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We introduce random-matrix theory to study the tomographic efficiency of a wide class of measurements
constructed out of weighted 2-designs, including symmetric informationally complete (SIC) probability operator
measurements (POMs). In particular, we derive analytic formulas for the mean Hilbert-Schmidt distance and
the mean trace distance between the estimator and the true state, which clearly show the difference between the
scaling behaviors of the two error measures with the dimension of the Hilbert space. We then prove that the
product SIC POMs, the multipartite analog of the SIC POMs, are optimal among all product measurements in
the same sense as the SIC POMs are optimal among all joint measurements. We further show that, for bipartite
systems, there is only a marginal efficiency advantage of the joint SIC POMs over the product SIC POMs. In
marked contrast, for multipartite systems, the efficiency advantage of the joint SIC POMs increases exponentially
with the number of parties.
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I. INTRODUCTION

Quantum state tomography is a procedure for inferring the
state of a quantum system from generalized measurements. It
is a primitive of quantum computation, quantum communica-
tion, and quantum cryptography because all these tasks rely
heavily on our ability to determine the state of a quantum
system at various stages. One of the main challenges in
quantum state tomography is to reconstruct generic unknown
quantum states as efficiently as possible and to determine
the resources necessary to achieve a given accuracy, which
can be quantified by various figures of merit, such as the
trace distance, the Hilbert-Schmidt (HS) distance, or the
fidelity [1,2].

A generalized measurement in quantum mechanics is
known as a probability operator measurement (POM). A
measurement is informationally complete (IC) if any state is
determined completely by the measurement statistics [3–5].
In a d-dimensional Hilbert space, an IC measurement consists
of at least d2 outcomes, whereas a minimal IC measurement
consists of no more than d2 outcomes. A particularly appealing
choice of IC measurements are those constructed out of
weighted 2-designs, called tight IC measurements according
to Scott [6,7]. Under linear quantum state tomography, they
not only feature a simple state reconstruction formula but also
minimize the mean-square error (MSE), the mean-square HS
distance between the estimator and the true state [6]. The
construction of tight IC measurements has also been discussed
in detail in Ref. [7].

A symmetric informationally complete (SIC) POM [8–11]
is a very special tight IC measurement composed of d2

subnormalized projectors onto pure states with equal pairwise
fidelity of 1/(d + 1). They may be considered as fiducial
measurements for state tomography because of their high
symmetry and high tomographic efficiency [6,9–12]. It is
widely believed that SIC POMs exist in any Hilbert space
of finite dimension since Zauner posed the conjecture [8],
although no rigorous proof is known. Analytical solutions of
SIC POMs are known for d � 16 and d = 19,24,28,31,35,48

(see Refs. [8–11,13] and the references therein); numerical
solutions with high precision have also been found up to
d = 67 [9,11,14]. In addition to their significance in quantum
state tomography, SIC POMs have attracted much attention
due to their connections with mutually unbiased bases (MUB)
[15–19], equiangular lines [20], Lie algebras [21], and foun-
dational studies [22].

The trace distance is one of the most important distance
measures and distinguishability measures in quantum me-
chanics and is widely used in quantum state tomography,
quantum cryptography, and entanglement theory [1,23–26],
as well as other contexts. In addition, it is closely related to
other important figures of merit, such as the fidelity and the
Shannon distinguishability [23,26]. However, little is known
about the tomographic resources required to achieve a given
accuracy as measured by the trace distance since its definition
involves taking the square root of a positive operator. Even for
the qubit SIC POM [12,27,28], no analytic formula is known
concerning the mean trace distance between the estimator and
the true state. One motivation of the present study is to solve
this long-standing open problem.

In the case of a bipartite or multipartite system, it is
technologically much more challenging to perform full joint
measurements such as a SIC POM on the whole system.
Moreover, in some important realistic scenarios, such as
tomographic quantum key distribution [29–31], all parties
are space separated from each other, and it is impractical to
perform full joint measurements. Nevertheless, each party
can perform a local SIC POM and reconstruct the global
state after gathering all the data obtained. Such a POM will
henceforth be referred to as a product SIC POM; in contrast,
the SIC POM of the whole system will be referred to as a joint
SIC POM. The product SIC POM is particularly appealing in
tomographic quantum key distribution since it minimizes the
redundant information and classical communication required
to exchange measurement data among different parties [31].
However, even less is known concerning the tomographic
efficiency of the product SIC POM except for numerical
studies in the two-qubit setting [28,32].
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In this paper, we aim at characterizing the tomographic
efficiency of tight IC measurements in terms of the mean trace
distance and the mean HS distance, with special emphasis
on the minimal tight IC measurements, SIC POMs. We also
determine the efficiency gap between product measurements
and joint measurements in the bipartite and multipartite
settings.

First, we introduce random-matrix theory [33] to study
the tomographic efficiency of tight IC measurements and
to derive analytical formulas for the mean trace distance
and the mean HS distance. We illustrate the general result
with SIC POMs and show the different scaling behaviors
of the two error measures with the dimension of the Hilbert
space. As a by-product, we also discovered a special class of
tight IC measurements that feature exceptionally symmetric
outcome statistics and low fluctuation over repeated exper-
iments. In the case of a qubit, we compare the similarities
and differences between SIC POM and MUB as well as
other measurements constructed out of platonic solids. We
also discuss in detail the dependence of the reconstruction
error on the Bloch vector of the unknown true state and
make a connection with the experimental data given by
Ling et al. [27].

Second, in the bipartite and multipartite settings, we
show that the product SIC POMs are optimal among all
product measurements in the same sense as the joint SIC
POMs are optimal among all joint measurements. We further
show that for bipartite systems, there is only a marginal
efficiency advantage of the joint SIC POMs over the product
SIC POMs. Hence, it is not worth the trouble to perform
the joint measurements. However, for multipartite systems,
the efficiency advantage of the joint SIC POMs increases
exponentially with the number of parties.

