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Marianna Bonanome,1 Vladimı́r Bužek,2,3 Mark Hillery,4 and Mário Ziman2,3

1Department of Applied Mathematics and Computer Science, New York City College of Technology, 300 Jay
Street, Brooklyn, New York 11201, USA

2Research Center for Quantum Information, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
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We present a number of schemes that use quantum mechanics to preserve privacy, in particular, we show that
entangled quantum states can be useful in maintaining privacy. We further develop our original proposal [see
M. Hillery, M. Ziman, V. Bužek, and M. Bieliková, Phys. Lett. A 349, 75 (2006)] for protecting privacy in voting,
and examine its security under certain types of attacks, in particular dishonest voters and external eavesdroppers. A
variation of these quantum-based schemes can be used for multiparty function evaluation. We consider functions
corresponding to group multiplication of N group elements, with each element chosen by a different party. We
show how quantum mechanics can be useful in maintaining the privacy of the choices group elements.
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I. INTRODUCTION

There are many situations in which maintaining the privacy
of information is important. One example is voting; a voter
(let us call him Vincent) does not want either other voters or
the person counting the votes to know how he voted. Another
possible situation is one in which a number of parties want to
pool their financial resources to purchase, perhaps, a company.
They need to find out if the total amount of money they have
is sufficient, but each individual does not want the others to
know how much he or she has.

Quantum mechanics has proven to be a useful basis of
novel communication schemes. In particular, quantum key
distribution uses the laws of physics as the basis for a scheme
to distribute secure cryptographic keys [1]. Here we would
like to discuss whether quantum mechanics can be used to
protect privacy as well. In particular, we shall examine the
role quantum mechanics can play in voting schemes and
in a special form of distributed function computation. The
elementary primitives for privacy are the anonymous broadcast
channels. An anonymous one-to-many broadcast channel is
one in which each of the parties can send a message to all
of the others, but only the person who sent the message
will know who sent it (i.e., his identity remains hidden to
each receiver). One solution [2,3] is based on DC nets,
which solves the so-called dining cryptographer’s problem
(originally formulated by Chaum in Ref. [2]), provided that
the communication is secured by a one-time pad. As discussed
in Refs. [4–6] the quantum-based anonymous broadcast of
classical information does not provide us with additional
security beyond that provided by classical protocols. However,
it is possible to anonymously broadcast quantum information,
in particular, as was shown in Refs. [4,5], an unknown state of a
quantum system (i.e., quantum information) can be teleported
anonymously, so that the identity of the sender of the quantum
information remains hidden.

The present paper is structured as follows. In Sec. II we
review the quantum-based voting protocols. In this section and
the following one, we assume that everyone participating in
the protocol is honest but curious (i.e., participants follow the

steps of the protocol, but if any extra information comes their
way, they will have a look). In Sec. III, we show how voting
is a special case of a kind of distributed function evaluation.
In Sec. IV, we change the adversary model and look first
at the case of dishonest voters, and then at the issue of a
eavesdropper who wishes to learn how one of the voters voted.
We summarize our results in Sec. V. A detailed analysis of an
attack by a cheating voter can be found in the Appendix.

II. ANONYMOUS VOTING

Let us assume that there are N parties, and they are
each to vote “yes” or“no” on some question. Besides the voters,
there is also an authority (let us call her Alice) who provides
the resources for voting and counts the votes. Throughout the
paper, we shall assume that the authority is honest but curious,
that is, the authority will follow the protocol, but if any
information is available to her, she will have a look. Some
desirable features that we might want our voting procedure to
satisfy are (for details see Ref. [7]) as follows.

(1) Privacy. Only the individual voter should know how he
or she voted.

(2) Security. Each voter can vote only once and cannot
change someone else’s vote.

(3) Verifiability. Each voter can make sure that his or her
vote has been counted properly, but simultaneously cannot
prove to anyone else how he was voting.

(4) Eligibility. Only eligible voters can vote.
We shall mainly be discussing the first requirement, but we

shall suggest a method of guaranteeing the second requirement
as well. The analysis of the other two conditions is beyond the
scope of the present paper. A considerable effort in classical
cryptography has gone into designing voting systems, but
here we shall only consider quantum-based approaches. It
is important to say that the above list of conditions can be
extended and there are different variations of properties the
voting should satisfy. Depending on the specified conditions
there exists unconditionally secure classical protocols, but their
description is beyond the scope of this paper.
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There have been two quantum-based voting schemes pro-
posed independently [8,9]. The quantum-based voting scheme
proposed by Vaccaro, Spring, and Chefles [8] makes use of
multiparty states whose total particle number is definite, but
the total number of particles possessed by an individual voter
is not fixed. The votes are encoded in a phase. We shall
discuss here the schemes originally proposed in our earlier
paper [9], one of which also encodes votes in a phase, but in
this case each voter has a fixed number of particles. In what
follows we will study in detail two types of voting schemes: a
traveling ballot scheme, and a distributed ballot scheme. As
was mentioned in the Introduction, in this section we shall
assume that everyone is honest but curious, and we will focus
on the privacy condition.

