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We derive exact time evolution of three two-level atoms coupled to a common environment. The environment
is structured and is modeled by a leaky cavity with Lorentzian spectral density. The atoms are initially prepared
in a generalized W state and later on experience pairwise dipole-dipole interactions and couplings to the cavity.
We study tripartite disentangling and entangling dynamics as well as protecting bipartite entanglement with both
atom-atom interactions and atom-cavity couplings taken simultaneously into account.
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I. INTRODUCTION

The advantage of quantum over classical protocols for com-
municating and computing rests in the use of entanglement,
which is the most characteristic trait of quantum mechanics,
the one that enforces its entire departure from classical lines
of thought [1]. Fragility of entanglement, however, makes
its utility very limited. Due to unavoidable interactions with
surrounding dissipative environments, a pure entangled state
inevitably becomes a mixed one with an amount of entangle-
ment lower than that in the initial state. If at a given time the
entanglement sustained is large enough, it can be distilled [2],
otherwise it seems of little use for practical purposes. That
fact encourages theoretical analysis of entanglement dynamics
in various more or less realistic scenarios. There have been
many papers on dynamics of bipartite entanglements. For
multipartite entanglements the number of papers is fewer
because of complexity in mathematical formulation for the
whole system in general and lack of good entanglement
measures for an interested subsystem in particular. Dynamics
of three qubits in separated environments (see, e.g., [3–5])
has been investigated. Separated environments practically
correspond to protocols which are performed by remote
parties. Another realistic scenario arises when several qubits
are stored in a quantum register or memory in which case one
and the same environment influences all the qubits. Dynamics
of three qubits in a common environment has also been studied
(see e.g., [6–13]). Common environments may differ one from
another by their nature: some of studied cases are, for example,
fermionic symmetry-broken environment [6], quantum critical
environment [7], dephasing environment [9], multimode elec-
tromagnetic field [8,11], quantum spin environment [10,13],
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and so on. The regime of qubit-environment coupling is
usually treated as Markovian [8,12] (valid only for weak
couplings, memoryless environments), but non-Markovian
regime is also dealt with [11]. Most papers considered equal
qubit-qubit interactions and regarded the qubits as an entire
entity which is collectively coupled to the environment (i.e.,
each qubit experiences the environment in the same way
or, in other words, the environment does not distinguish
the qubits) [6–8,10,12,13]. As for entanglement measures
negativities [14] are often resorted to, but the so-called lower
bound of concurrence (LBC) [15] could serve as a reasonable
approximation as well [4,5,11].

In this paper, since atoms have been regarded as a very
good candidate for the content of a quantum register or
memory [16], we shall concretize three qubits in terms of
three two-level atoms which are immersed within a common
structured environment modeled by a leaky multimode cavity
with Lorentzian spectral density. As each atom possesses an
electric dipole moment there are direct pairwise dipole-dipole
interactions among them, which we shall take into account
together with the atom-cavity coupling. At variance with
previous investigations, here we regard the atoms as entities
which are individually coupled to the cavity with possibly
different strengths. After this Introduction, in Sec. II we
formulate our problem and solve it for time evolution. Our
solution is exact since it is derived rigorously without Born
and Markovian approximations. In Secs. III and IV, based on
the analytical result obtained in Sec. II, we study disentangling
and entangling dynamics of the three atoms, employing LBC
as an entanglement measure. Next, in Sec. V, we propose
a method to protect bipartite entanglement by making use of
tripartite dynamics. Finally, we draw the conclusion in Sec. VI.

II. THE MODEL

Consider three two-level atoms coupled to the same
structured environment which we model as a leaky multimode
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cavity. As each atom is an electric dipole they interact with
each other via dipole-dipole interactions. The Hamiltonian H

of the total system contains three parts (h̄ = 1)

H = H0 + H1 + H2, (1)

with H0 the free Hamiltonian, H1 describing the atom-
cavity coupling, and H2 responsible for the dipole-dipole
interaction,

H0 =
3∑

n=1

�σ+
n σ−

n +
∑

j

ωja
†
j aj , (2)

H1 =
3∑

n=1

∑
j

αn(gjσ
+
n aj + g∗

j σ
−
n a

†
j ), (3)

H2 = D1(σ+
2 σ−

3 + σ+
3 σ−

2 ) + D2(σ+
3 σ−

1 + σ+
1 σ−

3 )

+D3(σ+
1 σ−

2 + σ+
2 σ−

1 ). (4)

In Eqs. (2)–(4) � and ωj are the atomic transition frequency
and frequency of the cavity mode j photon, whose creation
(annihilation) operator is denoted by â

†
j (âj ); σ̂+

n = |1〉nn〈0| =
(σ̂−

n )+ with |0〉n (|1〉n) the nth atom ground (excited) state, and
the dipole-dipole interaction between different atoms m and
n is described by Dl = [d · d − 3(d · rmn)(d · rmn)/r2

mn]/r3
mn

with d the atom’s electric dipole moment and rmn the separation
between the two atoms. As the coupling of an atom to the cavity
depends on the value of the cavity field at the atom’s position,
we introduce dimensionless real constants αn in Eq. (3) to
individualize the atoms: the actual coupling strength between
an nth atom and an j th mode photon is thus measured by
αn|gj |.