To provide a simple picture of the tomographic efficiency
of SIC POMs and product SIC POMs, we restrict our attention
to the scenario where the number of copies of the true states
available is large enough to yield a reasonably good estimator,
and we focus on the standard state reconstruction scheme,
also known as linear state tomography [1,6]. The analysis
of the efficiencies of other reconstruction schemes, such as
the maximum-likelihood method [1,32,34], is much more
involved. Hopefully, our analysis can serve as a starting point,
and in principle, it can be generalized to deal with those more
complicated situations. Moreover, for minimal tomography
on a large sample, except when the true state is very close
to the boundary of the state space, the estimator given by the
standard reconstruction scheme is identical to that given by
the maximum-likelihood method with a very high probability
since the estimator given by the linear state tomography
maximizes the likelihood functional whenever it is positive
semidefinite (see Chap. 3 in Ref. [1], for example). Hence, the
efficiencies of the two alternative schemes are quite close to
each other in this scenario.

The rest of this paper is organized as follows. In Sec. II,
we review the basic framework for linear state tomography
and recall the concepts of weighted t-designs, SIC POMs,
and tight IC measurements. In Sec. III, we introduce random-
matrix theory to study the tomographic efficiency of tight
IC measurements, in particular the SIC POMs. We derive
analytical formulas for the mean trace distance and the mean

HS distance and illustrate the difference in their scaling
behaviors with the dimension of the Hilbert space. In Sec. IV,
we first prove the optimality of the product SIC POMs among
product measurements and then compare the tomographic
efficiencies of the product SIC POMs and the joint SIC POMs.
We conclude with a summary.

II. SETTING THE STAGE

A. Linear state tomography

A generalized measurement is composed of a set of
outcomes represented mathematically by positive operators
�j that sum up to the identity operator 1. Given an unknown
true state ρ, the probability of obtaining the outcome �j is
given by the Born rule: pj = tr(�jρ). A measurement is IC
if we can reconstruct any state according to the statistics of
measurement results, that is, the set of probabilities pj . If
we take both the state ρ and the outcome �j as vectors
in the space of Hermitian operators, then the probability
can be expressed as an inner product 〈〈�j |ρ〉〉 ≡ tr(�jρ),
where we have borrowed the double ket (bra) notation from
Refs. [35,36]. Furthermore, superoperators such as the out
product |�j 〉〉〈〈�j | act on this space just as operators act on
the ordinary Hilbert space (the arithmetics of superoperators
can be found in Refs. [37,38]). With this background, one
can show that a measurement is IC if and only if the frame
superoperator

F =
∑

j

|�j 〉〉〈〈�j |
tr(�j )

(1)

is invertible [6,36,39,40]. The frame superoperator F can be
written as [6]

F = I
d

+ F0, (2)

where I = |1〉〉〈〈1| and

F0 =
∑

j

|�j − tr(�j )/d〉〉〈〈�j − tr(�j )/d|
tr(�j )

, (3)

which is supported on the space of traceless Hermitian
operators. Obviously, F is invertible if and only if F0 is
invertible in this space. In the rest of this paper, F0 will
also be referred to as a frame superoperator when there is no
confusion.

When F is invertible, there exists a set of reconstruction
operators �j satisfying

∑
j |�j 〉〉〈〈�j | = I, where I is the

identity superoperator. Given a set of reconstruction operators,
any state can be reconstructed from the set of probabilities
pj : ρ = ∑

j pj�j . In a realistic scenario, given N copies
of the unknown true state, what we really get in an ex-
periment are frequencies fj rather than probabilities pj .
The estimator based on these frequencies ρ̂ = ∑

j fj�j is
thus different from the true state. Nevertheless, the deviation
�ρ = ρ̂ − ρ vanishes in the large-N limit if the measurement
is IC. In general, these frequencies obey a multinomial
distribution of the MSE matrix (also called the covariance
matrix) �jk = (

pjδjk − pjpk

)
/N . The MSE matrix of the
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estimator ρ̂ can be derived according to the principle of error
propagation,

C(ρ) =
∑
j,k

|�j 〉〉�jk〈〈�k|

= 1

N

(∑
j

|�j 〉〉〈〈�j |ρ〉〉〈〈�j | − |ρ〉〉〈〈ρ|
)

. (4)

The MSE is exactly the trace of the MSE matrix,

EM(ρ) ≡ E
(‖�ρ‖2

HS

) = Tr[C(ρ)]

= 1

N

[∑
j

pj tr(�2
j ) − tr(ρ2)

]
. (5)

In this paper, Tr is used to denote the trace of superoper-
ators, and tr is used for that of ordinary operators. For the
convenience of later discussions, we define NEM(ρ) as the
scaled MSE, which is independent of N . The scaled mean
trace distance and the scaled mean HS distance can be defined
similarly, except that N is replaced by

√
N .

The set of reconstruction operators is unique for a minimal
IC measurement, such as a SIC POM or a product SIC POM,
but is not unique for a generic IC measurement. Among all the
candidates, the set of canonical reconstruction operators

|�j 〉〉 = F−1|�j 〉〉
tr(�j )

(6)

is the best choice for linear state reconstruction in that it min-
imizes the MSE averaged over unitarily equivalent true states
and is thus widely used in practice [6]. In the rest of this paper,
we will only consider canonical reconstruction operators. It
is then straightforward to verify that |1〉〉 is an eigenvector of
C(ρ) with eigenvalue 0; in other words, C(ρ) is supported on
the space of traceless Hermitian operators as is F0. The other
eigenvalues of C(ρ) determine the variances along the principle
axes and thus the shape of the uncertainty ellipsoid.

