonrelativistic case, causes the Dirac
operator to be unbounded from below, is the introduction
of semibounded pseudorelativistic operators such as the
Herbst operator [5]. This operator was originally put forth by
Chandrasekhar (see, e.g., [12]) and acts in the Hilbert space
L2(R3) ⊗ C2,

hH = EA + V,
(2.2)

EA = |DA| =
√

[σ · (p − eA)]2 + m2,

where σ is the vector of Pauli spin matrices. For A ∈ L2,loc(R3)
the form domain of EA is the Sobolev space H1/2(R3) ⊗ C2.
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FIG. 1. (a) Cylindrically symmetric Egger-type magnetic field,
� =

√
x2

1 + x2
2 . (b) Magnetic field with asymptotic growth in the

special case of cylindrical symmetry (τ = 2).

It was shown in [4] that hH is bounded from below if
γ < 2

π
(Z � 87) and if BA is locally bounded. Under these

conditions hH can be extended to a self-adjoint operator.
In the following we assume that the field BA is generated

by a two-dimensional vector potential A = (A1,A2,0) taken to
be independent of x3 and obeying ∇ · A = 0. Then the kinetic
energy can be decomposed in the following way:

E2
A = E2

xy + (
p2

3 + m2
)
,

(2.3)

E2
xy =

2∑
k=1

(pk − eAk)2 − eσ3BA.

For a given trial function ψt ∈ H1/2(R3) ⊗ C2, normalized to
unity, we have by the Schwarz inequality the estimate for the
ground-state energy Eg of the Herbst operator,

Eg � (ψt,h
H ψt ) �

√(
ψt,E

2
A ψt

)
+ (ψt,V ψt ) =: EH [ψt ]. (2.4)

We wish to discuss the Herbst operator for two classes
of locally bounded magnetic fields BA, the first being of
asymptotic growth,

BA1 (x) = B
1 + τ

2
(0,0,|x1|τ + |x2|τ ), (2.5)

characterized by the parameters B and τ � 0, where τ = 0
corresponds to a constant magnetic field of strength B in the
direction of the x3 axis. For this class of fields it was proven
(for 0.1 <∼ γ < 2

π
and large B) that a bound ground state exists

when τ is subcritical, τ < τc, where τc depends on Z as well
as on B [4].

The suppression of the magnetic force around the origin
(being the stronger the larger τ ) can also be described by
the (simpler) second class of magnetic fields. This class was
introduced by Egger and coworkers in the context of the two-
dimensional electronic motion [1],

BA2 (x) = B θ (� − r0) e3, � =
√

x2
1 + x2

2 , (2.6)

where θ is Heaviside’s step function. It is parametrized by the
field strength B and the radius r0 of the field-free region. The
constant magnetic field is included in the class (2.6) for r0 = 0.

The energy functionals pertaining to the fields (2.5) and (2.6)
will be denoted by EH1[ψt ] and EH2[ψt ], respectively.

As trial function we take, following Rau et al. [7],

ψt (x) = Nt e−ν2�2/2 e−Z′x
(

1

0

)
,

(2.7)

Nt =
[

ν4

Z′π
1

ψ(2,2,Z
′2/ν2)

] 1
2

,

where the spin direction is taken parallel to BA. In the
normalization constant Nt , ψ(n,k,ξ ) is the irregular confluent
hypergeometric function which is readily expressed in terms
of the integral representation ([13], p. 1058),

ψ(n,k,ξ ) = 1

�(n)

∫ ∞

0
dt e−ξ t tn−1

(1 + t)n+1−k
. (2.8)

In (2.7), ν = √
2s(eB)d/2 measures the inverse extension of

the electron orbit perpendicular to BA, where d > 0 is a
field-specific constant. Besides the effective charge Z′ we
have introduced s as a second variational parameter (s = 1

4 for
constant magnetic fields). Thus the trial function mimics an
eigenstate for the lowest Landau level (in the case of vanishing
scalar potential and constant magnetic field) as well as the
hydrogenic ground state (in the case of zero magnetic field).