Suppose that initially the cavity is empty and the three
atoms are in the state

|W (0)〉 = a1(0)|100〉123 + a2(0)|010〉123 + a3(0)|001〉123,

3∑
n=1

|an(0)|2 = 1, (5)

which we call here generalized W state since it reduces to
the W state [17] when all the coefficients are equal and to a
three-atom separable state (a product of a two-atom entangled
state and a single-atom state) when two (one) of the coefficients
vanish(es). The total system state |�(0)〉 = |W (0)〉|0〉, where
|0〉 = ⊗j |0j 〉c with |0j 〉c the cavity state containing zero
photons of mode j, evolves at time t > 0 into

|�(t)〉 = e−i�t[a1(t)|100〉123+a2(t)|010〉123+a3(t)|001〉123]|0〉
+

∑
j

bj (t)e−iωj t |000〉123|1j 〉c. (6)

In the above equation |1j 〉c denotes the cavity state containing
one photon of mode j and the time-dependent coefficients
an(t), bj (t) are to be determined from the equation of motion

id|�(t)〉/dt = (H1 + H2)|�(t)〉. Using Eqs. (3), (4), and (6)
yields

i
da1(t)

dt
= α1

∑
j

gj e
−i(ωj −�)t bj (t) + D3a2(t) + D2a3(t),

(7)

i
da2(t)

dt
= α2

∑
j

gj e
−i(ωj −�)t bj (t) + D3a1(t) + D1a3(t),

(8)

i
da3(t)

dt
= α3

∑
j

gj e
−i(ωj −�)t bj (t) + D2a1(t) + D1a2(t),

(9)

i
dbj (t)

dt
= g∗

j e
i(ωj −�)t

3∑
n=1

αnan(t). (10)

Integrating Eq. (10) with the initial condition bj (0) = 0 gives

bj (t) = −i

∫ t

0
dt ′g∗

j e
i(ωj −�)t ′

3∑
n=1

αnan(t ′). (11)

Then, substituting Eq. (11) into Eqs. (7)–(9) we get for a1,2,3(t)

da1(t)

dt
= −α1

∫ t

0
dt ′

∑
j

|gj |2e−i(ωj −�)(t−t ′)

×
3∑

n=1

αnan(t ′) − iD3a2(t) − iD2a3(t), (12)

da2(t)

dt
= −α2

∫ t

0
dt ′

∑
j

|gj |2e−i(ωj −�)(t−t ′)

×
3∑

n=1

αnan(t ′) − iD3a1(t) − iD1a3(t), (13)

da3(t)

dt
= −α3

∫ t

0
dt ′

∑
j

|gj |2e−i(ωj −�)(t−t ′)

×
3∑

n=1

αnan(t ′) − iD2a1(t) − iD1a2(t). (14)

In the limit of large number of cavity modes the sum∑
j |gj |2e−i(ωj −�)(t−t ′) can be replaced by an integral∫
dωJ (ω)e−i(ω−�)(t−t ′) with J (ω) the spectral density specify-

ing the cavity structure. Equations (12)–(14) thus take the form

da1(t)

dt
= −α1

∫ t

0
dt ′

3∑
n=1

αnan(t ′)
∫

dωJ (ω)e−i(ω−�)(t−t ′)

− iD3a2(t) − iD2a3(t), (15)

da2(t)

dt
= −α2

∫ t

0
dt ′

3∑
n=1

αnan(t ′)
∫

dωJ (ω)e−i(ω−�)(t−t ′)

− iD3a1(t) − iD1a3(t), (16)

da3(t)

dt
= −α3

∫ t

0
dt ′

3∑
n=1

αnan(t ′)
∫

dωJ (ω)e−i(ω−�)(t−t ′)

− iD2a1(t) − iD1a2(t). (17)
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In the following we are concerned with a realistic cavity
whose photons can be leaked out through its nonperfect
mirrors. The spectrum of the field in such a cavity displays a
Lorentzian broadening with

J (ω) = R2

π

�

(ω − ωc)2 + �2
, (18)

where ωc is frequency of the cavity-supported mode, � is
half-width at half-height of the field spectrum profile inside the
cavity, and R specifies the atom-cavity coupling. The cavity
correlation time is characterized by Tc = �−1, while the qubit
relaxation time by Tq = (2R

√
α2

1 + α2
2 + α2

3 )−1 [11]. The weak
(strong) coupling regime corresponding to Tc < Tq (Tc > Tq)
is called Markovian (non-Markovian). In the Markovian
(non-Markovian) regime the history is forgotten (memorized).