If N is sufficiently large, the multinomial distribution
approximates a Gaussian distribution, which is completely
determined by the mean and the MSE matrix. In practice, the
Gaussian approximation is already quite good for moderate
values of N if we are mainly concerned with quantities like
the mean HS distance and the mean trace distance, which
are the most common figures of merit in quantum state
tomography. We thus assume the validity of this approximation
in the following discussion. Under Gaussian approximation,
the variance of the squared error ‖�ρ‖2

HS is given by the
following simple formula:

V(ρ) ≡ Var
(‖�ρ‖2

HS

) = 2Tr[C(ρ)2]. (7)

In practice,
√
V(ρ) quantifies the amount of fluctuation in the

squared error ‖�ρ‖2
HS over repeated experiments, that is, the

typical error in estimating EM(ρ) with just one experiment,
assuming the true state is known. This error can be reduced by
a factor of

√
Ne if we repeat the experiment Ne times and take

the average of ‖�ρ‖2
HS. In addition, once EM(ρ) is fixed, V(ρ)

also quantifies the dispersion of the eigenvalues of C(ρ), that
is, the degree of anisotropy in the distribution of the estimators.

B. Weighted t-designs and SIC POMs

Consider a weighted set of states {|ψj 〉,wj } with 0 < wj �
1 and

∑
j wj = d; the order-t frame potential 	t for a positive

integer t is defined as [6,9]

	t =
∑
j,k

wjwk|〈ψj |ψk〉|2t = tr
(
S2

t

)
,

(8)
St =

∑
j

wj (|ψj 〉〈ψj |)⊗t .

Note that St is supported on the t-partite symmetric subspace,
whose dimension is

(
d+t−1

t

)
, 	t is bounded from below by

d2
(
d+t−1

t

)−1
, and the bound is saturated if and only if St =

d
(
d+t−1

t

)−1
P

sym
t , where P

sym
t is the projector onto the t-partite

symmetric subspace. The weighted set {|ψj 〉,wj } is a (complex
projective) weighted t-design if the lower bound is saturated;
it is a t-design if, in addition, all the weights wj are equal
[6,9]. According to the definition, a weighted t-design is also
a weighted t ′-design for t ′ < t .

It is known that, for any positive integers d and t , there exists
a (weighted) t-design with a finite number of elements [41].
However, the number is bounded from below by [6,42](

d + 	t/2
 − 1

	t/2

)(

d + �t/2� − 1

�t/2�
)

, (9)

which is equal to d,d2,d2(d + 1)/2 for t = 1,2,3, respectively.
Any resolution of the identity consisting of pure states is a
weighted 1-design. SIC POMs [8,9,11] and complete sets of
MUB [15,16,19] are prominent examples of 2-designs. The
complete set of MUB for d = 2 is also a 3-design.

A SIC POM is composed of d2 subnormalized projectors
onto pure states �j = |ψj 〉〈ψj |/d with equal pairwise fidelity
[8–11], that is,

|〈ψj |ψk〉|2 = dδjk + 1

d + 1
, j,k = 1,2, . . . ,d2. (10)

It is straightforward to verify that a SIC POM is a 2-design
from this definition. What is not so obvious is that a weighted
2-design consisting of d2 elements must be a SIC POM [6].

A SIC POM is group covariant if it can be generated from
a single state, the fiducial state, under the action of a group
consisting of unitary operators. Most known SIC POMs are
covariant with respect to the Heisenberg–Weyl group (also
called the generalized Pauli group) [8–11], which is generated
by the phase operator Z and the cyclic shift operator X defined
by their actions on the computational basis,

Z|er〉 = ωr |er〉,
(11)

X|er〉 =
{ |er+1〉 if r = 0,1, . . . ,d − 2,

|e0〉 if r = d − 1,

where ω = e2πi/d . A fiducial ket |ψ〉 of the Heisenberg-Weyl
group satisfies

|〈ψ |Xk1Zk2 |ψ〉| = 1√
d + 1

(12)

for k1,k2 = 0,1, . . . ,d − 1 and (k1,k2) = (0,0). Up to now,
analytical fiducial kets of the Heisenberg-Weyl group
have been known for d � 16 and d = 19,24,28,31,35,48
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[8–11,13], and numerical fiducial kets with high precision have
been found up to d = 67 [9,11,14].

In this paper, all SIC POMs used in the numerical
simulation are generated by the Heisenberg-Weyl group from
the fiducial kets of Ref. [14]. However, all theoretical analysis
is independent of the specific choice of SIC POMs.

C. Tight IC measurements

An IC measurement is tight if the frame superoperator F0

is proportional to I0, that is, F0 = aI0 for a > 0, where I0 is
the identity superoperator in the space of traceless Hermitian
operators. Scott [6] has shown that the coefficient a is upper
bounded by 1/(d + 1) for any tight IC measurement, and the
upper bound is saturated if and only if the tight IC measurement
is rank 1. He also showed that rank-1 tight IC measurements are
optimal for linear state tomography in the sense that the MSE
EM(ρ) averaged over unitarily equivalent density operators is
minimized [6]. Here we shall recap his main idea in a way that
suits our subsequent discussion.

Since the average of ρ over unitarily equivalent states is
the completely mixed state, according to Eqs. (4) and (5),
it is enough to show the optimality of the rank-1 tight IC
measurements when the true state is the completely mixed
state. In that case, the MSE matrix and the MSE can be
expressed more concisely in terms of the frame superoperator
F0,

C
(

1

d

)
= 1

N

(F−1

d
− I

d2

)
= 1

dN
F−1

0 ,

(13)

EM

(
1

d

)
= 1

dN
Tr
(
F−1

0

)
.