A. Traveling ballot

Let us first consider the traveling ballot scheme. We shall
consider N voters (Vincent.1, Vincent.2, . . ., Vincent.N) and
an authority to count the votes. The authority (Alice) begins
by preparing the entangled two-qudit state (D > N)

|�〉 = 1√
D

D−1∑
j=0

|j 〉a|j 〉b. (1)

The authority holds the first qudit and sends the second one
to Vincent.1. He now performs one of two operations: If he
wants to vote “yes”, he performs the operation E+, where
E+|j 〉 = |j + 1〉 (the addition is modulo D), and if he wants
to vote “no” he does nothing (the identity operator). Vincent.1
then passes the ballot qudit on to Vincent.2 who makes the
same choice and sends it further. Finally, Vincent.N sends
the traveling-ballot qudit back to Alice (the authority). The
authority’s final two-qudit state is

|�m〉 = 1√
D

D−1∑
j=0

|j 〉a|j + m〉b, (2)

where m is the number of “yes” votes. We have that
〈�m|�m′ 〉 = δm,m′ , so that if Alice measures the final state
in the basis {|�m〉|m = 0, . . . ,D − 1}, she will be able to
determine the number of “yes” votes. Let us note a number of
things about this scheme.

(1) The privacy is guaranteed by the fact that there is “no”
information in the state |�m〉 about who voted “yes” and who
voted “no.” In addition, during the entire time the second
qudit is traveling (before it is returned to the authority), the
reduced density matrices of all voters and the authority is
ρ = (1/D)I , where I is the identity matrix. That means that
during the voting process, neither the voters nor the authority
can determine how the voting is progressing. In particular,
Vincent.2 cannot determine by examining the particle he
receives from Vincent.1 how he voted. Therefore, the scheme
maintains the privacy of the voting process.

(2) This is stronger security than that provided by a naive
classical scheme. In that scheme, a ballot goes from voter to
voter, and each voter enters into it his vote, 0 for “no”and 1 for
“yes,” plus a random number. At the end the ballot goes back to
the authority, and everyone sends their random number to the
authority, who then subtracts their sum from the total number

on the ballot to arrive at the number of “yes” votes. If the
random numbers remain secret, the scheme insures privacy,
but if the random number of one of the voters, Vincent.2,
for example, becomes known, then the voter who voted just
before (i.e., Vincent.1), and the one who voted just after
him (Vincent.3) can determine Vincent.2′s vote. The quantum
scheme does not require the use of secret information, which
can become compromised.

A traveling ballot can also be used for, what was called in
Ref. [8], an anonymous survey. This can be used to compute
the average salary of a group of people without learning the
salary of any individual. One uses a traveling ballot, and each
person “votes” a number of times that is proportional to their
salary (e.g., one vote means 10 000 Euros, two means 20 000
Euros, etc.). The authority counts the number of votes and
divides by the number of voters to find the average, but the
information about individual salaries is available neither to the
authority nor to the individual voters.

B. Distributed ballot

For the case of a distributed ballot the framework is the
same (i.e., we shall suppose that there are N voters and an
authority who counts the votes). The authority prepares an
entangled N -qudit ballot state [9]

|�〉 = 1√
D

D−1∑
j=0

|j 〉⊗N, (3)

where the states {|j 〉 |j = 0, . . . ,D − 1} form an orthonormal
basis for the D-dimensional space of an individual qudit, and
D > N . A single qudit is now distributed to each of the voters.
to vote “no’ ’a voter does nothing, and to vote “yes,” he applies
the operator

F =
D−1∑
k=0

e2πik/D|k〉〈k|, (4)

to his qudit. Note that at all times during the voting procedure
the reduced density matrix of the qudit of a single voter is
ρ = (1/D)I , so that he can infer nothing about the votes of
the other voters. All of the qudits are then sent back to the
authority, whose state is now (if m people voted “yes”)

|�m〉 = 1√
D

D−1∑
j=0

e2πijm/D|j 〉⊗N. (5)

The states |�m〉 are orthogonal for different values of m

and hence can be perfectly distinguished. Consequently, the
authority can determine the number of “yes” votes. Note that
the states |�m〉 contain no information about who voted “yes”;
they encode only the total number of “yes” votes. Again, voter
privacy is protected.

An interesting variant on this procedure was proposed by
Dolev et al. [10]. In their scheme, the ballot state is locally
unitarily equivalent to the state in Eq. (3), the “yes” vote is de-
scribed by operation E+ (E+|j 〉 = |j + 1〉) and D = N + 1.
In particular, the ballot state is

|�〉 = 1√
DN−1

∑
l1+...+lN =0 modD

|l1〉, . . . ,|lN 〉. (6)
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We define bn = 0 if the nth voter voted “no” and bn = 1 if the
nth voter voted “yes,” then the state after the voting is

|�′〉 = 1√
DN−1

∑
l1+...···lN =0 modD

|l1 + b1〉, . . . ,|lN + bN 〉, (7)

where the addition inside the kets is mod D. Each voter
now measures his qudit in the computational basis getting the
outcome xj = lj + bj containing his vote (bj ) and a random
number (lj ) added to it, but these numbers have the property
that they add to zero mod D (i.e.,

∑
j lj = modD). Each voter

announces the result of his measurement and the total sum
x = ∑

j (lj + bj ) = ∑
j bj gives the result of the voting. That

is, each voter adds all of the announced results mod D, and
the result x is the total number of “yes” votes.

This scheme can be modified to perform one-to-many
anonymous broadcast, sending ln D bits of information.
Consider N parties sharing the state |�〉, and let the sender
perform the operation Em

+ . This will result in the new state in
which the number l1,l2, . . . ,lN sum to m modD. Measuring in
the computational basis and publicly announcing the results
will enable each party to reconstruct the message m. In a
sense this protocol provides a quantum solution to dining
cryptographer’s problem [2].

