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Perfect transfer of a quantum state through a one-dimensional chain is now well understood, allowing one
not only to decide whether a fixed Hamiltonian achieves perfect transfer but to design a suitable one. We are
particularly interested in being able to design, or understand the limitations imposed upon, Hamiltonians subject
to various naturally arising constraints such as a limited coupling topology with low connectivity (specified by a
graph) and type of interaction. In this paper, we characterize the necessary and sufficient conditions for transfer
through a network and describe some natural consequences such as the impossibility of routing between many
different recipients for a large class of Hamiltonians and the limitations on transfer rate. We also consider some
of the trade-offs that arise in uniformly coupled networks (both Heisenberg and XX models) between transfer
distance and the size of the network as a consequence of the derived conditions.
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I. INTRODUCTION

The task of state transfer was introduced [1] with the
intention of reducing the control required to communicate
between distant qubits in a quantum computer. Perfect action
is defined by starting with a single qubit state ρqubit on some
input node, A, with ρin the state of the rest of the many-qubit
system, and requiring that after evolution for some time t0
under a fixed Hamiltonian H , the output state

e−iH t0
(
ρA

qubit ⊗ ρin
)
eiHt0 = ρB

qubit ⊗ ρout

is produced, thereby transmitting the input qubit to another
site, B. Early attempts concentrated on a one-dimensional
geometry. Transferring states perfectly by such a scheme
requires the precise tuning of coupling strengths [2–4], and
the necessary and sufficient conditions for the transfer are now
well understood [5], allowing us to both recognize and design
[6] perfect transfer chains. There are, however, a number of
limitations that one might like to overcome. In the ideal case,
we would have a uniformly coupled system which perfectly
achieves high rates of transfer over large distances. It would
have the ability to route states to different recipients (which
is an important feature in increasing the connectivity within a
quantum computer), and it would be less susceptible to static
defects (Anderson localization) [7] or dynamical fluctuations
[8] than one-dimensional systems.

It has been proposed that spin networks could enable all
of these properties, and certainly by allowing some small
degree of control, they do [9]. It is expected that in higher
dimensional geometries, the effects of Anderson localization
are diminished. Also, if one allows a completely connected
network, routing is possible between all the different nodes1

[10]. Equally, perfect transfer is possible over long distances
in a uniformly coupled network (such as the hypercube [4]),
although the best-known scaling of the transfer distance with
the number of vertices, N , is only O(log N ). Unfortunately,

1One can simply define a permutation matrix that permutes through
all the vertices as a target unitary, and fix the system Hamiltonian to
be its logarithm.

while we know that networks exhibit a lot of potential, our
level of understanding is still far from that of chains in spite
of efforts by Godsil, Severini, and coauthors in proving some
necessary conditions [11–13]. The purpose of this paper is
to redress the balance by deriving necessary and sufficient
conditions which will allow us to readily recognize perfect
transfer networks; i.e., the setting that we envisage is that of
experimentalists with a range of Hamiltonians available that
can be implemented, and they want to know if perfect transfer
can be realized.

We can try and predict what some of the properties of
such a Hamiltonian might be. For instance, the whole point
of introducing state transfer [1] was to reduce the difficulty
of interacting distant sites with no direct coupling (for which
transfer is trivial), so we impose the fact that there is likely to be
an underlying geometry of feasible couplings and that the type
of these couplings is likely to be limited. As a consequence,
we prove the impossibility of routing within the single
excitation subspace of a broad class of systems (those whose
Hamiltonians are real), and we bound the maximum transfer
rate for excitation-preserving Hamiltonians. For uniformly
coupled networks, we give the first upper bound on the transfer
distance of a graph as a function of the number of vertices.

While the task of state transfer was proposed as a solution
to a practical problem in quantum computers, it has provided
a powerful technique for constructing other Hamiltonian-
driven evolutions and has been used to understand adversarial
Hamiltonian perturbations [14], quantum computation [15],
etc. By moving beyond the study of chains to more general
networks, we may be able to further extend the utility of these
constructions.