Taking the Laplace transform of both sides of Eqs. (15)–
(17) with J (ω) given by Eq. (18) we arrive at a set of
equations for {̃an(z); n = 1,2,3}. Here we use the notation
f̃ (z) = L[f (τ )] = ∫ ∞

0 f (τ )e−zτ dτ. Solving that equation set
we obtain for n = 1,2,3

ãn(z) =
∑3

m=1 Anm(z)am(0)∑4
m=0 Bmzm

, (19)

where for l,m,n ∈ {1,2,3} and l 	= m 	= n 	= l

Ann(z) = (
z2 + d2

n

)
(z + 1 + iδ)+G2

4

[(
1 − r2

n

)
z−2idnrlrm

]
,

(20)

Amn(z) = Anm(z) = −(z + 1 + iδ)(dmdn + izdl)

+ iG2

4
[(dmrm + dnrn − dlrl) + irmrnz], (21)

and

B0 = G2

4

[
d2

1 r2
1 + d2

2 r2
2 + d2

3 r2
3 − 2(d1d2r1r2 + d1d3r1r3

+ d2d3r2r3)
] − 2id1d2d3(1 + iδ), (22)

B1 = − iG2

2
(d1r2r3 + d2r3r1 + d3r1r2)

+ (
d2

1 + d2
2 + d2

3

)
(1 + iδ) − 2id1d2d3, (23)

B2 = G2

4
+ d2

1 + d2
2 + d2

3 , B3 = (1 + iδ), B4 = 1. (24)

In the above formulas the following dimensionless quantities
have been introduced for convenience:

dl = Dl

�
, δ = ωc − �

�
, α =

√√√√ 3∑
n=1

α2
n, rn = αn

α
,

G = 2Rα

�
. (25)

Note that
∑3

n=1 r2
n = 1 by definition. The time dependence can

then be obtained by applying the inverse Laplace transform on
Eq. (19), which means

an(τ ) =
∑

j

lim
z→zj

(z − zj )̃an(z)ezj τ , (26)

with τ = �t and zj a pole of ãn(z).
Defining the single-photon collective normalized state of

the cavity field as

|1〉 = eiωct

b(τ )

∑
j

bj (τ )e−iωj t |1j 〉c, (27)

with

b(τ ) =
√√√√1 −

3∑
n=1

|an(τ )|2, (28)

we have explicitly

|�(τ )〉 = e−i�τ [a1(τ )|100〉123 + a2(τ )|010〉123

+ a3(τ )|001〉123]|0〉 + e−iωcτ b(τ )|000〉123|1〉, (29)

where � = �/� and ωc = ωc/�.

III. DISENTANGLING DYNAMICS

Suppose that initially the atoms are prepared in state
|W (0)〉 with all the coefficients an(0) being nonzero, that is,
they possess some amount of tripartite entanglement, which
can be quantified by the three-qubit concurrence C3. For a
general three-qubit pure state |�〉 = ∑ 1

i,j,k=0xijk|ijk〉123 with∑ 1
i,j,k=0|xijk|2 = 1, C3 is defined as [18]

C3(|�〉) =
√

1

3

∑
1
i,j,k,p,q,m=0(|xijkxpqm − xpjkxiqm|2 + |xijkxpqm − xiqkxpjm|2 + |xijkxpqm − xijmxpqk|2). (30)

As the system evolves the interactions H1 and H2 are “switched
on.” If there are no direct interactions between the atoms
(H2 = 0) their entanglement inevitably degrades approaching
a stationary value [11]. On the other side, if there is no
cavity (H1 = 0) the atoms’ entanglement exhibits undamped
oscillation. What is the interplay of both H1 and H2 in the
atoms’ disentangling dynamics? To elucidate this question

we need know how to quantify tripartite entanglement at
time τ > 0 at which the atomic state becomes mixed, that
is, |W (0)〉 ⇒ ρ(τ ) = Trcavity|�(τ )〉〈�(τ )|,

ρ(τ ) = |W (τ )〉123123〈W (τ )| + |b(τ )|2|000〉123123〈000|.
(31)
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Precisely, the concurrence for any mixed three-qubit state  is
defined by the convex roof [19]

C3() = min
{pj ,�j }

∑
j

pjC3(|�j 〉), (32)

where {|�j 〉} includes all the possible pure states into which 

can be decomposed, that is,  = ∑
j pj |�j 〉〈�j | with pj > 0

and
∑

j pj = 1. The minimization procedure in Eq. (32)
is formidable and generally does not guarantee a global
optimization. Therefore, to be able to assess entanglement
analytically, we resort to an approximation in terms of LBC,
C3(), whose expression is given by [15]

C3() =
√√√√1

3

6∑
j=1

{[
C

12|3
j ()

]2 + [
C

23|1
j ()

]2 + [
C

31|2
j ()

]2}
,

(33)

where

C
mn|l
j () = max

{
0,

√
λ

mn|l
j,1 −

∑
q>1

√
λ

mn|l
j,q

}
, (34)

with λ
mn|l
j,q the eigenvalues, in decreasing order, of the matrix

̃ = (Lmn
j ⊗ σ l

y)∗(Lmn
j ⊗ σ l

y), Lmn
j (j = 1,2, . . . ,6) the six

generators of group SO(4) [20] acting on qubits m, n, and σ l
y

the y-Pauli matrix acting on qubit l. Surely, C3() > 0 signifies
that  is entangled and a separable state  always has C3() =
0. Yet, C3() = 0 does not necessarily imply separability of
. The LBC of three-qubit X states was analyzed in Ref. [4]
to demonstrate when it goes to zero. Numerical calculations
in Ref. [5] showed coincidence between the LBC and the
corresponding convex roof (32) for some density matrices with
ranks not greater than 4. For the density matrix of our concern,
ρ(τ ) in Eq. (31), which is a rank 4 one, its LBC can be derived
as [11]