The first equation endows the frame superoperator F0 with a
concrete operational meaning as the inverse of the MSE matrix
(up to a multiplicative factor) evaluated at the point ρ = 1/d.
From the definitions of the frame superoperators F and F0 (cf.
Sec. II A), we have

Tr(F0) = Tr(F) − 1 �
∑

j

tr(�j ) − 1 = d − 1, (14)

and the inequality is saturated if and only if the measurement is
rank 1. Recalling that F0 is supported on the space of traceless
Hermitian operators, whose dimension is d2 − 1, the above
equation implies that

Tr
(
F−1

0

)
� (d + 1)(d2 − 1),

(15)

EM

(
1

d

)
� 1

dN
(d + 1)(d2 − 1).

The inequalities are saturated if and only if F0 = I0/(d + 1).
In other words, rank-1 tight IC measurements are optimal in
minimizing the MSE [6].

A rank-1 tight IC measurement with outcomes �j =
|ψj 〉wj 〈ψj | features particularly simple canonical reconstruc-
tion operators

�j = |ψj 〉(d + 1)〈ψj | − 1 (16)

and thus easy state reconstruction. According to Eq. (5), the
MSE is also given by a simple formula,

EM(ρ) = 1

N
[d2 + d − 1 − tr(ρ2)], (17)

which is invariant under unitary transformations of the true
state [6]. In addition, the MSE matrix evaluated at ρ = 1/d is
proportional to I0, which means that the uncertainty ellipsoid
is isotropic in the space of traceless Hermitian operators. This
feature will play a crucial role in our later discussions.

There is a close relation between rank-1 tight IC mea-
surements and weighted 2-designs: A rank-1 measurement
with outcomes �j = |ψj 〉wj 〈ψj | is tight IC if and only if
the weighted set {|ψj 〉,wj } forms a weighted 2-design [6].
For example, SIC POMs and complete sets of MUB are
rank-1 tight IC measurements according to this relation, which
can also be verified directly. Hence, Eqs. (16) and (17) are
applicable to them. More examples of tight IC measurements
can be found in Ref. [7].

III. APPLICATIONS OF RANDOM-MATRIX THEORY TO
QUANTUM STATE TOMOGRAPHY

In this section, we apply random-matrix theory [33] to
studying the tomographic efficiency of tight IC measurements
and illustrate the general result with SIC POMs. In particular,
we derive analytical formulas for the mean trace distance and
the mean HS distance between the estimator and the true state,
thus giving a simple picture of the resources required to achieve
a given accuracy as quantified by either of the two distances.
Our study also clearly shows the different scaling behaviors
of the two error measures with the dimension of the Hilbert
space. The idea of computing the mean trace distance using
random-matrix theory may also be extended to derive other
figures of merit that only depend on the deviation between the
estimator and the true state.

The rest of this section is organized as follows. In Sec. III A,
we present the simple idea of computing the mean trace
distance and the mean HS distance with random-matrix theory.
In Sec. III B, we single out those measurements for which the
method is best justified. In Sec. III C, we show that the method
works very well for typical rank-1 tight IC measurements,
especially SIC POMs. In Sec. III D, we focus on qubit
tomography.

A. A simple idea

Here is the simple idea of computing the mean trace
distance with random-matrix theory: In each experiment, after
measurements on N copies of the unknown true state ρ, we
can construct an estimator ρ̂ for the true state according to
the procedure described in Sec. II A. Once a basis is fixed,
the deviation �ρ = ρ̂ − ρ can be represented by a d × d

matrix, which varies from one experiment to another. After
a large number of repeated experiments, the set of matrices
�ρ can be taken as an ensemble of random matrices obeying a
multidimensional Gaussian distribution, which is completely
determined by the MSE matrix C(ρ),

p(�ρ) ∝ exp
(− 1

2 〈〈�ρ|C(ρ)−1|�ρ〉〉). (18)
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Since C(ρ) is supported on the space of traceless Hermitian
operators, the distribution of �ρ is restricted on the hyperplane
satisfying tr(�ρ) = 0. Suppose f (x) is the level-density
function of this ensemble of matrices with normalization
convention

∫
dxf (x) = d. Then the mean trace distance

between the estimator and the true state is proportional to
the first absolute moment of f (x),

Etr(ρ) ≡ 1

2
E(tr|�ρ|) = 1

2

∫
dx |x|f (x). (19)

If C(ρ) is (approximately) proportional to the identity
superoperator I, then the ensemble of matrices �ρ ′ =√

d2/2EM(ρ)�ρ is (approximately) a standard Gaussian
unitary ensemble. According to random-matrix theory, for
sufficiently large d, the level density fG(x) of the Gaussian
unitary ensemble is given by the famous Wigner semicircle
law [33]:

fG(x) =
{

1
π

(2d − x2)1/2 if −√
2d � x �

√
2d,

0 otherwise.

(20)

We can derive f (x) from fG(x) by a scale transformation and
then compute the mean trace distance between the estimator
and the true state, with the result

Etr(ρ) ≈ 4

3π

√
dEM(ρ). (21)

Furthermore, one can verify that the equation is still quite
accurate if C(ρ) is approximately proportional to I0 instead of
I, especially when d is large. In other words, the feasibility of
our approach is not limited by the fact that C(ρ) is supported
on the space of traceless Hermitian operators.

When C(ρ) is proportional to I0, �ρ follows a (d2 − 1)-
dimensional isotropic Gaussian distribution, and ‖�ρ‖2

HS
obeys χ2 distribution with d2 − 1 degrees of freedom.
The mean HS distance can thus be computed with the
result

EHS(ρ) ≡ E
(√‖�ρ‖2

HS

) =
√

EM(ρ)

d2 − 1

√
2
(

d2

2

)

(

d2−1
2

) . (22)

As a consequence of the law of large numbers, when d is large,
EHS(ρ) is approximately equal to the square root of EM(ρ), and
with a high probability the estimator ρ̂ is distributed within a
thin spherical shell of radius EHS(ρ) that is centered at the true
state.