The ground-state energy is estimated by the infimum of the
energy functional EH [ψt ],

EH
g := inf

Z′>0,s>0
EH [ψt ]. (2.9)

It is easy to show that for vanishing magnetic field
EH

g agrees with the exact Dirac ground-state energy.
Since for BA = 0 the trial function reduces to ψt (x) =
(Z

′3/2/π
1
2 ) e−Z′x( 1

0 ), we get

EH [ψt ] =
√

(ψt,(p2 + m2) ψt ) − γ

(
ψt,

1

x
ψt

)

=
√

Z
′2 + m2 − γ Z′. (2.10)

From ∂EH/∂Z′ = 0 we obtain Z′ = mγ/
√

1 − γ 2 and thus

EH
g (BA = 0) = inf

Z′>0
EH [ψt ](BA = 0) = m

√
1 − γ 2, (2.11)

which is equal to the exact Dirac energy.
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TABLE I. Ground-state energy (rest energy subtracted, in atomic
units) for Z = 20 as a function of λ = B/Z2 for a constant magnetic
field of strength B. The second column gives the results from the
present calculation, the third column comprises the exact results
[14,15]. Eexs

g− is obtained from the Schrödinger scaling of the exact
result for Z = 5 at λ = 10 [16] and for Z = 1 when λ � 20 [14].
B is given in units of B0 = 2.35 × 109 G.

λ EH
g− Eex

g− Eexs
g−

0.025 −205.90 −205.98
0.25 −244.61 −244.95

2 −407.65 −409.55
10 −690.89 −699.16
20 −871.44 −886.16
200 −1841.75 −1890.85
500 −2436.99 −2502.81
2000 −3635.26 −3721.84

Moreover, the variationally determined ground-state energy
for a constant magnetic field compares well with the available
results for Z > 10 from elaborate relativistic calculations
[14,15]. Thereby it is advantageous to subtract the rest energy
of the electron, i.e., to consider EH

g− = EH
g − m. Table I

gives the comparison for Z = 20. For λ = B/Z2 � 10, the
reference values are obtained from the Schrödinger scaling
(see below) of the exact results.

There is one additional exact calculation for uranium
(Eex

g− = −4861.61 a.u.) [15] but for a very small field,
B = 1 (relating to λ = 1.182 × 10−4), where the numerical
inaccuracy of our result (EH

g− = −4860.05 a.u.) is quite large
(∼2 a.u.).

A. Magnetic fields with asymptotic growth

Magnetic fields of the class (2.5) are generated by the vector
potentials

A1(x) = B

2
(−x2|x2|τ ,x1|x1|τ ,0) , τ � 0. (2.12)

In the trial function (2.7) we take d = 2
2+τ

. This choice
preserves the scaling property of the Herbst operator [4]. We
decompose

(
ψt,E

2
A ψt

) = Man + M (1)
num, (2.13)

where Man is the analytic part,

Man = 2ν2 − Z
′2 + m2 − ν4 (ψt,�

2 ψt )

− 2ν2Z′
(

ψt,
�2

x
ψt

)
+ 2Z′

(
ψt,

1

x
ψt

)
, (2.14)

while M (1)
num is the B-dependent part to be evaluated numeri-

cally,

M (1)
num =

(
eB

2

)2

(ψt,(|x1|2+2τ + |x2|2+2τ ) ψt )

− eB
1 + τ

2
(ψt,( |x1|τ + |x2|τ ) ψt ). (2.15)

Using the cylindrical symmetry of ψt and spherical coordi-
nates (x,ϑ,ϕ) we have

(ψt,|x1|τ ψt ) = (ψt,|x2|τ ψt ) = 2N2
t

∫ ∞

0
dx x2 e−2Z′x

×
∫ 1

0
d(cos ϑ) e−ν2x2 sin2 ϑ xτ (sin ϑ)τ

∫ π

−π

dϕ | cos ϕ|τ .
(2.16)

With the substitution y = sin2 ϑ we obtain ([13], p. 318,369)

(ψt,(|x1|τ + |x2|τ ) ψt )

= 8πN2
t

1

1 + τ

∫ ∞

0
dx x2+τ e−2Z′xe−ν2x2

× 1F1

(
1

2
,
3 + τ

2
,ν2x2

)
, (2.17)

where 1F1(a,b,z) is the (regular) confluent hypergeometric
function.

The matrix elements in (2.14) are evaluated in a similar
way. With the help of xe−2Z′x = − 1

2
d

dZ′ (e−2Z′x) we find ([13],
p. 867; see also [7])

(ψt,�
2 ψt ) = −Z′

ν6
πN2

t ψ ′
(

2,1,
Z

′2

ν2

)
,

(2.18)(
ψt,

�2

x
ψt

)
= 1

ν4
πN2

t ψ

(
2,1,

Z
′2

ν2

)

and

(
ψt,

1

x
ψt

)
= π

ν2
N2

t ψ

(
1,1,

Z
′2

ν2

)
(2.19)

which also determines the potential energy, (ψt, − γ

x
ψt ). The

derivative ψ ′(n,k,ξ ) with respect to ξ is readily obtained from
the integral representation (2.8).