II. THE MODEL

State transfer has been almost universally studied for
Hamiltonians H which have the very particular property of
excitation preservation,[

H,

N∑
n=1

Zn

]
,
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which means that the number of qubits in the |1〉 state is a
constant of the motion. If k of the N qubits are in the |1〉 state,
then we say the system is in the kth excitation subspace.2 These
studies then proceed by setting the initial state of every qubit
not A to |0〉 so that when a state is placed on qubit A, we are
in a superposition of the 0 and 1 excitation subspaces, and the
task becomes

(α|0〉 + β|1〉)A|0〉⊗(N−1) �→ (α|0〉 + eiφβ|1〉)B |0〉⊗(N−1)

up to some phase φ for which we could compensate later
(where here we distinguish between perfect transfer and
arbitrarily accurate transfer, concentrating on the former).
The 0 excitation subspace is composed of a single state,
and therefore it does not evolve in time. Hence, we only
have to concentrate on the evolution of the 1 excitation
subspace, which is simply described by an N × N matrix,
H1. There are many different Hamiltonians that have the
same H1 such as the XX, Heisenberg, and coupled harmonic
oscillator Hamiltonians [18], not to mention more exotic
varieties involving q-deformed oscillators [19].

We will continue to study transfer in the single excitation
subspace of an excitation-preserving Hamiltonian. For coupled
harmonic oscillators (i.e., noninteracting bosons), this is no
restriction since the single excitation subspace describes the
dynamics of each individual boson no matter what other
bosons are present in the system. While this is not true for spin
systems,3 it is a reasonable restriction in the sense that higher
excitation subspaces can be described as a single excitation
subspace of a system of more qubits [20]. The trade-off is that
the necessary and sufficient conditions that we derive here are
just necessary conditions in higher excitation subspaces for a
given initial state on the rest of the system (with sufficiency
assured if transfer of excitations is possible from the same
initial state on two neighboring excitation subspaces in the
same time).

Within the single excitation subspace, we denote an
excitation on qubit n by

|n〉 := |0〉⊗n−1|1〉|0〉⊗(N−n).

Consequently, the Hamiltonian is expressed as

H1 =
∑
n<m

Jnm|n〉〈m| + J ∗
nm|m〉〈n| +

N∑
n=1

Bn|n〉〈n|.

There are two physically important restrictions that can apply
to the Hamiltonian. The first is to make the Hamiltonian
real, i.e., J ∗

nm = Jnm. It is not impossible that a Hamilto-
nian would contain complex coefficients, but most naturally
arising, or readily implemented, Hamiltonian terms, such as
J (XX + YY ) + �ZZ only give rise to real Hamiltonians.4

2Those schemes that have been proposed which do not preserve
the number of excitations have some unitarily equivalent conserved
quantity [16] or very similar symmetry [5,17].

3The Jordan-Wigner transformation maps one-dimensional systems
with the XX Hamiltonian to noninteracting fermions, for which a
similar argument holds [21].

4Of course, this assumption readily generalizes to Hamiltonians
which, under an arbitrary local unitary transformation on each qubit,

The second is a geometry constraint. Consider a graph G which
is composed of edges E and vertices V , where we establish a
correspondence between the N vertices and the N states |n〉.
The only allowed nonzero couplings Jnm are those for which
the pair of vertices n,m are an edge of the graph.5 The graph
naturally induces a concept of transfer distance—the minimum
number of edges that one must follow to traverse the graph
from the input node A to the output node B. We consider short
transfer distances uninteresting because they do not simplify
the communication demands between distant qubits.

In our analysis, it will often help to work in the diagonal
basis of H1,

H1 =
N∑

n=1

λn|λn〉〈λn|;

i.e., |λn〉 is an eigenvector of H1 of eigenvalue λn. Note that,
for real Hamiltonians, all the elements 〈m|λn〉 must also be
real.

III. CONDITIONS ON PERFECT TRANSFER

Our primary goal is to prove necessary and sufficient
conditions for perfect state transfer in the first excitation
subspace of a spin-preserving Hamiltonian. These conditions
can be expressed as the existence of a state transfer time t0 and
transfer phase φ in a condition on the eigenvectors,

|〈A|λn〉| = |〈B|λn〉|,
for all n, and on the eigenvalues,

λnt0 = −φ − ϕn + 2πmn,

for all n for which 〈A|λn〉 �= 0, where mn is an integer, in close
parallel to the equivalent results on chains [4,5]. However, we
require the additional definition that

ϕn = arg

( 〈λn|B〉
〈λn|A〉

)
.