In general, the accuracy of Eqs. (21) and (22) may depend
on the dimension of the Hilbert space and the degree of
anisotropy of the uncertainty ellipsoid as determined by C(ρ).
However, it turns out that the mean trace distance and the mean
HS distance are not so sensitive to the degree of anisotropy
of the uncertainty ellipsoid. As we shall see shortly, the
two equations are surprisingly accurate for a large family of
measurements, especially tight IC measurements, even if d is
very small (see Fig. 1).

Although we have started our analysis from linear state
tomography, the idea of computing the mean trace distance
with random-matrix theory has a wider applicability. We may
apply the approach to study the tomographic efficiencies
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FIG. 1. (Color online) Theoretical and numerical simulation
results of the scaled mean trace distance

√
NEtr(ρ) and the scaled

mean HS distance
√

NEHS(ρ) in state tomography with SIC POMs for
d from 2 to 45. The SIC POMs are generated by the Heisenberg-Weyl
group from the fiducial states of Ref. [14]. The theoretical values
are computed according to Eqs. (25) and (26), respectively, with
ρ = 1/d . N = 1000 + 20d2 is chosen in the numerical simulation.
The values for the completely mixed state is the average over 1000
repeated experiments, and that for pure states is the average over 1000
randomly generated pure states, each averaged over 100 repeated
experiments. The inset shows three kinds of standard deviations
of the scaled mean trace distances in the numerical simulation:
(a), the standard deviation over repeated experiments for the com-
pletely mixed state (the jumps in the curve are due to the finite
number of experiments); (b), the average of the standard deviation
over repeated experiments for each pure state; (c), the standard
deviation over the randomly generated pure states, including a partial
contribution of the fluctuation over repeated experiments for each
state due to the finite number of experiments.

of other reconstruction schemes, such as the maximum-
likelihood method. In addition, we may also consider other
figures of merit that only depend on the deviation between the
estimator and the true state.

B. Isotropic measurements

In this section we single out those rank-1 IC measurements
for which the uncertainty ellipsoid is the most isotropic,
in which case Eqs. (21) and (22) are best justified. These
measurements turn out to be a special class of tight IC
measurements. In addition to minimizing the MSE, they
also minimize the fluctuation of the reconstruction error over
repeated experiments. Moreover, these IC measurements have
the nice property that the mean reconstruction error is almost
independent of the true state.

According to Sec. II C, C(ρ) for the completely mixed state
is proportional to I0 if and only if the measurement is tight
IC, and the coefficient of proportionality is minimized when
the measurement is rank 1. The symmetry requirement on the
MSE matrix is thus consistent with the efficiency requirement,
recall that rank-1 tight IC measurements are optimal for
linear state tomography. Now consider the MSE matrix C(ρ)
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for a generic true state, assuming that we have a rank-
1 tight IC measurement with outcomes �j = |ψj 〉wj 〈ψj |.
The degree of anisotropy can be quantified by Tr[C(ρ)2] −
{Tr[C(ρ)]}2, where the overline means taking the average
over unitarily equivalent density operators. Since Tr[C(ρ)] is

exactly the MSE, which is the same for all rank-1 tight IC
measurements according to Eq. (17), it suffices to consider
Tr[C(ρ)2]. Note that Tr[C(ρ)2] also quantifies the fluctuation
in ‖�ρ‖2

HS over repeated experiments according to Eq. (7). We
find

N2Tr[C(ρ)2] = d2 + 2d − 2

d
+ [tr(ρ2)]2 + (d + 1)3	3 − 2(2d2 + 3d − 1)

(d − 1)

[
tr(ρ2) − 1

d

]

− 2

[
2(d + 1)

d + 2
tr(ρ3) + d − 1

d + 2
tr(ρ2) − 1

d + 2

]
(23)

� d2 + 2d − 2

d
+ 2

d2 − 2

d + 2

[
tr(ρ2) − 1

d

]
+ [tr(ρ2)]2 − 2

[
2(d + 1)

d + 2
tr(ρ3) + d − 1

d + 2
tr(ρ2) − 1

d + 2

]
, (24)

where 	3 is the order-3 frame potential defined in Eq. (8),
and we have used the inequality 	3 � 6d/(d + 1)(d + 2) in
deriving Eq. (24). The lower bound is saturated if and only
if 	3 = 6d/(d + 1)(d + 2), that is, when the weighted set
{|ψj 〉,wj } forms a weighted 3-design.

An IC measurement derived from a weighted 3-design
will be called an isotropic measurement for reasons that
will become clear shortly (see Sec. III D for some concrete
examples of isotropic measurements in the case of a qubit).
By virtue of the properties of weighted 3-designs, one can show
that the MSE matrix C(ρ) is the same for any IC measurement
derived from a weighted 3-design, including the covariant
measurement composed of all pure states weighted by the Haar
measure. In other words, C(ρ) is invariant under any unitary
transformation of the measurement outcomes: �j → U�jU

†.
As an immediate consequence, the mean reconstruction error
is unitarily invariant as long as the figure of merit is unitarily
invariant, such as the mean trace distance, the mean HS
distance, or the mean fidelity.

Under linear state tomography, in addition to achieving
the minimal MSE EM(ρ), an isotropic measurement also
minimizes the fluctuation of the statistical error over repeated
experiments, or equivalently, the degree of anisotropy in the
distribution of �ρ. One can show that, with an isotropic
measurement, NC(ρ) for a pure true state has only four (three
if d = 2) distinct eigenvalues, (d + 1)/(d + 2),2(d + 1)/(d +
2),2d/(d + 2), and 0 with multiplicities d(d − 2),2(d − 1), 1,
and 1, respectively. The degree of anisotropy is even lower if
the true state has a lower purity since the leading contribution
to C(ρ) [cf. Eq. (4)] is linear in ρ.