For the discussion of the Z and B dependences of the
variationally determined ground-state energy it is convenient
to introduce the parameter λ = B/Z2. In the case of a constant
magnetic field λ provides the ratio between the magnetic
and electric field strengths acting on the electron [7]. For
Schrödinger operators there is an exact scaling which allows to
express the ground-state energy divided by Z2 just in terms of
λ [14,17]. Also for relativistic systems this scaling is satisfied
quite well up to λ ∼ 103 [9]. Therefore the basic physics can
be displayed with a single choice of Z.

Figure 2(a) shows the ground-state energy EH1
g− for Z = 80

as a function of the asymptotic growth τ . Clearly, for a constant
magnetic field (τ = 0) EH1

g− is decreasing with B. At large τ ,
on the other hand, the variational ground-state energy tends
to the exact Dirac energy in the absence of a magnetic field
[i.e., (2.11), with rest energy subtracted]. This can readily
be explained by the fact that large τ correspond to a near-
zero magnetic field in an extended region around the nucleus.
Note that for small magnetic field strengths EH1

g− approaches
this asymptotic value from below, while at the higher B a
maximum evolves, such that eventually the asymptotic energy
is approached from above.
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FIG. 2. Ground-state energy (without rest energy) for Z = 80 and
the magnetic field (2.5) as a function of τ . The parameter λ labeling
the curves relates to the field strength according to B = λZ2 (in
units of B0 = 2.35 × 109 G). (a) Unscaled energy EH1

g− (in atomic
units) for λ = 100 (——–), 106 (− − − − −), and 108 (− · − · −).
The asymptotic value is the Dirac energy for B = 0, −3532.19 a.u.
(b) Scaled energy EH1

g− /λ1/(2+τ ) for λ = 100 (———-), 106 (− −
−−), 1010(− · − · −), and ∞ (———-, uppermost curve). Included
are results using the energy functional EH1[ψ (1)

t ] (∗, see Sec. III).

When one introduces (for B �= 0) the scaled parameters
Z̃ = Z′/ν and m̃s = m/ν one can show that the energy
functional EH1[ψt ] scales with the field strength B according
to ν ∼ Bd/2. In particular, with d = 2

2+τ
, the variationally

determined ground-state energy can be written in the following
way:

EH1
g− = EH1

g − m = ν
(
ẼH1

g − m̃s

) ∼ B
1

2+τ ẼH1
g− , (2.20)

where ẼH1
g− depends on B only through the scaled mass m̃s . In

turn, m̃s influences the optimized parameters Z̃ and s (which,
since m̃s → 0 as B → ∞, tend to constant values as B → ∞).
Based on the existence of a bound ground state (for small τ )
it was proven in [4] that also the exact ground-state energy of
hH decreases with B according to B

1
2+τ when B → ∞.

Figure 2(b) depicts the scaled ground-state energies
EH1

g− /λ
1

2+τ of Fig. 2(a), including the limiting case m̃s = 0
(which corresponds to B = ∞). It can be strictly proven [4]

and is verified in the figure that the scaled energy increases
with B (i.e., decreases with m/B1/(2+τ )). All curves show a
maximum near τ = 1.5 which becomes positive when λ >

106 (corresponding to B > 106 Z2B0 with B0 = 2.35 × 109 G
the unit field). For λ fixed and τ → ∞ the scaled energy
approaches the Dirac energy too (since limτ→∞ EH1

g− /λ
1

2+τ =
limτ→∞ EH1

g− ).

B. Egger-type magnetic fields

In this section we consider a magnetic field which is
constant outside a cylinder of radius r0 centered around the
x3 axis, and zero inside. This field, given by (2.6), is generated
by the vector potential [3]

A2(x) = B

2

(
1 − r2

0

�2

)
θ (� − r0) (−x2,x1,0). (2.21)

In order to preserve the scaling property we have to set d = 1
in the trial function (2.7) (corresponding to τ = 0 in the field
A1), such that ν = √

2s eB.