C3(ρ(τ )) =
√√√√8

3

3∑
m,n=1; m<n

|am(τ )an(τ )|2. (35)

Since the time-dependent coefficients an(τ ) were obtained (in
the previous section) without approximations imposed on the
involved parameters, Eq. (35) is valid in both Markovian (Tc <

Tq, or the same, G = Tc/Tq < 1) and non-Markovian (Tc >

Tq, or the same, G = Tc/Tq > 1) regime, without (dm = 0) or
with (dm 	= 0) dipole-dipole interactions.

As is obvious from Eq. (26), the atoms’ dynamics is
governed by the poles {zj } of ãn(z). A transparent distinction
between presence and absence of the dipole-dipole interaction
can be recognized from Eqs. (19)–(24). When there are no
dipole-dipole interactions B0 and B1 [see Eqs. (22) and (23)]
vanish and ãn(z) has three poles, one of which is always
zero and the other two are complex with a negative real part,
thus always rendering existence of stationary solutions [11].
The analysis in the presence of dipole-dipole interactions is
complicated depending on the atoms’ configurations through
d1,2,3 and r1,2,3. For clarity we shall distinguish between three
cases regarding the pairwise dipole-dipole interactions. Case
1 implies equal pairwise interactions: d1 = d2 = d3 = d. In
case 2 two of the three interactions are equal but different from

the third: dm = dn 	= dl. And, case 3 means all the pairwise
dipole-dipole interactions are different: d1 	= d2 	= d3 	= d1.

Let us consider case 1 which corresponds to a configuration
when the atoms sit on the vertices of an equilateral triangle
which can however be positioned anywhere within the cavity.
In Fig. 1 we plot the LBC C3 versus τ for the atoms initially
prepared in the state |W (0)〉 = 1

2 |100〉 + 1
2 |010〉 + 1√

2
|001〉)

which was used as the quantum channel for perfect two-party
teleportation [21]. For the other parameters we take r1 =
1/

√
2, r2 = 1/

√
3, r3 = 1/

√
6, δ = −1 < 0, and G = 0.8

(Markovian regime) or G = 8 (non-Markovian regime). Note
that dipole-dipole interactions induce oscillations for whatever
strength of atom-cavity couplings. This fact explains the
presence of oscillations even in the Markovian regime in
Fig. 1(a) when d > 0 (solid curves), as opposed to the absence
of oscillations when d = 0 (dashed curve). The role played
by the dipole-dipole interaction is simple in Fig. 1: in both
the Markovian and non-Markovian regime it slows down
the entanglement degradation. The stronger the dipole-dipole
interaction the slower the rate of disentangling. However, such
a simple behavior does not always happen. To verify this
we plot in Fig. 2 the evolution of C3(τ ) for the same set of
parameters as in Fig. 1, except δ which is now positive. In
this case the dipole-dipole interaction manifests its role more
complexly than in Fig. 1. As seen from Fig. 2, no matter the
atom-cavity coupling is weak [Fig. 2(a)] or strong [Fig.2(b)],
an initial increase in d (from d = 0 up to a certain value)
speeds up the decay of entanglement. But, a further increase
in d (after a certain value) changes its influence abruptly: it
turns out to slowing down, instead of speeding up, the atoms’
disentangling process.

1 2 3
τ

0.2

0.4

0.6

0.8

1
LBC (b)

d 0

3

6
9

15

2 4 6 8 10
τ

0.2

0.4

0.6

0.8

1
LBC (a)

d 0
0.5 1 1.5

3

FIG. 1. The lower bound of concurrence LBC = C3 as a function
of τ for a1(0) = a2(0) = 1/2, a3(0) = 1/

√
2, r1 = 1/

√
2, r2 = 1/

√
3,

r3 = 1/
√

6, and δ = −1 in (a) the Markovian regime with G = 0.8
or (b) the non-Markovian regime with G = 8. The different values of
d are indicated near each curve.
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The distinct influences of the dipole-dipole interaction on
the disentangling dynamics of the atoms shown in Figs. 1 and

2 can be explained analytically when r1 = r2 = r3 (= 1/
√

3),
in which situation Eq. (19) gets an explicit form

ãn(z) = 3ian(0)[G2 + 4(z + 2id)(z + 1 + iδ)] − i[G2 + 12id(1 + z + iδ)]
∑3

m=1 am(0)

3(d + iz)[G2 + 4(z + 2id)(1 + z + iδ)]
. (36)

The inverse Laplace transform of the r.h.s. of Eq. (36) can be
taken analytically yielding

an(τ ) = eidτ

{
an(0) − 1

3
[1 − Q(τ )]

3∑
m=1

am(0)

}
, (37)

where

Q(τ ) = e−[1+i(δ+4d)]τ/2

[
cosh

(
�τ

2

)
+ 1 + i(δ − 2d)