In conclusion, Eqs. (21) and (22) are good approximations
for computing the mean trace distance and the mean HS dis-
tance under isotropic measurements. After inserting Eq. (17)
into Eqs. (21) and (22), we get

Etr(ρ) ≈ 4

3π

√
d[d2 + d − 1 − tr(ρ2)]

N
∼ 4

3π

d3/2

√
N

, (25)

EHS(ρ) ≈
√

d2 + d − 1 − tr(ρ2)

N (d2 − 1)

√
2
(

d2

2

)

(

d2−1
2

) ∼ d√
N

. (26)

These two equations clearly show the difference in the scaling
behaviors of the two error measures with the dimension of the
Hilbert space.

An isotropic measurement is, in a sense, the most symmetric
measurement allowed by quantum mechanics. Remarkably,
such a symmetric measurement can be realized with only a
finite number of outcomes, and its tomographic efficiency
can be characterized by simple formulas. However, since
a weighted 3-design contains at least d2(d + 1)/2 elements
[cf. Eq. (9)], an isotropic measurement contains at least
d2(d + 1)/2 outcomes, which are much more than the min-
imum d2 required for an IC measurement. It is thus of
more practical interest to consider generic tight IC measure-
ments, such as SIC POMs, which is the focus of the next
section.

C. Tight IC POMs and SIC POMs

In this section we consider generic rank-1 tight IC mea-
surements [6,7], with special emphasis on the minimal tight
IC measurements, SIC POMs [8–11]. When the weighted set
{|ψj 〉,wj } forms a weighted 2-design but not necessarily a
weighted 3-design, we can use the inequality 	3 � 	2 =
2d/(d + 1) (cf. Sec. II B) to derive an upper bound for
Tr[C(ρ)2] from Eq. (23),

N2Tr[C(ρ)2] � d2 + 2d + 2d(d + 1)

[
tr(ρ2) − 1

d

]
. (27)

In conjunction with Eqs. (7) and (17), this equation provides
two important pieces of information. First, the relative devia-
tion

√
V(ρ)/EM(ρ) is approximately inversely proportional to

d; hence, EHS(ρ) is approximately equal to the square root of
EM(ρ), and Eq. (26) is a good approximation for computing
the mean HS distance, especially when d is large. Second,
the degree of anisotropy in the distribution of �ρ cannot
be too high as long as the measurement is rank-1 tight IC.
Given that the level-density function f (x) and especially its
first absolute moment are not so sensitive to slight variations
in the degree of anisotropy, it is reasonable to expect that
the mean trace distance can be computed approximately with
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Eq. (25). This expectation is supported by extensive numerical
simulations.

Figure 1 shows the results of theoretical calculation and
numerical simulation on state tomography with SIC POMs.
The mean trace distance and the mean HS distance from
numerical simulation agree perfectly with the theoretical
formulas in Eqs. (25) and (26); in fact, they agree much better
than we expected. Figure 1 also clearly illustrates the different
scaling behaviors of the two error measures with the dimension
of the Hilbert space. From the inset in Fig. 1, we see that the
fluctuation in the mean trace distance over different pure states
is much smaller than the fluctuation over repeated experiments
on the same state. Actually, the former is so small that it
is difficult to separate out the partial contribution of the latter
with a limited number of repeated experiments. In other words,
the reconstruction error is not sensitive to the identity of the
true state.

We emphasize that the results on the tomographic efficiency
of SIC POMs are representative of typical rank-1 tight IC
measurements. Since the order-3 frame potential 	3 = (d2 +
3d)/(d + 1)2 for a SIC POM is much larger than the value
6d/(d + 1)(d + 2) required for a 3-design, a SIC POM is a
very poor approximation of a 3-design, for which Eqs. (25)
and (26) are best justified. Alternatively, we can see this from
the value of Tr[C(ρ)2] for a SIC POM, which can be computed
according to Eq. (4),

N2Tr[C(ρ)2] = (d2 + d + 2)[1 + tr(ρ2)] − 1

+ [tr(ρ2)]2 − 2(d2 + d)2
d2∑

j=1

p3
j . (28)

When d � 1, the term |ρ〉〉〈〈ρ| in the expression of C(ρ) can
be neglected, and we have

N2Tr[C(ρ)2] ≈ (d2 + d)[1 + tr(ρ2)]. (29)

Comparison with Eqs. (24) and (27) shows that the value
N2Tr[C(ρ)2] for a SIC POM is roughly in the middle of the
lower bound and the upper bound for tight IC measurements.

In the rest of this section, we briefly examine tight IC
measurements that are not rank-1 and which may arise in
practice. In realistic experiments on quantum state tomography
with a SIC POM, there always exists noise associated with
detector inefficiency, dark counts, and other imperfections. It
is important to understand how the noise affects tomographic
efficiency. We investigate these effects with a simple white-
noise model, in which the outcomes of the SIC POM are
modified as follows:

�j (α) = α 1
d

+ |ψj 〉〈ψj |
dα + d

, (30)

where the parameter α (α � 0) characterizes the strength of
the noise. This model is quite natural when there is no prior
knowledge about the noise. Measurements of this form have
also been considered in the context of entanglement detection
with witness operators [43].

It is straightforward to verify that the measurement intro-
duced above is still tight IC. The MSE can be calculated

according to the procedure presented in Sec. II A, with the
result

EM(ρ) = 1

N

{
1

d
[1 + (d + 1)2(d − 1)(α + 1)2] − tr(ρ2)

}
.