The field-dependent part of the energy functional EH2[ψt ]
is most readily evaluated when cylindrical coordinates
(�,ϕ,x3) are used. With the help of the integral∫ ∞

−∞
dx3 e−2Z′√�2+x2

3 = 2� K1(2�Z′), (2.22)

where K1 is a modified Bessel function, we get

M (2)
num = 4πN2

t

∫ ∞

r0

d� e−ν2�2
K1(2�Z′)

×
[ (

eB

2

)2 (
�2 − r2

0

)2 − eB�2

]
. (2.23)

Thus, with (2.4) and (2.13),

EH2[ψt ] =
√

Man + M
(2)
num + (ψt,V ψt ). (2.24)

In Fig. 3(a) the ground-state energy EH2
g− , resulting from the

infimum of (2.24) with respect to Z′ and s, is plotted for fixed
λ as a function of d̃ = r0

√
λ. In this representation the curves

are very similar to those shown in Fig. 2(a). In particular, the
maximum (which appears for sufficiently high field strengths)
is also at a fixed position, d̃ ≈ 3. Again, the field-free Dirac
energy is approached when d̃ → ∞.

When the scaling with ν is introduced, such that � is
replaced by �̃ = �ν, the hole radius r0 changes into r0ν which
increases according to B

1
2 . Thus d̃ from Fig. 3(a) can be

interpreted as the scaled hole radius in units of the K-shell
radius, 1/Z. Figure 3(b) displays the scaled energy EH2

g− /λ
1
2 for

a wide range of λ as a function of d̃. Again, this r0 dependence
resembles the τ dependence of EH1

g− /λ
1

1+τ from Fig. 2(b),
with two minor exceptions: The maximum becomes positive
for λ > 48.9 which is much lower than the corresponding
value in Fig. 2(b) (λ > 106). Also, the behavior for B →
∞ is different. While the curves for λ = 108 and λ = ∞
nearly coincide in Fig. 3(b), they differ considerably in
Fig. 2(b). This is related to the additional B dependence of
the abscissa in Fig. 3(b). The range 0 � d̃ � 30 corresponds
to a nearly homogeneous field (r0 ≈ 0) for λ >∼ 106 such that
the convergence with λ → ∞ mimics the fast convergence of
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FIG. 3. Ground-state energy (without rest energy) for Z = 80 and
the Egger field (2.6) as a function of the scaled hole radius d̃ = r0

√
λ

(in units of the K-shell radius, 1/Z a.u.). (a) Unscaled energy
EH2

g− (in atomic units) for λ = 2 (− − − − −), 30 (———–), and
100 (− · − · −). The horizontal line marks the Dirac energy for
B = 0, −3532.19 a.u. (b) Scaled energy EH2

g− /λ1/2 for
λ = 2 (− − − − −), 30 (————), 100 (− · − · −), 104(· · · · · ·),
and 108 (————, uppermost curve). Included are results for
λ = ∞ (×).

the scaled ground-state energy with m̃s → 0 for r0 = 0. The
convergence proof from [4], based on the continuity of EA

as a function of m, holds for any τ > 0. However, when the
depleted region is large (Fig. 2(b)), the convergence with m̃s

becomes slow. In this context we also note that the scaled
energy EH2

g− /λ1/2 tends to a constant (for r0 → ∞) which, in
contrast to EH1

g− /λ1/(2+τ ) (for τ → ∞), decreases with λ.

III. COMPARISON WITH PREVIOUS
RESULTS FOR B → ∞

When the strength of a homogeneous magnetic field is very
large (λ � 1), the confinement of the electron in the direction

perpendicular to BA is given by the cyclotron radius a0 =
√

2
eB

(see, e.g., [7]). Assuming that this is also true for small τ we
have in our earlier work [4] taken a separable trial function

where in the hydrogenic part ϕz the coordinate � is replaced
by a0 = 1/ν = 1√

2s(eB)2/(2+τ )
,

ψ
(1)
t (x) = ν√

π
e−ν2�2

ϕz(x3)

(
1

0

)
, (3.1)

ϕz(x3) = [2a0 K1(2a0Z
′)]−

1
2 e−Z′√a2

0+x2
3 .