�

× sinh

(
�τ

2

)]
(38)

with

� =
√

[1 + i(δ − 2d)]2 − G2. (39)

Evidently from Eq. (36), ãn(z) has three poles of the forms

z1 = id, z2,3 = −1

2
[1 + i(δ + 2d) ∓ �]. (40)

Because z1 = id is purely imaginary the evolution of an(τ )
is permanently oscillatory, in sharp contrast to the case of

1 2 3
τ

0.2

0.4

0.6

0.8

1
LBC (b)

d 0

3
5

9

12

20

2 4 6 8 10
τ

0.2

0.4

0.6

0.8

1
LBC (a)

d 0

1.7

0.5
1.3
1

2.5

4

FIG. 2. The lower bound of concurrence LBC = C3 as a function
of τ for a1(0) = a2(0) = 1/2, a3(0) = 1/

√
2, r1 = 1/

√
2, r2 = 1/

√
3,

and r3 = 1/
√

6 in (a) the Markovian regime with G = 0.8 and δ = 2
or (b) the non-Markovian regime with G = 8 and δ = 10. The used
values of d are indicated near each curve.

d = 0 [11] in which a stationary/equilibrium solution exists.
Expressing the poles of ãn(z) as zj = i�j − λj , with �j an
oscillation frequency and λj > 0 a damping rate, we obtain
from Eqs. (40)

�1 = d, �2,3 = − 1
2 [(δ + 2d) ∓ Im(�)] (41)

and

γ1 = 0, γ2,3 = 1
2 [1 ∓ Re(�)]. (42)

The damping rates γ2 and γ3 as a function of δ and d are
displayed for the Markovian regime in Figs. 3(a) and 3(b)
or the non-Markovian regime in Figs. 3(c) and 3(d). Since
γ2 < γ3 the term proportional to ez3τ in an(τ ) damps out
quickly. Hence, the disentangling rate is mainly dictated by
γ2. We observe that the way γ2 depends on d is sensitive to the
sign of δ. For nonpositive detunings δ � 0 the damping rate
γ2 decreases monotonously with increasing d and becomes
negligible when d gets sufficiently large. Interestingly, for
positive detunings δ > 0 such a simple γ2-d dependence no
longer holds. Now in the course of increasing d the damping
rate γ2 is first increasing too, but after reaching a maximum
it will be decreasing down to zero, as can be clearly seen
from Figs. 3(a) and 3(c). In the situation of unequal rn the
purely imaginary pole at id remains, but one more complex
pole appears, which does not change the qualitative picture
mentioned above. Numerical simulations for the situation of
unequal rn show dynamical behaviors similar to that with
equal rn, as is visible from Fig. 1 (for δ < 0) and Fig. 2 (for
δ > 0). It is worth noticing that the sign of detuning does
not play a role in the absence of dipole-dipole interactions
(d = 0): just |δ| is important as discovered in Ref. [11] as
well as seen from the plane d = 0 of Fig. 3 here. Generally,
there is a competition between the dipole-dipole interaction
(in terms of d) and atom-cavity coupling (in terms of G).
When δ � 0 the disentangling rate decreases with d for a fixed
value of G, but increases with G for a fixed value of d [see
Fig. 4(a)]. That is to say, the dipole-dipole interaction tends
to protect entanglement, while the atom-cavity coupling tends
to spoil it. However, when δ > 0 the role of the atom-cavity
coupling remains the same as in the case of δ � 0, but that of
the dipole-dipole interaction does not. More concretely, for a
fixed value of G there exists a critical value dc such that the
disentangling occurs faster (slower) with increasing d when
d < dc (d > dc) [see Fig. 4(b)]. Figure 5 is a 3D view of
the LBC with respect to both δ and d at a fixed moment of
time in the Markovian [see Fig. 5(a)] or non-Markovian [see
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FIG. 3. (Color online) Dependence of the decay rates γ2,3

[Eq. (42)] on δ and d for (a) and (b) G = 0.8 (Markovian regime) or
(c) and (d) G = 8 (non-Markovian regime).

Fig. 5(b)] regime. The valley in Fig. 5 is in correspondence
with the peak region in Figs. 3(a) and 3(c). The analytic
expression of an(τ ) in Eq. (37) also indicates that, under the
most symmetric configuration (MSC) with d1 = d2 = d3 and
r1 = r2 = r3, the LBC of the so-called “zero-sum amplitude
states” [22], that is, those with

∑3
n=1 an(0) = 0, is preserved

over times independent of other parameters. This informa-
tion is helpful in engineering decoherence-free entangled
states.