III. DISTRIBUTED GROUP MULTIPLICATION

Maintaining privacy on decision making (e.g., voting) can
be considered as a part of a more general task, multiparty
function evaluation. In particular, voting and an anonymous
survey can be viewed as each participant picking a member
of a cyclic group with the object being to compute the sum
of all of the chosen members and doing so in such a way
that the participants’ choices are not revealed. We would like
to show that a similar procedure works for computing the
product of group elements chosen by the participants for any
group. That is, voting is just a special case of distributed group
multiplication. Throughout this section we shall assume that
everyone is honest but curious.

This problem is related to that of a secure function
evaluation. Suppose that Donna has a device that will evaluate
the function f (x,y,z). Alice, who has the input x; Bob, who
has the input y; and Charlie, who has input z, would like to
know the value of f (x,y,z), but each of them wants Donna and
the other two participants to know as little about their input as
possible. In fact, ideally Donna would know only as much as
she can infer from knowing the value of f (x,y,z), and each of
the other parties would only know as much as they could infer
from knowing f (x,y,z) and their own input. Note that voting
is a special case of this problem in which the variables take
only the values 0 and 1 and the function is addition.

Can something like this be accomplished using quantum-
based methods? This problem was analyzed by Lo for the
case of two parties (Alice and Bob), and he showed that in
the case of two-party secure computations it cannot [11]. In
the two-party case Alice evaluates the function, and she has
one input and Bob has the other. In one-sided secure function
evaluation only Alice learns f (x,y) and in two-sided secure
computation both learn f (x,y). In both cases Alice and Bob
are to learn as little about each other’s input as possible. Lo

showed that one-sided two-party quantum secure computation
is, in fact, always insecure, and that there are functions for
which the two-sided scenario is also insecure.

We would like to start by showing that a modification of our
traveling ballot scheme will allow us to accomplish the task
described in the first paragraph of this section for a particular
function, group multiplication in the Klein four-group, and for
participants who are curious but follow the protocol. This is
an order four Abelian group whose elements we shall denote
by {e,x1,x2,x3}. The element e is the identity, x2

j = e, and
xjxk = xl , where j ,k, and l are all different. Alice, Bob,
and Charlie each choose a group element, and they want to
know the product of the three elements. Donna prepares the
two-qubit state |�〉 = (|0〉|1〉 − |1〉|0〉)/√2, keeps one qubit,
and sends the other to Alice. Based on her choice of a group
element, Alice then applies an operation to the qubit using the
correspondence

e → I, x1 → σx, x2 → σy, x3 → σz, (8)

where I is the identity, and σx , σy , and σz are the Pauli matrices.
She then sends the qubit on to Bob, who applies an operation to
the qubit based on his choice of group element (using the same
correspondence between operations and group elements), and
he then sends it on to Charlie who does the same. Finally,
Charlie sends the particle back to Donna. Donna measures the
resulting state in the Bell basis, and from this measurement
she can determine which of the four states she has, |�〉,
(I ⊗ σx)|�〉, (I ⊗ σy)|�〉, or (I ⊗ σz)|�〉 (each of these states
is proportional to an element of the Bell basis). Using the
correspondence between group elements and operations she
can tell what the product of the group operations was. For
example, if she found that she had (I ⊗ σx)|�〉, then she would
know the product was x1.

This procedure is a variant of dense coding [12]. It is based
on the fact that the operators {I,σx,σy,σz} form a projective
representation of the Klein four-group. Note that during the
entire procedure the reduced density matrix of each of the
participants is ρ = I/2, so they are able to learn nothing about
what the other participants have done. The final state received
by Donna contains no information about who did what, it
only contains information about the product of their choices
of group elements.

This scheme can be generalized to any finite group
and arbitrary number of participants. Let G be a
group, and g ∈ G → U (g), where U (g) is a D × D unitary
matrix, and the matrices U (g) form a D-dimensional repre-
sentation of G. Donna starts with the two-qudit state

|�〉 = 1√
D

D−1∑
j=0

|j 〉|j 〉. (9)

The second qudit is sent to Alice, who acts on it with U (ga),
where ga ∈ G is her input, and then sends the qudit on to Bob.
Bob applies the operation U (gb), where gb ∈ G is his input,
and sends the qudit on to Charlie, who does the same, and so
on. At the end of the procedure Norbert sends the qudit back
to Donna who has the two-qudit state I ⊗ U (gp)|�〉, where
gp = ga · gb · · · gn is the product of the group elements chosen
by the parties who are providing the inputs. A requirement is
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that these states are orthogonal for a different group element
gp so that Donna can distinguish them. This requires that

〈�|I ⊗ (
g−1

2 g1
)|�〉 = 0, (10)

for any two g1,g2 ∈ G, such that g1 	= g2. This condition
will be fulfilled if Tr[U (g)] = 0 for any group element not
equal to the identity. This condition is satisfied by the regular
representation of any group. For this representation, which is,
in general, reducible, the dimension is equal to the order of
the group. To give an explicit description of the matrices U (g)
in this representation, we order the group elements, gj , where
j = 0, . . . ,|G| − 1. The matrix elements of U (gn) are then
given by

U (gn)jk =
{

1 if g−1
j gk = gn,

0 otherwise.
(11)

It may be possible to find representations of a smaller
dimension that satisfy the condition Tr[U (g)] = 0 for any
group element not equal to the identity, but we are at least
assured that if we choose the dimension equal to the order of
the group, such a representation exists.