Consequently, a separable kinetic energy functional was taken,
based on the inequality

(ψ,EA ψ) �
√(

ψ,E2
xy ψ

) + (
ψ,

√
p2

3 + m2ψ
) =: Esep[ψ]

(3.2)

for any normalized ψ ∈ H1/2(R3) ⊗ C2. The estimate for the
ground-state energy was obtained from minimizing the energy
functional

EH1
sep

[
ψ

(1)
t

]
:= Esep

[
ψ

(1)
t

] + (
ψ

(1)
t ,V ψ

(1)
t

)
(3.3)

relating to the field BA1 , with respect to Z′ and s. For large τ this
functional is expected to be inferior to EH1[ψt ] from Sec. II,
because BA1 contains an extended depleted region where ψ

(1)
t

fails. This is confirmed for the limiting case m̃s = 0 (i.e.,
B = ∞) in Fig. 4 where the scaled energies from the two
functionals are compared for τ <∼ 10. The two curves cross near
τ = 0.25, and EH1[ψt ] provides indeed the smaller energy
estimate for all τ that exceed this value.

Since, however, two different functionals are used for the
kinetic energy, both being upper bounds for (ψ,EA ψ), one
may ask how the results will change when these functionals
are interchanged while keeping the trial function fixed. Cor-
respondingly, we define the two additional energy functionals
EH1

sep [ψt ] with ψt from (2.7) as well as EH1[ψ (1)
t ] with the

kinetic energy estimate from (2.4). The minimization of
EH1

sep [ψt ] proves to be inferior at all τ investigated (see Fig. 4),

FIG. 4. Scaled ground-state energy EH1
g− /λ1/(2+τ ) (without rest

energy) for the magnetic field (2.5) of infinite strength (B = ∞)
and Z = 80 as a function of τ . Results are shown for different trial
functions and kinetic energy operators: ψt with (2.4), see also Fig. 2(b)
(———–); ψ

(1)
t with (3.2) (− − − − −); ψt with (3.2) (×) and ψ

(1)
t

with (2.4) (∗).
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whereas the use of a separable trial function together with the
non-separable energy functional indeed provides the lowest
energy estimate when τ > 0.2. Thus a separable trial function
(together with an appropriate energy functional) is the best
choice at B → ∞ for all values of τ . We note that this remains
true for finite (but high) field strengths, provided τ is not too
large (see Fig. 2(b)).

With the help of the functional EH1[ψ (1)
t ] the critical field

growth τc below which the energy estimate is negative (hence
guaranteeing the existence of a bound ground state) can be
improved from τc = 0.602 [4] to τc = 0.943 (for Z = 80).

IV. STABILITY OF ANTIBINDING FOR MODIFIED
TRIAL FUNCTIONS

The infimum EH
g of the energy functional provides only an

upper bound to the exact ground-state energy of the Herbst
operator. In order to assure that the ground-state energy is
indeed positive in a certain parameter range we apply trial
functions of different type and study their influence on the
variational energy in the case of the Egger-type field (2.6).
Guided by the fact that for B = 0 the variationally determined
ground-state energy of the related Brown-Ravenhall operator
is lowered when the trial function accounts for the relativistic
contraction [9], we consider the energy functional EH [ψ (2)

t ]
from (2.4) with

ψ
(2)
t (x) = N2 e−ν2�2/2 xγ̃ e−Z′x

(
1

0

)
,

(4.1)
γ̃ =

√
1 − (Z′e2)2 − 1,

where ν = √
2s eB as before. The normalization constant can

be calculated along the lines of (2.16) and (2.17),

N2 =
[

4π

∫ ∞

0
dx x2+2γ̃ e−2Z′x e−ν2x2

1F1

(
1

2
,
3

2
,ν2x2

)]− 1
2

.

(4.2)

As an alternative to γ̃ determined by Z′, we have also
considered γ̃ of the form γ̃ (ζ ) =

√
1 − (ζe2)2 − 1, related

to an independent variational parameter ζ (besides Z′ and s).
Our results from the variation with respect to Z′ and

s are displayed in Fig. 5(a). We have plotted the scaled
energies EH2

g− /
√

λ, obtained from the functions ψt and ψ
(2)
t ,

respectively, versus the true hole radius r0 = d̃/
√

λ. In this
representation it becomes clear that the maximum of the energy
shifts to smaller r0 when the field strength increases. For the
test cases λ = 102 and 104, relating to a positive maximum, the
energy derived from the function (2.1) is always higher than
the energy obtained in Sec. II B. This fact remains unchanged
when ζ is introduced as a third variational parameter: Only for
weak fields (such as λ = 2 and d̃ >∼ 3) is the energy slightly
lower when ζ > 0 (the deviation from the ζ = 0 results being
below 1%).