In case 2 (dm = dn 	= dl = d), ãn(z) has four poles. If
the rn are not the same all the poles are complex with
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FIG. 4. (Color online) Dependence of the decay rate γ2 [Eq. (42)]
on G and d for (a) δ = −4 or (b) δ = 4.
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FIG. 5. (Color online) A 3D view of the lower bound of
concurrence LBC with respect to δ and d at a fixed moment of time
τ = 2 for r1 = r2 = r3 = 1/

√
3 and (a) G = 0.8 (Markovian regime)

or (b) G = 8 (non-Markovian regime).

a negative real part, but if r1 = r2 = r3 one of the poles
is at id, that is, purely imaginary. In case 3 (d1 	= d2 	=
d3 	= d1), the four poles of ãn(z) are always complex with
a negative real part, regardless of rn. As can be inferred
from above, existence of a purely imaginary pole depends
primarily on the relation between dn, but the relation be-
tween rn also plays a role. Namely, the equality of all the
pairwise dipole-dipole interactions (i.e., case 1) guarantees
its existence for whatever rn. But when only two among
d1, d2, and d3 are equal (i.e., case 2) it requires full
symmetry of the atom-cavity couplings: r1 = r2 = r3. Finally,
no purely imaginary poles exist for full asymmetry of the
dipole-dipole interactions: d1 	= d2 	= d3 	= d1 (i.e., case 3),
independent of rn. Nonexistence of a purely imaginary pole
means that all the coefficients an(τ ) will vanish independently
of their initial values. As a consequence, all the atoms’
entanglement will disappear in the long-time limit since the
eventual state of the atoms will be |000〉123. On the con-
trary, when there exists a purely imaginary pole, oscillations
of the coefficients an(τ ) persist forever as am(τ → ∞) =
eidτ limz→id (z − id )̃am(z). However, the LBC, which depends
on absolute values of an(τ ), will approach a “stationary” value
determined by Eq. (35) with |am(τ → ∞)| = | limz→id (z −
id )̃am(z)|.

At this moment one may ask a question: “whether can
one establish an analytic expression for the critical value dc

of the dipole-dipole interaction for the case of δ > 0 ?” It
turns out that it is possible in case 1 in which the damping
rates were derived analytically in terms of Eqs. (42). The
value of dc is determined from the condition ∂γ2

∂d
|d=dc

= 0,

which, due to Eqs. (42), is equivalent to ∂Re�
∂d

|d=dc
= 0.
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From Eq. (39),

Re� = [4d̃2 + (1 − G2 − d̃2)2]1/4

× cos

[
1

2
arctan

(
2d̃

1 − G2 − d̃2

)]
, (43)

where d̃ = δ − 2d, so

∂Re�

∂d̃
= 1

[4d̃2 + (1 − G2 − d̃2)2]3/4
{d̃(1 + G2 + d̃2)

× cos

[
1

2
arctan

(
2d̃

1 − G2 − d̃2

)]
− (1 − G2 + d̃2)

× sin

[
1

2
arctan

(
2d̃

1 − G2 − d̃2

)]}
. (44)

The solution d̃c satisfying ∂Re�
∂d̃

|d̃=d̃c
= 0 is simply d̃c = 0,

independent of G, that is,

dc = δ

2
, (45)

which is relevant (irrelevant) for δ > 0 (δ � 0) in agreement
with Figs. 2(a), 2(b), and 4(b).

Having understood the roles played by different atom-atom
interactions as well as by different atom-cavity couplings, in
the next sections, unless otherwise specified, we shall mainly
deal with the case of MSC, to fully exploit the analytical result.

IV. ENTANGLING DYNAMICS

The characteristic feature of a common environment
contrasts very well with that of separated environments. In
separated (dissipative) environments any entanglement will
inevitably be lost, either asymptotically or suddenly (see,
e.g., [23]), and separable subsystems remain unentangled all
the times because entanglement cannot be created locally.
Things change dramatically, however, if the subsystems are
coupled to one and the same common environment. When
environment is common, depending on the case as discussed
in the previous section, an initially stored entanglement may
approach a finite amount for time tending to infinity and
separable noninteracting qubits may become entangled during
the course of evolution [11]. In this section, we shall take
direct interactions between the qubits (here dipole-dipole
interactions between two-level atoms) into account in studying
the atoms’ entangling dynamics.

Suppose that at time t = 0 the atoms are in a product
state |100〉. For a later time t > 0 the state becomes mixed
of the form (31) whose LBC C3(τ ) is evaluated in terms of the
coefficients an(τ ) through Eq. (35). For MSC an(τ ) have been
derived analytically in Eq. (37) and we can simply use it with
a1(0) = 1 and a2(0) = a3(0) = 0. So

a1(τ ) = 1
3eidτ [Q(τ ) + 2]

and

a2(τ ) = a3(τ ) = 1
3eidτ [Q(τ ) − 1], (46)

with Q(τ ) given by Eq. (38). As predicted theoretically for the
situation with equal rn and confirmed graphically in Figs. 6(a)
and 6(b) also for the situation with unequal rn, when time goes
to infinity the LBC C3(τ → ∞) tends to a fixed value equal

3 6 9
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τ

0.5
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0.5
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LBC (c)
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FIG. 6. Left: Evolution of the lower bound of concurrence
LBC for a1(0) = 1, a2(0) = a3(0) = 0, r1 = 1/

√
2, r2 = 1/

√
3, r3 =

1/
√

6, and δ = 0. In (a) G = 0.8 (Markovian regime) and d = 0,1
(dashed line, solid line). In (b) G = 8 (non-Markovian regime) and
d = 0,1 (dashed line, solid line). Right: The evolution during a short
initial period of time in dependence on d for (c) G = 0.8 (Markovian
regime) or (d) G = 8 (non-Markovian regime). The values of d are
indicated near the curves.