Note that if we used the regular representation in the
case of the Klein four-group, our representation would have
had dimension four, but we were able to find one that has
dimension two. The two-dimensional representation is, in
fact, a projective representation. A projective representation
of a group is a mapping from the group to unitary matrices
g → U (g) that satisfies

U (g1)U (g2) = eiω(g1,g2)U (g1g2), (12)

where ω(g1,g2) is a real-valued function on G × G. A
projective representation that satisfies Tr[U (g)] = 0 for any
group element not equal to the identity will also produce states
I ⊗ U (gp)|�〉 that are mutually orthogonal. In some cases, the
use of a projective representation will allow one to achieve this
result with a smaller dimensional space than would be possible
if one restricted oneself to standard representations.

For Abelian groups it is also possible to use a distributed
ballot scheme. This is because any Abelian group is isomorphic
to a direct product of cyclic groups. We distribute one particle
for each cyclic group appearing in the decomposition of the
Abelian group, and the parties apply operators, similar to the
voting operators in the previous section, to each particle to
encode their group element. At the end of the procedure, all of
the particles are returned to Donna, who can then determine
the product of the group elements.

Let us illustrate this procedure with a simple example. We
again consider the Klein four-group and the parties Alice, Bob,
and Charlie, who are to choose group elements. The Klein
four-group is isomorphic to Z2 × Z2, whose elements can be
expressed as {(0,0),(0,1),(1,0),(1,1)}. The following state is
prepared

|�〉 = 1

2

(
1∑

j=0

|j 〉⊗3

)
⊗

(
1∑

k=0

|k〉⊗3

)
, (13)

and one qubit from the first triple and one from the second is
distributed to each of the three parties. Each party now chooses

a group element and performs an operation on his or her pair
of qubits according to the correspondence

(0,0) → I ⊗ I (1,0) → σz ⊗ I,
(14)

(0,1) → I ⊗ σz (1,1) → σz ⊗ σz.

All of the qubits are then sent to Donna. She measures each
triple in the basis

|φ±〉 = 1√
2

(|0〉|0〉|0〉 ± |1〉|1〉|1〉), (15)

with a |φ+〉 result corresponding to a 0 and a |φ−〉 result
corresponding to a 1. For example, if she obtained |φ+〉
for the first triple and |φ−〉 for the second, this corresponds
to the group element (0,1). Therefore, she is able to determine
the product of the group elements chosen by Alice, Bob, and
Charlie without knowing their individual choices.

IV. DISHONEST VOTERS AND EAVESDROPPERS

We now want to change the rules. So far, we have been
assuming that everyone was honest but curious. Now we want
to relax that constraint. First, we will look at the case of
dishonest voters. These voters want to vote more than once.
We shall present a scheme that prevents them from doing that.
Another possibility is that all of the participants in the voting
scheme are honest, but there is an eavesdropper who wants to
discover how one or more of the voters voted. We shall now
explore these two scenarios.

A. Dishonest voters

One problem with the voting schemes presented so far is
that there is nothing to prevent voters from voting more than
once. If they want to vote “yes” more than once they simply
apply the operator corresponding to a “yes” vote more than
once, if they want to increase the number of “no” votes they
apply the inverse of the “yes” operator. One possible way of
dealing with this problem was suggested in Ref. [9]. In this
section we will discuss variations of the distributed ballot and
traveling ballot that deal with this problem.

We begin with the distributed-ballot scheme. The ballot
state is the same as in the Eq. (3). In addition, the authority
distributes to each voter two voting states, which are single
qudits. The voting qudit corresponding to a “yes” vote is in
the state |ψ(θy)〉 and the qudit corresponding to a “no” vote is
in the state |ψ(θn)〉, where

|ψ(θ )〉 = 1√
D

D−1∑
j=0

eijθ |j 〉, (16)

and the angles θy and θn are given by θy = (2πly/D) + δ and
θn = (2πln/D) + δ. The integers ly and ln and the number
0 � δ < 2π/D are known only to the authority. The voter
chooses the voting particle corresponding to his vote, and using
a process much like teleportation, is able to transfer the state
of the voting qudit onto his ballot qudit. Because Alice knows
ly , ln, and δ she can determine the number of “yes” votes. If
a voter tries to cheat and measure the values of θy and θn, he
can only measure them to an accuracy of order 2π/D. If he
uses these measured values to vote, he will introduce errors.
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These errors will show up if the voting is repeated several
times. If no cheating occurred, then the result will be the same
each time. If cheating did occur, then the results will fluctuate.
Therefore, the authority would be able to tell if someone is
cheating. To facilitate voting several times, the authority can
distribute several ballot states to the voters at the beginning of
the voting process and instruct them to vote the same way on
each one. Let us now examine this procedure in more detail.

Step 0: Distribution of states. Alice distributes the entan-
gled ballot state |�〉 described in Eq. (3) and sends to each voter
two additional qudits |ψ(θy)〉 and |ψ(θn)〉. First, we assume
that (ly − ln)N < D, where, as before, N is the number of
voters (Vincent.1, . . . , Vincent.N). This condition is necessary
in order that different voting results be distinguishable. As
previously mentioned, the integers ly and ln and the angle δ

are not known to the voters.
Step 1: Voting process. Depending on his choice the voter

(Vincent.X) combines either |ψ(θy)〉, or |ψ(θn)〉, with the
original ballot particle (i.e., creates a system composed from
the ballot and the voting qudits). Then he performs a two-qudit
measurement of the observable R = ∑D−1

r=0 rPr , where

Pr =
D−1∑
j=0

|j + r〉b〈j + r| ⊗ |j 〉v〈j |, (17)

and the subscript b denotes the ballot qudit while the subscript
v denotes the voting qudit. Registering the outcome r the
voter applies the operation Vr = Ib ⊗ ∑D−1

j=0 |j + r〉v〈j | to the
voting qudit. If the voter voted “yes,” the state of the ballot and
voting state is then (up to normalization)

VrPr |�〉|ψ(θy)〉 = 1

D

(
r−1∑
k=0

ei(D+k−r)θy |k〉⊗(N+1)

+
D−1∑
k=r

ei(k−r)θy |k〉⊗(N+1)

)
. (18)

It is necessary to get rid of the factor exp(iDθy) = eiDδ in
the first term. After a voter has voted, he tells (publicly) the
authority the value of r he obtained because only the authority
has knowledge of δ and can undo this factor. Each voter sends
both (the ballot and the voting) qudits back to the authority. The
remaining unused qudit must be kept or destroyed to secure
the privacy of the registered vote.