(31)

Compared with Eq. (17), the MSE is roughly (α + 1)2 times
as large as in the ideal case. The mean trace distance and the
mean HS distance can still be computed according to Eqs. (21)
and (22), respectively, with the result

Etr(ρ) ≈ 4

3π
√

N
(α + 1)d3/2,

(32)

EHS(ρ) ≈ 1√
N

(α + 1)d,

which are roughly α + 1 times the values for the ideal case.
Hence, due to the noise, we need roughly (α + 1)2 times as
many copies of the true states to reach the same accuracy as
in the ideal case. A similar analysis also applies to tight IC
measurements derived from other 2-designs, such as complete
sets of MUB.

D. Qubit tomography

In this section we show that any measurement constructed
out of a platonic solid other than the tetrahedron is an isotropic
measurement in the case of a qubit, thus making the concept
introduced in Sec. III B more concrete. The similarities and
differences between isotropic measurements and SIC POM
are also discussed in detail. We then derive exact formulas for
the mean trace distances for both isotropic measurements and
SIC POM and explain the dependence of the reconstruction
error on the Bloch vector of the true state (see Refs. [12,27,28]
for earlier accounts). Our study confirms that the result based
on random-matrix theory is already quite accurate for d = 2,
although it is best justified when d is large. As a simple
application, we make contact with the experimental result
given by Ling et al. [27].

Given a platonic solid with n vertices inscribed on the Bloch
sphere, a measurement can be constructed whose outcomes
correspond to the vertices; that is, �k = (1 + vk · σ )/n, where
vk for k = 1,2, . . . ,n are the unit vectors pointing to the
vertices of the platonic solid and σ = (σ1,σ2,σ3) are the
Pauli matrices. Since the measurement corresponding to
any platonic solid is tight IC, the reconstruction operators
are given by �k = (1 + 3vk · σ )/2 according to Eq. (16).
Reconstructing the true state ρ is equivalent to reconstructing
its Bloch vector s [12],

ρ =
n∑

k=1

pk�k = 1

2

(
1 + 3

n∑
k=1

pkvk · σ

)
,

(33)

s = 3
n∑

k=1

pkvk.

This formula reduces to the one given in Ref. [12] when the
platonic solid is a regular tetrahedron and the corresponding
measurement is SIC. On the other hand, both the HS norm
‖�ρ‖HS and the trace norm ‖�ρ‖tr are proportional to the
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Euclidean length of �s = ŝ − s, where ŝ is an estimator of s;
that is, ‖�ρ‖2

HS = (�s)2/2, ‖�ρ‖tr = |�s|/2.
The MSE matrix of the estimator ρ̂ can be calculated

according to Eq. (4), with the result

C(ρ) = 1

N

[
3

4

(
3∑

j=1

|σj 〉〉〈〈σj |
)

− 1

4
|s · σ 〉〉〈〈s · σ |

+ 9

4n

n∑
k=1

|vk · σ 〉〉vk · s〈〈vk · σ |
]
.

To get a concrete geometric picture, it is now better to work
with the MSE matrix of the estimator ŝ of the Bloch vector,

C(s) = 1

N

[
3I3 − ss + 9

n

n∑
k=1

(vk · s) vkvk

]
, (34)

where I3 is the 3 × 3 identity dyadic. The mean-square error
of the estimator ŝ is given by

E(|�s|2) = 2EM(ρ) = 1

N
(9 − s2), (35)

which is independent of the orientation of the Bloch vector of
the true state, as expected for any rank-1 tight IC measurement.

When the platonic solid is a cube, octahedron, dodeca-
hedron, or icosahedron, the last term in Eq. (34) vanishes
due to symmetry, and as a consequence, the MSE matrix
is independent of the orientation of the platonic solid. In
other words, the measurement corresponding to any platonic
solid other than the tetrahedron is an isotropic measurement
(cf. Sec. III B). A particular appealing isotropic measurement
is the one corresponding to an octahedron, where the six
outcomes form (a complete set of) MUB, which is a 3-design
for dimension 2, as we have mentioned. Since any 3-design
has at least six elements according to Eq. (9), the six-outcome
measurement is also a minimal isotropic measurement. The
MSE matrix for any isotropic measurement is covariant in
the sense that the MSE matrices for any two true states with
the same purity can be turned into each other by the same
rotations that turn the Bloch vectors of the two states into each
other, which is clearly reflected in the uncertainty ellipsoids,
as illustrated in Fig. 2. As a consequence, the mean trace
distance is independent of the orientation of the Bloch vector
of the true state; the same is true for any other figure of merit
that is unitarily invariant, such as the mean fidelity. This is not
the case for the SIC POM, as also illustrated in Fig. 2.

Suppose a,b, and c are the square roots of the three
eigenvalues of the MSE matrix C(s), that is, the three standard
deviations along the three principal axes of the uncertainty
ellipsoid. Then the mean error is determined by the following
integral:

E(|�s|) =
∫

dx dy dz

√
x2 + y2 + z2

(2π )3/2abc

× exp

[
−
(

x2

2a2
+ y2

2b2
+ z2

2c2

)]

=
√

2

π

∫ 1

0
dt

a2c2 + b2c2 + (2a2b2 − a2c2 − b2c2)t2

g3/2
,

 

MUB
SIC

FIG. 2. (Color online) Uncertainty ellipses of the marginal
distributions of the estimators on the x-z plane of the Bloch ball
in linear state tomography using MUB and SIC POM with 300
measurements. The big circle represents the Bloch sphere, and the
center of each uncertainty ellipse represents the true state. MUB
serve as a representative of isotropic measurements for which the
uncertainty ellipses do not depend on the orientation of the mea-
surement outcomes. In contrast, the uncertainty ellipses for the SIC
POM may change dramatically with the orientation when the true
states have high purity. Here one outcome of the SIC POM is aligned
with the z axis (vertical direction), and another one lies on the x-z
plane with positive x component.

where

g = c2(1 − t2)2 + a2b2

c2
t4 + (a2 + b2)t2(1 − t2).