to (2/3)3/2 ≈ 0.5443 for whatever values of the atom-cavity
coupling G, the atom-atom interaction d, and the detuning
δ. However, in the course of evolution the amount of created
entanglement at certain moments can be much larger in the
presence of the dipole-dipole interaction than in the absence of
it, especially in the Markovian regime [see Fig. 6(a)]. Besides
the long-term behavior, of interest is also the “immediate”
rate of entangling process in dependence on the dipole-dipole
interaction d. From Eqs. (37) and (35) it derives the short-term
behavior of C3(τ ) as

C3(τ � 1) = G2

6
√

3
τ 2 + O(τ 3) (47)

in the absence of the dipole-dipole interaction and

C3(τ � 1) = 4d√
3
τ + O(τ 2) (48)

in the presence of the dipole-dipole interaction. These two
expressions reveal that the dipole-dipole interaction greatly
favors entanglement creation right after the system starts
evolving since in leading order C3(τ � 1) ∝ τ 2 for d = 0,

but C3(τ � 1) ∝ τ for d > 0. Also, as indicated by Eq. (48),
the stronger the atom-atom interaction the larger the amount
of immediately created entanglement. Although the scalings
(47) and (48) are rigorous only for MSC, they do reflect the
tendency also for the situation when r1 	= r2 	= r3 	= r1, as
illustrated in Figs. 6(c) and 6(d). Interestingly to observe from
Figs. 6(c) and 6(d) that a huge amount of entanglement can
be obtained after a very short time when d is large enough,
while it is negligible when d = 0. For instance, the value of
d = 10 yields C3(τ = 0.07) > 0.9 > C3(τ → ∞), while that
of d = 0 just gives C3(τ = 0.07) � 10−4 (10−2) < C3(τ →
∞) for G = 0.8 (G = 8). Nevertheless, the amount of created
entanglement depends on the actual moment of evolution.
Generally, at a given moment a greater value of d may generate
a higher, an equal or a lower amount of entanglement as
compared with that generated by a smaller value of d. This
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is demonstrated by 3D graphics in Fig. 7 which represents
dependence of the LBC on both the dipole-dipole interaction
and time.

V. PROTECTING ENTANGLEMENT

Robustness of an entangled state can be assessed by how
long it takes to disentangle. Protecting entanglement, which
aims at prolonging the disentanglement period, is significant
to boost the usage of entanglement as a resource for quantum
information processing and quantum computing. There have
been various methods to do that, for example, by means of
quantum error correction codes [24], by using dynamical
decoupling pulse sequences [25] or external driving fields [26],
and so on. In the context of three qubits in a common cavity
several ways to control tripartite entanglement have also been
suggested in Ref. [11]. Our purpose in this section is to
make use of the evolution of three qubits to protect bipartite
entanglement.

First, let us consider a cavity containing only two two-level
atoms (atom 1 and atom 2) being at τ = 0 in the entangled
state |ψ (2)(0)〉12 = a1(0)|10〉12 + a2(0)|01〉12, with |a1(0)|2 +
|a2(0)|2 = 1. For τ > 0 it becomes mixed and its entanglement
can be measured by the bipartite concurrence [27] which in
this case is given by

C2(τ ) = 2|a1(τ )a2(τ )|. (49)

The time dependence of the coefficients a1,2(τ ) was derived in
Ref. [28]. In the long-time limit

a1(τ → ∞) = 1
2eid [a1(0) − a2(0)] (50)

and

a2(τ → ∞) = 1
2eid [a2(0) − a1(0)]. (51)

This results in the asymptotic concurrence

C(2)
2 (τ → ∞) = 1

2 |a1(0) − a2(0)|2, (52)

where the superindex “(2)′′ in the l.h.s. of Eq. (52) distinguishes
the two-atom case from the three-atom case (see below) in
which it is “(3)′′.

Next, we consider a scenario in which at the beginning
one more atom (atom 3) is added to but not entangled with
atoms 1 and 2. For example, the initial three-atom state can be
of the form (5) with a3(0) = 0, that is, the three-atom ini-
tial state is |ψ (3)(0)〉123 = |ψ (2)(0)〉12|0〉3 = a1(0)|100〉123 +
a2(0)|010〉123. Now we let the three atoms evolve together
but we are interested only in the entanglement of atoms 1 and
2. That is to say, we need trace out both the cavity modes
and the atom 3 to have the reduced density matrix of the two
interested atoms. Their concurrence is calculated by the same
formula (49), but in this (three-atom) case the time-dependent
coefficients a1,2,3(τ ) are determined by our Eq. (37), according
to which the long-time limit solutions are

a1(τ → ∞) = 1
3eid [2a1(0) − a2(0)], (53)

a2(τ → ∞) = 1
3eid [2a2(0) − a1(0)], (54)

and

a3(τ → ∞) = − 1
3eid [a1(0) + a2(0)], (55)

which yield

C(3)
2 (τ → ∞) = 2

9 |[2a1(0) − a2(0)][2a2(0) − a1(0)]|. (56)