Step 2: Reading the result. When the ballot state is returned
to the authority, she applies an operator

W =
N∏

k=1

Wrk
, (19)

to one of the particles in the ballot state [13]. The integer rk is
the value of r obtained by the kth voter, where

Wr |k〉 =
{
e−iDδ|k〉 0 � k � r − 1,

|k〉 r � k � D − 1,
(20)

which removes the unwanted phase factors. The authority is
then in possession of a state consisting of 2N qudits. If my =
m voters voted “yes,” mn = N − m voters voted “no,” the

authority, after the application of the operator W , now has the
state

|�′
m〉 = 1√

D

D−1∑
j=0

eij (myθy+mnθn)|j 〉⊗2N, (21)

where an irrelevant global phase factor has been dropped. The
phase factor appearing in the sum can be expressed as

eij (myθy+mnθn) = eijmeijNθn , (22)

where  = θy − θn = 2π (ly − ln)/D. The factor eijNθn can be
removed by the authority by applying a unitary transformation
that shifts |j 〉 to e−ijNθn |j 〉 to one of the qudits. This finally
leaves the authority with the state

|�q〉 = 1√
D

D−1∑
j=0

e2πijq/D|j 〉⊗2N, (23)

where q = m(ly − ln). These states are orthogonal for different
values of q, for q an integer between 0 and D − 1 (we need
to choose |ly − ln| and D to guarantee that q is in this range),
so we see that from the state |�q〉 the authority can determine
the value of q corresponding to this state. This allows her
to determine m because she knows both ly and ln. Note that
q should always be a multiple of ly − ln if the voters are
using their proper ballot states. If after measuring the ballot
state, the authority finds a value of q that is not a multiple
of ly − ln, then she knows that someone has cheated. Let us
note that the total measurement is described by projective
operations Mq = |�q〉〈�q |, for 0 � q � D − 1 and a multiple
of ly − ln, and Merror = I − ∑

q Mq .
A similar procedure works for a traveling-ballot scheme.

In this case, the previous traveling-ballot scheme is modified
so that votes are recorded by means of a rotation rather than
as a shift. We start with the ballot state in Eq. (1), and as in
the distributed-scheme voting particles in the states |ψ(θy)〉
and |ψ(θn)〉 are distributed to the voters. We still have θy =
(2πly/D) + δ and θn = (2πln/D) + δ. A voter now combines
the ballot state with the voting particle representing his choice
and measures R as before. Suppose he wants to vote “yes” and
the result r is obtained upon measuring R. The state is then

Pr |�〉|ψ(θy)〉 = 1

D

(
r−1∑
j = 0

ei(D+j−r)θy |j 〉a|j 〉b|j − r + D〉v

+
D−1∑
j = r

ei(j−r)θy |j 〉a|j 〉b|j − r〉v
)

. (24)

The voter now tells the authority the value of r , and the
authority applies the operator Wr to the particle in her
possession. This removes the unwanted factor of eiDθy in the
first term. The voter now applies the operator Ur to the ballot
and voting particle, where

Ur |j 〉b|j + r − D〉v = |j 〉b|0〉v, (25)

for 0 � j � r − 1, and

Ur |j 〉b|j − r〉v = |j 〉b|0〉v, (26)
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for r � j � D − 1. This has the effect of disentangling the
voting particle from the rest of the state

UrWrPr |�〉|ψ(θy)〉 = 1

D

(
r−1∑
j=0

ei(j−r)θy |j 〉a|j 〉b

+
D−1∑
j=r

ei(j−r)θy |j 〉a|j 〉b
)

|0〉v. (27)

The ballot particle is now passed on to the next voter who
repeats the procedure. At the end of the voting, the ballot
particle is returned to the authority, who then has the state

|�′′
m〉 = 1√

D

D−1∑
j=0

eij (myθy+mnθn)|j 〉a|j 〉b, (28)

up to a global phase factor. From there on the analysis is the
same as in the distributed ballot case.

As we discussed at the beginning of this section a voter
who wants to vote more than once is faced with the problem
of determining what θy or θn are, and this cannot be done from
just a single state. However, there is a small chance that the
cheating will not be detected and therefore, the voting has to be
performed several times. Nevertheless, just a single difference
in outcomes means that someone is cheating. The details of an
attack by a cheater and its consequences are described in the
Appendix.

B. Eavesdropper

Now we shall consider an attack by an external eavesdrop-
per who wants to learn how one of the participants voted. The
actual participants in the protocol are assumed to be honest
but curious.