When the field is switched off completely and corre-
spondingly the factor exp(−ν2�2/2) omitted from the trial
function (2.1) [such that the normalization constant reduces

FIG. 5. Scaled ground-state energy EH2
g− /λ1/2 (without rest en-

ergy) for the Egger field (2.6) and the kinetic energy estimate from
(2.4) with different trial functions. (a) for Z = 80 as a function
of the hole radius r0 (in units of the K-shell radius, 1/Z a.u.): ψt

for λ = 100 (————) and λ = 104 (− · − · −); ψ
(2)
t with γ̃ from

(2.1) for λ = 100 (− − − − −) and λ = 104 (×). (b) for d̃ = 3 as a
function of λ for ψt and Z = 80 (————–), Z = 20 (− · − · −), as
well as for ψ

(3)
t and Z = 80 for l = 0.1 (− − − − −) and l = 1 (×).

to N2 = (2Z′)
3
2 +γ̃ /

√
4π�(3 + 2γ̃ )] the energy functional is

given by

EH
−

[
ψ

(2)
t

] =
(

m2 + Z
′2

1 + 2γ̃

) 1
2

− m − γ
Z′

1 + γ̃
. (4.3)

It turns out that its minimum is again higher than if γ̃ is set
equal to zero (for Z = 80, one gets EH

g− = −3382.98 a.u. as
compared to −3532.19 a.u.). When ζ is treated as independent
variational parameter, the minimum is obtained for γ̃ = 0.

We have also considered the case where a positive power
of the radial coordinate is introduced into the trial function.
In fact, when the scalar potential is absent (Z = 0) and the
magnetic field homogeneous, the ground state of the electron
is infinitely degenerate with eigenstates relating to different
powers of � [11]. When the magnetic field is kept homoge-
neous but the scalar potential is turned on the degeneracy is
lifted, the energy increasing with increasing power of � [6,7].
For the investigation in the case of inhomogeneous fields we
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use the following trial function:

ψ
(3)
t (x) = N3 e−ν2�2/2 (�eiϕ)l e−Z′x

(
1

0

)
,

(4.4)

N3 =
[

− πZ′�2(l + 1)

ν2l+4
ψ ′

(
l + 1,1,

Z
′2

ν2

)]− 1
2

,

where N3 is the normalization constant, ν = √
2s eB and

ψ ′ the derivative of the irregular confluent hypergeometric
function.

The B-independent part of the energy functional (2.4) can
for ψ

(3)
t still be evaluated analytically [7], whereas the B-

dependent part is given by (2.23), modified by the additional
factor �2l in the integrand, plus a nonvanishing contribution
from the cross term,
(
ψ

(3)
t , (−2eA1p1 − 2eA2p2) ψ

(3)
t

)

= −4π l eBN2
3

∫ ∞

r0

d� �2le−ν2�2(
�2 − r2

0

)
K1(2�Z′).

(4.5)

If l > 0 is fixed, the minimum of this energy functional,
EH2[ψ (3)

t ], is indeed higher than in the case of the variational
function ψt from (2.7) and increases with l. The effect is
particularly large when l is restricted to integers like in the
degenerate Z = r0 = 0 eigenstates. For l = 0.1 and 1 this is
shown in Fig. 5(b) where the scaled energy near its maximum
(at d̃ = 3) is plotted as a function of the field strength. Included
are the l = 0 results for Z = 20 to display the Z-dependent
monotonous increase of the scaled energy with λ at fixed d̃ up
to saturation for λ >∼ 108.

V. CONCLUSION

We have studied the ground-state energy of an atomic elec-
tron in an inhomogeneous magnetic field which is described
by two parameters, the size of a field-free area around the
nucleus and the field strength. Irrespective of the particular
choice of the magnetic field the variational estimate of the
ground-state energy of the Herbst operator, used to model
the relativistic electron, becomes positive for a certain limited
size of this field-free region if the field strength is larger than
some critical value. The lowest energy estimate is obtained
for a trial function which combines an eigenfunction of the
lowest Landau level with a nonrelativistic hydrogenic function.
The only exceptions are ultrastrong fields, including the limit
B → ∞, where a trial function, which is separable in the
coordinates parallel and perpendicular to the magnetic field, is
more appropriate.

Our conjecture that the antibinding of the electron in a
particular parameter range is real and not an artefact due to an
inappropriate choice of the trial function is supported by two
facts. First, a positive maximum of the variational ground-state
energy is obtained for all trial functions investigated. Second,
this maximum increases with a positive power of the field
strength. Thus we have established the possibility of static
ionization of a heavy ion by means of an appropriately chosen
strong inhomogeneous magnetic field.
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