To prove necessity, we start from the definition of state
transfer in the single excitation subspace, requiring that there
exist a t0 and φ such that

e−iH1t0 |A〉 = eiφ|B〉. (1)

By taking the overlap with an eigenvector,

e−iλnt0〈λn|A〉 = eiφ〈λn|B〉,
one can immediately read off that |〈A|λn〉| = |〈B|λn〉| by
matching the weights. The phases must also match:

e−iλnt0 = ei(φ+ϕn),

up to a multiple of 2π .

are real. In many scenarios, a local unitary transformation from a
real Hamiltonian might typically be the way that complex coupling
coefficients are generated [22].

5In some works the choice is made to set Jnm = 1 for all edges,
giving a correspondence between the adjacency matrix of the graph
and H1. While this is just a special case of our more general formalism,
we will also discuss this restriction in Sec. IV E.
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Having proved necessity, we prove sufficiency. Assume that
a suitable t0 and φ exist. So,

e−iH1t0 |A〉 =
∑

n

|λn〉〈λn|A〉e−iλnt0 .

We can now supply the conditions on λn,

e−iH1t0 |A〉 =
∑

〈λn|A〉�=0

|λn〉〈λn|A〉ei(2πmn+φ+ϕn)

=
∑

〈λn|A〉�=0

|λn〉〈λn|A〉eiφ 〈λn|B〉
〈λn|A〉

= eiφ|B〉.
This yields a rather simple set of conditions which one use

to verify that perfect transfer occurs in a network. Note that
the task of testing the existence of a suitable time t0 and phase
φ can be largely neglected by taking differences and ratios of
the eigenvalues.

One of the major advantages of such a characterization for
the spin chains was that this leads to the ability to calculate the
required coupling strengths simply by specifying the desired
spectrum. This was due to a specific property of spin chains in
that, for mirror symmetric (real) Hamiltonians, after ordering
the eigenvalues, ϕn = 1

2 [1 + (−1)n]π , so it was very easy to
specify a suitable spectrum. For real Hamiltonians, all the ϕn

must be either 0 or π (by imposing that all the eigenvalues
are integers, up to a scale factor and uniform shift), but as one
varies the coupling strengths to adjust the eigenvalues, which
ϕn take which values can change. This was already observed as
a practical problem [23], making the task of designing perfect
transfer networks far harder, though not impossible.

IV. CONSEQUENCES

With these necessary and sufficient conditions in place,
we can start to explore the general features of transfer in
networks. We want to know what is in principle possible
without reference to specific Hamiltonians.

A. Bipartite graphs and the transfer phase

Our first observation is a consequence of the study in [24].
For real Hamiltonians, constrained to a bipartite coupling
graph (which also imposes that Bn = 0), the transfer phase
eiφ is ±1 if the transfer distance is even and ±i if the transfer
distance is odd.

A bipartite graph is one whose vertices can be divided into
two colorings, red and blue, such that edges only connect
between a red and a blue vertex. Let us define

S =
∑

n∈Red

|n〉〈n| −
∑

n∈Blue

|n〉〈n|.

For a Hamiltonian H1 which is connected via a bipartite
coupling graph, it must be true that

{S,H1} = 0.

This means that for any eigenvector |λn〉 of H1 with λn �= 0,
S|λn〉 must also be an eigenvector of H1, but with eigenvalue

−λn. Now, let us assume (without loss of generality) that A is
in the “red” partition. We can write

|A〉 =
∑
λn>0

〈λn|A〉�=0

〈λn|A〉(|λn〉 + S|λn〉)

(where for simplicity of notation, we have assumed that there
are no 0 eigenvalues, but recall that we only need to consider
one zero eigenvector with nonzero overlap on A, and it must
satisfy S|λ0〉 = |λ0〉, which allows us to treat this special case).
Now let us evolve the state:

e−iH1t0 |A〉 =
∑
λn>0

〈λn|A〉�=0

〈λn|A〉(e−iλnt0 |λn〉 + eiλnt0S|λn〉,

and calculate the overlap with some vertex m, remembering
that for a real Hamiltonian the overlaps are real. If m is a red
vertex, S|m〉 = |m〉, then

〈m|e−iH1t0 |A〉 =
∑
λn>0

〈λn|A〉�=0

〈m|λn〉〈λn|A〉2 cos(λnt0),

so the amplitude is always real. Since m was a red vertex, it
must be an even distance from A. On the other hand, if m is a
blue vertex, then S|m〉 = −|m〉 and

〈m|e−iH1t0 |A〉 = −
∑
λn>0

〈λn|A〉�=0

〈m|λn〉〈λn|A〉2i sin(λnt0),

so the amplitude is always imaginary. This provides another
advantage when deciding if a network is capable of perfect
transfer.