First, let us consider the traveling-ballot scheme. Suppose
an eavesdropper, Eve, wants to know how the second voter,
Vincent.2, voted. She intercepts the ballot qudit just before
it is due to be received by Vincent.2 and sends it on to
Vincent.3. To Vincent.2 she sends her own qudit, which is
in the state |0〉. After Vincent.2 votes, she intercepts the qudit
and measures it; if it is in the state |0〉, Vincent.2 voted “no,”
if it is in the state |1〉, then Vincent.2 voted “yes.” This type
of attack seems to be very hard to prevent. One possibility,
which is very expensive in terms or resources, is to use
teleportation. If successive voters share entangled two qudit
states of the form given in Eq. (1), they can then teleport the
ballot state to each other rather than physically send the ballot
particle. This procedure would prevent the of man-in-the-
middle attack just described, but requires that the participants
originally shared many qudit pairs and used entanglement
purification to bring any correlations with outside systems,
such as those possessed by an eavesdropper, to acceptable
levels. Therefore, this approach is not a particularly desirable
one.

A distributed-ballot scheme seems to offer more possibil-
ities. To illustrate this, we shall compare the vulnerability of
a classical and a quantum scheme to eavesdropping. We shall
consider the case in which there is an eavesdropper, Eve, who
wants to find out how Vincent.1 voted.

Our classical scheme is a variant of one proposed in the
paper by Dolev et al. [10]. There are two authorities, one who
generates ballots and one who counts the votes, and there are
N voters. The first authority generates N ballots, one for each
voter, and on each ballot an integer between 0 and N is written.
These numbers have the property that their sum is equal to zero
modulo N + 1. When each voter receives his ballot, he does
nothing to vote “no” and adds 1 to vote “yes.” The ballots are
all sent to the second authority, who simply adds all of the
numbers modulo N + 1, with the result being the number of
“yes” votes.

The second authority does not know how any of the
individual voters voted because she does not know the original
integers written on the ballots. If fact, she has no information
about how the voters voted if each set of ballots (that is,
each sequence of N integers whose sum is zero modulo
N + 1) is equally likely. We can see this as follows. We
can represent the initial state of the ballots by a sequence
of N integers, each of which is between 0 and N and whose
sum is zero modulo N + 1. Similarly, we can represent the
final state (after voting) of the ballots by a sequence of N

integers, each of which is between 0 and N and whose sum
is m modulo N + 1, where m is the number of “yes” votes.
The set of voters who voted “yes” can be represented by a
sequence of ones and zeros, ones denoting the voters who
voted “yes,” of length N . Now for each sequence of N integers
whose sum is equal to m mod N + 1, and each sequence
of length N consisting of m ones and N − m zeros, there
is a sequence of N integers whose sum is 0 mod N + 1
(found simply by subtracting the second sequence from the
first). Thus with no knowledge of the initial ballot set, all
we can conclude from a final ballot set whose numbers
sum to m mod N + 1, is that some subset consisting of m

voters voted “yes.” Therefore, the voting information, that
is, who voted how, is protected from the curiosity of the
authorities.

Now let us add the eavesdropper. Eve wants to know how
voter number 1 (Vincent.1) voted, and she has an excellent
method of doing so. She intercepts the ballot going to
Vincent.1, records the number on it, and sends the ballot on
to him. Vincent 1 votes, and Eve again intercepts the ballot,
notes the result, and sends it on to the second authority. Eve
now knows how Vincent.1 voted, and her intervention has not
been detected.

Next let us consider the quantum scheme. The ballot state
is the N qudit state given by Eq. (3). We shall assume that the
same authority prepares the ballot state and later measures it
to count the votes. As before, a qudit from the ballot state
is sent to each voter, and if they wish to vote “no,” they
do nothing, and if they wish to vote “yes,” they apply the
operator F .

Let us now suppose that Eve wants to determine how
Vincent.1 voted and not be detected. One way of doing this
is the following. Eve intercepts ballot particle 1 on its way
to Vincent.1 and entangles it with an ancilla. In particular,
suppose the ancilla is a qudit initially in the state

|ψ〉E = 1√
D

D−1∑
k=0

|k〉E, (29)
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and the entangling operation is the swap operator Uswap|k〉E ⊗
|j 〉1 = |j 〉E ⊗ |k〉1. After this is done, the ballot plus ancilla
state is

|� ′〉 = 1

D

D−1∑
k=0

D−1∑
j=0

|j 〉E|k〉1|j 〉⊗(N−1). (30)

After the voting, the state becomes

|� ′′〉= 1

D

D−1∑
k=0

D−1∑
j=0

e2πim1k/De2πimj/D|j 〉E|k〉1|j 〉⊗(N−1), (31)

where m1 = 0,1 is the vote of Vincent.1 and m is the sum of
the rest of the votes. Now, Eve again intercepts ballot particle
number 1 on its way to the authority and again applies the
swap operator to particle 1 and the ancilla. The state of the
system is now

|� ′′′〉 = 1

D

(
D−1∑
k=0

e2πim1k/D|k〉E
)

D−1∑
j=0

e2πimj/D|j 〉1|j 〉⊗(N−1).

(32)

Now Eve can measure the ancilla particle to determine m1.
Once she has done so, she applies the appropriate operator to
particle 1, nothing if m1 = 0 and F if m1 = 1, and sends the
particle to the authority. At this point she knows how Vincent.1
voted, and her presence has not been detected.

So far, the quantum scheme seems just as vulnerable as
the classical one. We can defend against the kind of attack
discussed above by adding an additional element. Before the
voting occurs, the voters are divided up into pairs. Who is in
which pair is not public knowledge. This can be accomplished
if the authority and voters share a secure key. This would allow
the authority to tell each voter with whom they are paired in
a secure fashion. The voters in each pair must come together,
perhaps at a polling place, where they can perform a joint
measurement on their ballot particles. If there has been no
tampering, these measurements do not change the state of the
system, and the voting proceeds as usual. If the measurements
detect tampering the procedure is aborted. One could group
the voters into larger sets and perform correspondingly larger
collective measurements. Pairs minimizes the complexity of
the collective measurements, and it means that each voter has
to meet with only one other voter to perform the collective
measurement. It is important that Eve does not know which
voters have been assigned to the pairs. If she did, she could
perform an attack using swap operators on a pair, which is very
similar to the attack discussed above, and learn how the pair
voted. Using this attack, she would, however, not learn how an
individual voted.