The expressions (52) and (56) for the concurrence clearly
reveal the “decoherence-free” phenomenon pointed out in
Refs. [28,29] for the two-qubit case and here (see Sec. III
above) for the three-qubit case that entanglement of the Bell
state |�−〉 = (|10〉 − |01〉)12/

√
2 is invariant over time:

C(2,3)
2 (τ = 0) = C(2,3)

2 (τ → ∞) = 1. (57)

Moreover, as is somewhat surprised, for another Bell state
|�+〉 = (|10〉 + |01〉)12/

√
2 we get from Eqs. (52) and (56)

C(2)
2 (τ = 0) = C(3)

2 (τ = 0) = 1, (58)

but

C(3)
2 (τ → ∞) = 1

9 > C(2)
2 (τ → ∞) = 0. (59)

This means that while the state |�+〉12 will lose all its
entanglement if atoms 1 and 2 evolve alone, it will retain
a finite amount of entanglement if the two atoms evolve
together with a third one (atom 3) which was initially in the
ground state |0〉3. The asymptotic values C

(2,3)
2 (τ → ∞) of the

bipartite concurrence do not depend on concrete values of d,

G, and δ. The whole time evolution, however, does, as plotted
in Fig. 8. In the Markovian regime, C

(3)
2 (τ ) exceeds C

(2)
2 (τ )

for all τ > 0 when there are no dipole-dipole interactions
[see Fig. 8(a)]. In the presence of such interactions C

(3)
2 (τ )

displays pronounced large-amplitude oscillations which last
long before reaching the asymptotic value, whereas C

(2)
2 (τ )

quickly dies [see Fig. 8(c)]. In the non-Markovian regime, due
to the memory effect, both C

(2)
2 (τ ) and C

(3)
2 (τ ) oscillate no

matter whether the dipole-dipole interaction is present or not.
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However, the oscillation of C
(2)
2 (τ ) is quickly perished, while

that of C
(3)
2 (τ ) will reach the “stationary” value after a transient

period [see Figs. 8(b) and 8(d)]. A similar idea for protecting
bipartite entanglement was touched upon in a recent paper [12]
which concerns another physical context and is applicable
only to the Markovian regime since the dynamics was de-
rived there as approximate solutions of Lindblad-type master
equations, but not as exact solutions like in the present paper
which is applicable to both Markovian and non-Markovian
regime.

VI. CONCLUSION

In conclusion, we have extended the model in Ref. [11] by
including direct dipole-dipole interactions between three two-
level atoms inside a common structured cavity with Lorentzian
spectral density. Unlike in other works [6–8,10,12,13], here we
treat the atoms at an individual level. Each atom experiences
the same cavity but with its own coupling constant measured
by the dimensionless parameter rn. Different pairs of atoms
may also have different strengths of pairwise dipole-dipole
interactions measured by the dimensionless parameter dn. We

have exactly solved the equations of motion (7)–(10) for the
system wave function (6) and found out that entanglement
dynamics of the atoms is sensitive to the symmetry between
dn as well as between rn. If the dn are all different, then the
atoms will eventually relax to the state |000〉, independent
of rn. When two among the three dn are equal, relaxation
to |000〉 happens also if the rn are not identical, but does
not if r1 = r2 = r3. In the latter situation the coefficients
an(t) in Eq. (6) contain a undamped oscillatory component,
rendering a finite amount of entanglement (in terms of LBC
[15]) in the long-time limit because the LBC is determined
by |am(t)||an(t)| as in Eq. (35). If the dn are all equal,
that is, d1 = d2 = d3 = d, then the LBC always tends to
a finite value for whatever the values of rn. However, as
opposed to the case without atom-atom interactions [11], the
entanglement dynamics turns out to depend on the sign of δ, the
detuning between the atom’s and the cavity-supported mode’s
frequencies [see Eq. (25)]. For δ � 0 the average disentangling
rate decreases with increasing d, but for δ > 0 it first increases
and then, after reaching a maximum, decreases with increasing
d. In the case of MSC (d1 = d2 = d3 and r1 = r2 = r3)
explicit expressions for the time-dependent coefficients an(τ )
have been derived in Eq. (37), allowing us to explore the
entangling dynamics analytically. If the atoms are at τ = 0
in either of the states |100〉, |010〉, or |001〉, then as τ → ∞
their LBC tends to a fixed value equal to (2/3)3/2 and for
τ � 1 it scales with τ like LBC ∝ dτ + G2τ 2 + O(τ 3),
implying an immediate enhancement of entanglement creation
thanks to the dipole-dipole interaction. Finally, we have also
proposed a method to protect entanglement between two atoms
by exploiting evolution of three atoms. Namely, we have
demonstrated that, by adding a third atom in the state |0〉3

to the two-atom Bell state |�+〉12 = (|10〉 + |01〉)12/
√

2 and
letting all the three evolve together, the entanglement (in terms
of concurrence [27]) between atoms 1 and 2 is sustained even
in the long-time limit, while it is lost completely if the two
atoms evolve alone without the third.
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