B. Symmetries of the Hamiltonian

Symmetries are an important tool in understanding any
system. Indeed, the construction of perfect state transfer chains
originally relied heavily on an assumption of symmetry [2,4],
which was subsequently [5] proven to be necessary. We are
thus interested in whether every perfect transfer Hamiltonian
H1 has a symmetry operator S which satisfies SH1S

† = H1

and S|A〉 = |B〉.
The existence of a symmetry is proven by construction. By

defining a unitary rotation that is diagonal in the basis of the
Hamiltonian, it will clearly satisfy the commutation property.
Specifying the phases as

S =
∑

〈A|λn〉�=0

eiϕn |λn〉〈λn| +
∑

〈A|λn〉=0

|λn〉〈λn|

allows us to verify the desired transformation

S|A〉 =
∑

〈A|λn〉�=0

eiϕn |λn〉〈λn|A〉

= |B〉.
For a real Hamiltonian H1, S2 = 1, so S|B〉 = |A〉. It is worth
observing that there is still continuous freedom in the definition
of S—the phases that are applied to the eigenvectors for which
〈A|λn〉 = 0—which gives a way to see that S is not necessarily
a permutation (which cannot be continuous). This manifests
itself in the example of a chain below—if S were a permutation,
it would have to be the mirror symmetry operator.
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If one knows the symmetry operators of a system for some
a priori reason, this identifies the values ϕn (the eigenvalues of
S) and associates them with specific eigenspaces. Hence, for
systems where S can be identified, and the eigenvalues can be
modified while preserving the symmetry, we should be able to
construct perfect transfer networks. This was the key insight
for designing chains, and it can hopefully now be applied in
other scenarios.

We have mentioned at several points that a necessary
condition on perfect end-to-end transfer chains is the presence
of mirror symmetry [5]. It is also the case that any Hamiltonian
which achieves perfect transfer between opposite ends of
a chain can equally achieve transfer between any mirror
symmetric points. One might be drawn into the expectation that
all perfect transfers (not just end to end) on chains are hence
governed by mirror-symmetric coupling schemes. This is not
the case, as we will show by specific construction. Consider a
matrix

H1 =

⎛
⎜⎜⎜⎜⎜⎝

0 J1 0 0 0

J1 0 J2 0 0

0 J2 0 J3 0

0 0 J3 0 J4

0 0 0 J4 0

⎞
⎟⎟⎟⎟⎟⎠ .

One can prove that to transfer between qubits 2 and 4 (i.e., to
create the evolution

e−iH1t0 |2〉 = eiφ|4〉
up to some phase φ, and for some time t0), one simply has
to impose that J 2

1 + J 2
2 = J 2

3 + J 2
4 and that the eigenvalues of

H1 are (up to a scale factor) alternately even and odd integers.
This eigenvalue condition is the same as for extremal transfer
on the chain, but the coupling strengths are less restricted. You
can readily verify that

J1 =
√

5

2
− J 2

2 , J3 = 3

2J2
, J4 =

√
5

2
− 9

4J 2
2

is one class of nonsymmetric examples which implement
perfect transfer between qubits 2 and 4 with t0 = π .

C. Transfer rate

Subsequent to the limited discussion of transfer rate in
[25], the possibility of perfect transfer at high rate has been
examined [5]. This involves inserting a second state at site
A before the first state has been removed at site B, and yet
requiring that the first state should still arrive perfectly. Some
weak bounds were proven on possible rates for spin chains.
We will now prove stronger bounds for all networks described
by a real Hamiltonian (and one can prove identical bounds for
arbitrary Hamiltonians). A necessary condition for the ability
to insert a second quantum state into the spin network (on the
same input qubit) at some time t without disturbing the first
quantum state is that

〈A|e−iH1t |A〉 = 0.