Having the some of the voters come together is awkward,
but for the type of check we are discussing it seems to be
necessary. The basic idea is that if Eve wants to determine
how an individual, or set of individuals, voted, she has to
break the symmetry of the ballot state. To detect this, the voters
have to test the symmetry of the ballot state, and this seems
to require a collective measurement. An alternative would be
to use teleportation, and have one member of a pair teleport
the state of the ballot particle to the other member of the
pair, who could then perform the collective measurement and

teleport the particle back if the measurement was successful.
This would be, however, very expensive in terms of the number
of entangled pairs required.

To examine this type or eavesdropping attack in detail,
let us suppose that one of the pairs consists of voters 1
and 2 (Vincent.1 and Vincent.2, respectively). When they
receive their ballot particles, they perform the measurement
corresponding to the projection operator

P12 =
D−1∑
j=0

|j 〉1〈j | ⊗ |j 〉2〈j |. (33)

If they get 1, they proceed to voting, if they get 0, they abort
the procedure.

Now suppose that an eavesdropper, who wants to find
out how Vincent.1 votes, has intercepted the ballot particle
destined for Vincent.1 and entangled it with an ancilla in her
possession, and then sent the ballot state on to Vincent.1. We
assume that the entanglement has been accomplished by means
of a unitary operator UE1(|0〉E ⊗ |j 〉1) = |φj 〉E1. The state of
the N voters plus the ancilla is now

|� ′〉 = 1√
D

D−1∑
j=0

|φj 〉E1 ⊗ |j 〉⊗(N−1). (34)

Eve’s plan is to measure the ancilla after the voting has
occurred to gain information about how Vincent.1 voted.
The probability of not detecting the eavesdropping is just
〈� ′|P12|� ′〉, which can be expressed as

〈� ′|P12|� ′〉 = 1

D

D−1∑
j=0

E1〈φj |(IE ⊗ |j 〉1〈j |)|φj 〉E1, (35)

where IE is the identity on the ancilla space. Eve would like this
quantity to be equal to 1 (i.e., she does not want to be detected).
For that to be true, we must have |φj 〉E1 = |ηj 〉E ⊗ |j 〉1 for
some ancilla states |ηj 〉. If this is the case, the state after the
voting has taken place is

|� ′′〉 = 1√
D

D−1∑
j=0

e2πimj/D|ηj 〉E ⊗ |j 〉⊗N, (36)

if m voters voted “yes.” Tracing out all of the voters except for
Vincent.1 we find that the density matrix for Vincent.1 and the
ancilla state is

ρE1 = 1

D

D−1∑
j=0

|ηj 〉E〈ηj | ⊗ |j 〉1〈j |, (37)

which contains no information about the votes. That means
that even if Eve intercepts ballot particle 1 after the vote and
performs an entangling operation on it and the ancilla, she
will learn nothing about the vote. So, if the eavesdropper is
undetectable, she gains no information about the voting, and
if she gains information about the voting, she can be detected.

Note that even in the general case when |φj 〉E1 is not
a product state, if voters 1 and 2 obtained one when they
measured P12, then it will be after the measurement. This
follows from the fact that (IE ⊗ |j 〉1〈j |)|φj 〉E1 = |μj 〉E ⊗
|j 〉1, where |μj 〉E is an unnormalized ancilla state. Then the
density matrix for the ancilla and particle 1 will look the same
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as in Eq. (37) except that |ηj 〉 will be replaced by |μj 〉E , and
there will be an overall normalization factor. It still does not
contain any information on the voting.

Finally, let us find the probability of Eve being detected in
the scheme that made use of the swap operator. A short calcu-
lation shows that the probability of Eve not being detected is

〈� ′|P12|� ′〉 = 1

D
, (38)

so that the probability of her being detected is 1 − (1/D).
Therefore, it is quite likely that this type of tampering by Eve
will be detected.

V. CONCLUSION

We have shown how quantum mechanics can be of use
in maintaining privacy in tasks such as anonymous voting
and in a special case of multiparty function evaluation. The
voting scheme we described was introduced in Ref. [9]. In this
paper we provide a more detailed discussion of that scheme,
including a more detailed analysis of some aspects of its
security.

The schemes presented here need much more examination
to determine how secure they are under different kinds of
cheating and eavesdropping attacks. It could be the case that
quantum resources themselves will not provide us with any
additional feature that will result in more effective and secure
anonymous voting protocol. However, it is useful to think
about how quantum resources can be applied to such complex
problem. Such efforts can bring results that can potentially
enhance privacy in less complex cryptographic tasks. We hope
that what has been presented here will provide a framework
for thinking about these issues.

ACKNOWLEDGMENTS

We thank G. Azkune and J. Vaccaro for helpful comments.
This work was supported, in part, by the European Union
projects HIP and Q-Essence, by the Slovak Academy of
Sciences via the project CE QUTE, by the APVV via the
project COQI and by the National Science Foundation under
Grant No. PHY-0903660.