For chains, this condition is sufficient, but for more general
networks, this will not be the case. Ultimately, we will
be interested in inserting many different states at different

times. Again, for the chain, the only necessary condition is
〈A|e−iH1t |A〉 = 0 for all of the possible time intervals t . For
networks, the evolution of the many-excitation state could
be quite different from the evolution of the single excitation
states, so it might be that there are further conditions imposed.
However, it is still a necessary condition, because our perfect
transfer at high rate must work for all possible input states,
which includes setting all previous inputs to |0〉 except for
one, from which one can extract that same condition.

Thus, our question relates to whether, given there are
l unique time intervals ti < t0 at which 〈A|e−iH1ti |A〉 = 0,
perfect transfer can occur to a site |B〉 at a distance D in a
time t0. With l time intervals, one can have l unique times ti by
imposing fixed intervals. We start by expressing our condition
on the transfer distance as, for each integer m = 1, . . . ,D − 1,

〈B|Hm|A〉 = 0.

This can, instead, be written as

N∑
n=1

e−iϕnλm
n an = 0,

where an = |〈A|λn〉|2, which is readily transformed into a
linear equation(

D−1∑
m=0

M∑
n=1

e−iϕnλm
n |m〉〈n|

)(
M∑

n=1

an|n〉
)

= 0.

Having resolved the possible degeneracies in the system, we
have reduced the system from size N to size M , the number
of unique eigenvalues. Each of the D − 1 rows is linearly
independent.

The next constraint that we must add is that of normaliza-
tion, (

M∑
n=1

〈n|
)(

M∑
n=1

an|n〉
)

= 1.

Now we need to add in the conditions corresponding to
〈A|e−iH1ti |A〉 = 0. All our conditions so far have just been
based on real values, and we will maintain this by dividing
these conditions into real and imaginary parts. The real parts
give (

l∑
i=1

M∑
n=1

cos(λnti)|i〉〈n|
)(∑

n

an|n〉
)

= 0,

and, similarly, the imaginary components give(
l∑

i=1

M∑
n=1

sin(λnti)|i〉〈n|
)( ∑

n

an|n〉
)

= 0.

Given that all these times ti are less than t0, the half period
of the system, all of these rows must be linearly independent
from each other. (Since we are assuming the Hamiltonian is
real and performs perfect transfer, the system is periodic with
a period 2t0.) Hence, if a suitable set of an is to possibly exist,
it must be the case that

2l + D � M � N. (2)
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In particular, imagine we had M conditions not including
the normalization condition. These would impose that all the
an = 0, so it would be impossible to satisfy the normalization
condition.

Ideally, we want the maximum transfer distance, which
would be N − 1 (a chain), imposing that l = 0, as conjectured
in [5]. The only way to increase the perfect transfer rate
is to reduce the transfer distance. However, you cannot
also lower the state transfer time (as you would expect by
shortening the transfer distance). This is because the Margolus-
Levitin theorem [25] imposes a minimum time for evolving
between two orthogonal states, such as a |1〉A as an input state
and the |0〉A required for the next input. Hence the transfer
time is bounded from below by (l + 1)π/(4

∑
j J1j ).

In some sense, the “standard” perfect state transfer chains
[2] saturate the bound of Eq. (2) in that, for a chain of N

qubits, any state |n〉 transfers a distance D = N + 1 − 2n, but
there are n − 1 distinct times ti such that 〈n|e−iH1ti |n〉 = 0.
Unfortunately, however, these times are not equally spaced, so
they are not useful for achieving a high rate of transfer. It is
worth noting that our analysis breaks down at the l = 0 limit
since t0 is the length of the period, not the half period. This
means that half of the 2l conditions can be the same as the
other half, for suitably chosen values of ti . We end up with
l � N , and this bound was saturated in [5] for the sequential
quantum storage solution.

D. Routing

The idea of being able to choose which of several recipients,
B, C, etc., is to receive a quantum state was initially studied
in [26], and some aspects have been further considered in [10,
27].6 This task has since become known as routing [9] and, by
allowing some minimal control, it was achieved efficiently in
a regular network of nearest-neighbor coupled spins. Routing
is potentially an important property for a system to possess
since this allows us to significantly alter the connectivity of
an array of sites in a way that direct communication between
pairs of sites does not. However, we are now going to make a
proof by contradiction that shows that for real Hamiltonians,
routing between multiple sites is impossible, and subsequently
we will bound the number of possible recipients as a function
of transfer distance for more general Hamiltonians. This is
something that the constructions of, for instance, [10], give no
information about, or control over. While they allow for the
inversion from a desired unitary to a Hamiltonian, this provides
no control over imposing limitations to the coupling strengths
(such as having to have every coupling strength the same) and
ultimately typical solutions couple every qubit to every other
qubit in a completely arbitrary manner, entirely missing the
point of state transfer, which is intended for use in systems of
low connectivity.

6A word of warning is warranted, however. Due to the nonunique-
ness of a noninteger power of a unitary, Uk , there may be gaps in
some of the proofs, such as Theorem 1 in [27].

We start by assuming that perfect transfer is possible
between A and B, and the minimum time in which this occurs
is tAB . So, we have

e−iH1tAB |A〉 = eiφ|B〉.
Recall that since the Hamiltonian is real, all the ϕn are 0 or π .
So, this means that if we evolve for twice the time, we have a
perfect revival,

e−i2H1tAB |A〉 = e2iφ |A〉,
demonstrating that the dynamics is periodic. Now let us assume
that perfect routing is possible, meaning that there must exist
a time tAC < tAB such that

e−iH1tAC |A〉 = eiφ′ |C〉.
However, by identical arguments, it must be the case that

e−2iH1tAC |A〉 = e2iφ′ |A〉
and hence

e−iH1(2tAC−tAB )|B〉 = ei(2φ′−φ)|A〉.
This is just perfect transfer between B and A in time |2tAC −
tAB | < tAB , which is impossible by assumption that tAB is the
shortest state transfer time. Hence the transfer from A to C

cannot exist, and if there is transfer to one site, there cannot
be transfer to any other sites. In order to break this restriction,
we have to take Hamiltonians with complex entries. This is
exactly what happens in papers such as [10].

The preceding argument is rather powerful, revealing that
many other intermediate states cannot exist, since one can
repeat it for any target state which is just a superposition of
eigenvectors where, up to a global phase, all the amplitudes are
real. One obvious example comes from the bipartite systems
we discussed previously—a real Hamiltonian on a bipartite
lattice which is capable of perfect transfer can never, at any
intermediate time, produce a state which is entirely localized
on just one of the bipartitions of the graph.

In the previous section, we derived a trade-off between the
maximum transfer rate and the distance of transfer. We can
do the same for a general case of routing, where we wish to
transfer to J different possible sites from A, at locations j

and times tj . As before, we have an = |〈A|λn〉|2 and 〈A|λn〉 =
eiϕn,j 〈j |λn〉. Now we have J conditions for the perfect transfer,(

J∑
j=1

N∑
n=1

|j 〉〈n|e−iλntj

)(∑
n

an|n〉
)

= 0

(where the independence of these conditions is no longer
imposed by periodicity, of which we are not assured, but by
the assumption that the output vertices are distinct, yielding
orthogonal states), and the same normalization condition. Now
we also want to impose that all J target vertices are at least a
distance D from A. Hence, for k = 1 to D − 1 we have(

J∑
j=1

N∑
n=1

|j 〉〈n|λk
ne

iϕn,j

)(∑
n

an|n〉
)

= 0.
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Even by not restricting the an to be real (let alone positive),
we arrive at the bound

DJ � M − 1 � N − 1.

So, if you want to route between every possible vertex of a
network, you must have transfer distance 1. This is exactly
what happened in the examples of [10], but now we know that
it is impossible to do better, making the results of [9] all the
more remarkable, achieving routing at a high transfer rate with
only the addition of very modest controls.

The interpretation of the periodicity of the system also
allows a minor insight into the state transfer time. Let us define
the eigenvalue gaps between eigenvectors with support on A

as �n = λn+1 − λn (where the λn are ordered), and fix χ to
be the largest real number such that �n/χ is an integer for
all n. Then it must be the case that the state transfer time is
given by t0 = π/χ . This is because it allows ei�nπ/χ to be ±1,
as would be required for state transfer, and yet e2i�nπ/χ = 1,
which corresponds to a perfect revival on the input spin.

E. Uniformly coupled systems

Perhaps of most interest would be finding graphs which are
uniformly coupled (to be defined momentarily), preferably
maximizing the growth of transfer distance with the total
number of vertices, and keeping the degree of each vertex
low.