APPENDIX : CHEATING BY MULTIPLE VOTES

Let us look at cheating in more detail. We shall assume
that one of the voters, whom we shall call Vincent.X, is
dishonest, and that he wants to vote “no,” and in addition
he wants to replace “yes” votes with “no” votes. He employs
a measurement to determine θy and θn, which is described
by the positive operator-valued measure (POVM) operators
E(θ ) = (D/2π )|�(θ )〉〈�(θ )|, where

|�(θ )〉 = 1√
D

D−1∑
j=0

eijθ |j 〉.

This is a phase estimation measurement, and the probability
distribution for the measurement result θ in the state |ψ〉 is
p(θ ) = 〈ψ |E(θ )|ψ〉. If Vincent.X obtains the values θ ′

y and θ ′
n

from his measurements of the voting particles, the probability
distributions for these results are

py(θ ′
y) = 〈ψ(θy)|E(θ ′

y)|ψ(θy)〉 = 1

2πD

∣∣∣∣∣
D−1∑
j = 0

eij (θ ′
y−θy )

∣∣∣∣∣
2

,

pn(θ ′
n) = 〈ψ(θn)|E(θ ′

n)|ψ(θn)〉 = 1

2πD

∣∣∣∣∣
D−1∑
j = 0

eij (θ ′
n−θn)

∣∣∣∣∣
2

.

Note that these functions are peaked about the values θy and
θn, respectively. To vote “no” Vincent.X prepares a particle in
the state |ψ(θ ′

n)〉 and carries out the usual voting procedure
with it. He then applies the operator

U (θ ′
y,θ

′
n) =

D−1∑
k=0

eik(θ ′
n−θ ′

y )|k〉〈k|,

to his ballot qudit s times, which has the effect of removing s

“yes” votes and adding s “no” votes. He then sends his ballot
and voting qudits back to the authority.

We want to see how Vincent.X’s cheating affects the
measurement the authority makes to determine the number
of “yes” votes. We shall assume, for the sake of simplicity,
that Vincent.X is the last person to vote, and that my of
the previous voters voted “yes”, and mn voted no, where
my + mn = N − 1. The order in which the voters vote makes
no difference to the final result, so this assumption is made for
the sake of notational convenience. In addition, we shall also
assume that the other voters have reported their results from
measuring the observable R, and that the necessary corrections
have been applied. This means that the state of the ballot and
voting particles just before it reaches Vincent.X is

|�1〉 = 1√
D

D−1∑
j=0

eij (myθy+mnθn)|j 〉⊗(2N−1).

As stated in the previous paragraph, Vincent.X now prepares
a qudit in the state |ψ(θ ′

n)〉 and applies the usual voting proce-
dure. Let us suppose that when he measures the observable R

he obtains the value r . After he applies U (θ ′
y,θ

′
n) s times the

state of the ballot and voting particles is

|�2〉 = 1√
D

r−1∑
j=0

ei(D+j−r)θ ′
neisj (θ ′

n−θ ′
y )eij (myθy+mnθn)|j 〉⊗2N

+ 1√
D

D−1∑
j=r

ei(j−r)θ ′
neisj (θ ′

n−θ ′
y )eij (myθy+mnθn)|j 〉⊗2N.

This is the state possessed by the authority (Alice) after the
ballot and voting particles have been returned to her. Alice
now uses Vincent.X’s measurement result r to correct the state.
After having done so, and after removing unimportant phase
factors, the authority has the state

|�3〉 = 1√
D

eiD(θ ′
n−δ)

r−1∑
j=0

eij [s(θ ′
n−θ ′

y )+m+θ ′
n−θn]|j 〉⊗2N

+ 1√
D

D−1∑
j=r

eij [s(θ ′
n−θ ′

y )+m+θ ′
n−θn]|j 〉⊗2N,

where  = θy − θn and we have set m = my .
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Alice now measures the state |�3〉 in the |�q〉 basis [see
Eq. (23)] to determine the number of “yes” votes. If there
were no cheating she would find q = m with certainty. With
cheating, however, this is no longer the case, and this is what
tells Alice that cheating has taken place. The voting is repeated
several times, and if she finds different values of q, then
she knows cheating has taken place. To find the probability
distribution for q assuming that Vincent.X measured r for the
observable R and that m people voted “yes,” which we shall
denote by p(q|r,m), we first note that the probability that the
authority finds the value q given that Vincent.X measured the
values θ ′

y , θ ′
n, and r , and that m people voted “yes” is given by

p(q|r,m,θ ′
y,θ

′
n) = |〈�q |�3〉|2

= 1

D2

∣∣∣∣∣eiD(θ ′
n−δ)

r−1∑
j=0

eij [s(θ ′
n−θ ′

y )+θ ′
n+φ]

+
D−1∑
j=r

eij [s(θ ′
n−θ ′

y )+θ ′
n+φ]

∣∣∣∣∣
2

,

where φ = m − θn − (2πq/D). We then have that

p(q|r,m) =
∫ 2π

0
dθ ′

y

∫ 2π

0
dθ ′

np(q|r,m,θ ′
y,θ

′
n)py(θ ′

y)pn(θ ′
n).

Let us consider a particular case in which D = N + 1,
ly = 1, ln = 0, and s > D/2. This choice of s is one that
Vincent.X might make if he thought that that there will be a
majority of “yes” votes, and he wants to make sure that the
measure being voted upon loses. One then finds that

p(q|r,m)

= 1

D

{
1 + 2(D − s)[(D − 2)(D − s − 1) + (s + 1)]

D3

× cos[2π (m − s − q)/D]

}
.

Note that while this distribution has a maximum at q = m − s,
which is the result Vincent.X desires, it is very broad. That
means that when the authority measures q several times she
will find a spread of values, showing her that someone is
cheating.
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