There are two natural connections between Hamiltonians
restricted to the single excitation subspace and the underlying
graph structure. The first is the XX model,

H = 1

2

∑
{i,j}∈E

XiXj + YiYj ,

which has H1 = A, the adjacency matrix of the graph G with
edge set E. The second is the Heisenberg model,

H = −1

2

∑
{i,j}∈E

XiXj + YiYj + ZiZj + 1,

which has H1 = L, the graph Laplacian.

1. Heisenberg-Laplacian systems

Our strategy for the two cases will be slightly different,
and we start with the Heisenberg case. From our necessary
and sufficient conditions for state transfer, we know that the
eigenvalues of H1 can be written in the form

λn = χzn + δ

for the eigenvectors |λn〉 which have support on the input
vertex, where zn is a different integer for each n, but χ and δ are
fixed (and relate to the transfer time and phase, respectively).
In fact, δ = 0 because we know that a Laplacian always has
one eigenvector

|λ〉 = 1√
N

N∑
n=1

|n〉 (3)

with eigenvalue 0. We are now going to assume that every
unique eigenspace has support on the input vertex. Under this
assumption, we can calculate

Tr(H1) = χ

N∑
n=1

zn =
∑

n

dn,

where dn is the degree of vertex n. This instantly proves
that χ is rational, and hence all the eigenvalues are rational.
However, it is well known [28] that any Hamiltonian with
integer matrix elements and rational eigenvalues in fact has
integral eigenvalues. Hence, we can utilize the wide variety of
results on Laplacian integral graphs [29]. Nevertheless, it is
worth emphasizing that it is only necessary that the graphs be
integral. It is in no way sufficient.

Now we want to know about how the transfer distance is
related to the maximum degree of the graph and the number
of vertices, under this assumption about the support of the
eigenvectors. For a connected graph, the diameter D (the
maximum distance between any two points in the graph, which
is an upper bound on the transfer distance) is bounded by k,
the number of distinct eigenvalues: D + 1 � k [30]. However,
since the minimum eigenvalue is 0, and they are spaced by
integers, the maximum eigenvalue must be larger than k − 1,
and yet be upper bounded by 2d, where d is the maximum
degree of any vertex. We conclude that

D � 2d.

Unfortunately, to have a scaling transfer distance, we must
scale the maximum degree of the graph. More general bounds
are stated in [31], such that, for any α > 1,

D � 2

⌈√
2d

√
α2 − 1

4α
+ 1

⌉
�logα(N/2).

This suggests that perhaps the logarithmic trade-off between
transfer distance and number of qubits in the hypercube [4]
might be necessary. However, we are still far from proving this.
Instead, we only have the upper bound on D of O(

√
d log N ).

2. X X-adjacency systems

For the XX model, any eigenvector with support on the
input vertex has eigenvalues

λn = χzn + δ,

where zn is a rational number. Again, we will assume that
all eigenspaces have support on A. This is equivalent to the
assumption made in [13], which imposed that every vertex in
the graph be periodic (i.e., have a perfect revival after 2t0),
and, indeed, we will arrive at the same conclusions. We also
note that there are known instances where perfect transfer can
be found without needing this assumption [32]. As before, we
proceed by calculating

χ
∑

n

zN
n=1 + Nδ = Tr(H1) = 0.

Hence, δ is a rational number multiplied by χ (thereby
imposing that the transfer phase is a root of unity), which
we incorporate into zn, so λn = χzn. Next consider the
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characteristic polynomial of H1,

det(H1 − λ1) =
N∑

n=0

anλ
n = 0,

which contains integer coefficients an (because all the matrix
elements of H1 are integers). Each of the an can be equated
with a combination of the (N − n)th order products of the
eigenvalues, which therefore appear as χN−n multiplied by
a rational number, so χN−n is rational. It is always true that
aN−2 �= 0, so χ2 is rational. Provided the graph is not bipartite,
there is always a value of k for which aN−2k−1 �= 0, so χ2k+1

is rational, and hence χ is rational. Again, this imposes that,
in fact, the graph is integral and we can use the many results
on integral graphs [33]. However, if the graph is bipartite,
these conclusions do not hold. The simplest counter-example
is the chain of 3 qubits which has eigenvalues 0, ± √

2 and yet
achieves perfect transfer.

For these systems, we are not aware of any general bounds
trading between the degree and transfer distance of the graph.
However, it is worth noting that if the graph is regular (i.e.,
every vertex has the same degree, d), the Laplacian L and
adjacency matrix A are related by L = d1 − A and hence the
previous bounds apply.
In [33], several ways of combining and manipulating integral
graphs to give new integral graphs were proven:
Cartesian product of two integral graphs:

G = G1 × G2 has vertices V = V1 × V2 with edges be-
tween {(u1,u2),(v1,v2)} if {u1,v1} ∈ E1 or {u2,v2} ∈ E2. This
is the exclusive or.
Conjunction of two integral graphs:

G = G1 ∧ G2 has vertices V = V1 × V2 with edges be-
tween {(u1,u2),(v1,v2)} if {u1,v1} ∈ E1 and {u2,v2} ∈ E2 (also
known as the tensor product of two graphs).
Strong product of two integral graphs:

G = G1 ∗ G2 has vertices V = V1 × V2 with edges be-
tween {(u1,u2),(v1,v2)} if {u1,v1} ∈ E1 or {u2,v2} ∈ E2 or
both.
Join of two regular integral graphs:

G = G1 + G2 has vertices V = V1 + V2 with edges
{u,v} ∈ E if {u,v} ∈ E1 or {u,v} ∈ E2 or if one vertex is part
of each graph, with the restriction that (d1 − d2)2 + 4N1N2

must be a perfect square.
Complement of an integral graph:

G is the same as the original graph but the edge set is in-
verted. One might therefore wonder if these same constructions
can take perfect transfer graphs (with the same transfer time)
and produce new perfect transfer graphs. This study started
in [4], in which it was shown how, by taking two graphs known
to exhibit perfect transfer, one can construct a larger graph, via
the graph product, that also exhibits perfect transfer. While
this was shown specifically for chains, it is easily generalized
to all perfect transfer graphs [32]. By way of contrast, we give
examples in Fig. 1 for which the conjunction, strong product,
and join do not generate perfect transfer graphs.7

7While one could show the conjunction of any bipartite graph with
either the two- or three-vertex chain, this is a trivial result since both
just produce two independent copies of the original graph.

FIG. 1. Simple examples of the conjunction, strong product, and
join of two perfect state transfer graphs which do not produce perfect
state transfer graphs. This can be determined by inspection—the
graphs are too symmetric to single out a target vertex for any given
input vertex.

The complement is a more interesting case. In general, it
cannot be true that there is perfect transfer, which one sees by
considering the graph of two connected vertices. This exhibits
perfect transfer, but the complement, which is the unconnected
graph, clearly does not perform transfer. However, there are
some cases where the complement does give a perfect transfer
graph, and these instances are readily verified. Let |λ〉 be the
state specified in Eq. (3). Since the graph is regular, |λ〉 is the
maximum eigenvector, with eigenvalue d. We can use this to
write the complement Ā of the adjacency matrix,

Ā = N |λ〉〈λ| − 1 − A.

So, if we perform a state transfer between the same input and
output vertices in the same time t0, since |λ〉〈λ| commutes
with A, the condition on achieving state transfer with the
complement is simply e−it0N = 1, which also applies to the
Laplacian of a regular graph.

V. CONCLUSIONS

In this paper, we have given necessary and sufficient
conditions for the existence of perfect state transfer in a
quantum network, using the single excitation subspace. One
should be aware, however, that the dynamics can be much
richer in higher excitation subspaces, with the possibility of
catalyzing otherwise impossible transfers [24].

Making use of these conditions allows us to easily decide if
a system can perform perfect state transfer. We have proven a
bound on the maximum transfer rate. The routing of quantum
states between multiple different sites is impossible if the
Hamiltonian is real, although these results do not contradict
existing schemes for the arbitrarily accurate scenario [26],
when some degree of control is allowed [9], or when complex
coupling coefficients are allowed [10,27].

We hope that the insights provided in this paper lead to
progress in designing perfect state transfer Hamiltonians in

022337-7



ALASTAIR KAY PHYSICAL REVIEW A 84, 022337 (2011)

a wider class of systems. Using results from spectral graph
theory, we have already been able to place bounds on many
of the properties of uniformly coupled networks, such as the
bound that the transfer distance can be no more than twice
the degree of the graph for the Heisenberg model or regular
XX models (provided the graph is periodic), and anticipate
that much more is possible. We also think it is important that

the vague suggestion that networks should be more robust to
perturbations should be put on a more rigorous footing.
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