If at least two of the standard deviations are equal, say b = a,
then the integral can be evaluated explicitly:

E(|�s|) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2
π
c if a = 0,√

π
2 a if c = 0,

2
√

2
π
a if c = a,

√
2
π

(
a2 arctan

√
a2−c2

c2√
a2−c2 + c

)
if a > c,

√
2
π

(
a2arctanh

√
c2−a2

c2√
c2−a2 + c

)
if a < c.

(36)

If the uncertainty ellipsoid is isotropic, that is, a = b = c,
then we have

Etr(ρ) = 1

2
E(|�s|) =

√
2

3πN

√
9 − s2. (37)

For the completely mixed state, this equation is exact; in
contrast, the expression Etr(ρ) ≈ 4

√
9 − s2/(3π

√
N ) based

on random-matrix theory [see Eq. (21)] is about 8% smaller.
The disparity is much smaller than the relative deviation of
‖�ρ‖tr over repeated experiments, which is about 42%. For
other true states, the disparity is even smaller. Hence, the result
based on random-matrix theory is already quite accurate even
for d = 2.
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For isotropic measurements, Eq. (34) implies that a2 =
b2 = 3/N , c2 = (3 − s2)/N , so that the uncertainty ellipsoid
is rotationally symmetric and oblate whenever s > 0. The
mean trace distance can be computed according to Eq. (36),
with the result

E iso
tr (ρ) = 1√

2πN

(
3

s
arctan

s√
3 − s2

+
√

3 − s2

)
, (38)

which is very close to the value under isotropic approximation
since the degree of anisotropy of the uncertainty ellipsoid is
low for isotropic measurements.

For the SIC POM, the reconstruction error depends on
not only the purity of the true state but also the orientation
of the Bloch vector. Those states whose Bloch vectors are
either parallel or antiparallel to the measurement outcomes
have attracted more attention both theoretically [12] and
experimentally [27] since they represent two extreme cases.
We shall compute the mean trace distances for those states and
discuss this dependence.

If v1 is chosen as the z axis, without loss of generality, the
Bloch vectors of those extreme states can be parameterized as
s = zv1 with −1 � z � 1. According to Eq. (34), the MSE
matrix of ŝ now reads

C(s) = (3 − z)I3 + (3z − z2)v1v1

N
, (39)

whose eigenvalues are given by

a2 = b2 = 3 − z

N
, c2 = (3 − z)(1 + z)

N
. (40)

Note that the uncertainty ellipsoid is rotationally symmetric.
As z decreases from 1 to −1, the uncertainty ellipsoid evolves
from prolate to oblate and finally to a singular ellipsoid when
z = −1. The mean trace distance of those extreme states can
be calculated according to Eq. (36).

Figure 3 shows the scaled mean trace distances in linear
state tomography using MUB and SIC POM, respectively.
Although MUB and SIC POM are equally efficient with respect
to the MSE, SIC POM is slightly more efficient with respect
to the mean trace distance. (Here we only consider linear state
tomography.) For the SIC POM, the mean trace distance is
slightly smaller for states whose Bloch vectors are antiparallel
to the outcomes of the measurement than those that are
parallel. The average of the mean trace distance over randomly
generated states with a given purity sits roughly in the middle
of the two extreme cases. In all the cases considered, there
is a slight decrease in the mean trace distances as the purity
of the true state increases, which can roughly be attributed
to two reasons: the decrease in the MSEs [cf. Eq. (35)] and
the increase in the degrees of anisotropy of the uncertainty
ellipsoids.

Ling et al. [27] have studied the tomographic efficiency of
the qubit SIC POM experimentally and determined the scaled
mean trace distances for the three states with z = 0, −1,1, with
the results 1.417, 1.288, and 1.323, respectively. In contrast,
our theoretical calculation has yielded the results 1.382, 1.259,
and 1.295. The experimental and the theoretical values reflect
the same dependence of the reconstruction error on the Bloch
vector of the true state. The former are slightly larger than
the latter, but the differences are very small; in other words,
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MUB numerical
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FIG. 3. (Color online) Theoretical and numerical scaled mean
trace distances in linear state tomography using MUB and SIC
POM, respectively. The result for the MUB does not depend on
the orientation of the Bloch vector of the true state (in the limit of
large number of measurements). In theoretical calculation for the
SIC POM, the Bloch vector of the true state is either parallel or
antiparallel to the outcomes. In numerical simulation, N = 1000, and
the scaled mean trace distances for each given purity are averaged
over 1000 randomly generated states, each averaged over 400 repeated
experiments.

the agreement between experimental data and theoretical
calculation is pretty good. Note that the relative fluctuation
of the reconstruction error over repeated experiments is larger
than 40%, and the experimental values are the average of
only 40 runs. In addition, any imperfection inevitable in real
experiments may also affect the accuracy of the estimator.

IV. JOINT SIC POMS AND PRODUCT SIC POMS

In the bipartite or multipartite settings, it is technologically
much more challenging and sometimes even impossible to
perform full joint measurements such as SIC POMs on the
whole system. It is thus of paramount practical interest to deter-
mine the optimal product measurements and the efficiency gap
between product measurements and joint measurements. We
show that, under linear state tomography, product SIC POMs
are optimal among all product measurements in the same sense
as joint SIC POMs are optimal among all joint measurements.
Furthermore, in the bipartite setting, there is only a marginal
efficiency advantage of the joint SIC POMs over the product
SIC POMs, and it is thus not worth the trouble to perform
the joint measurements. However, in the multipartite settings,
the efficiency advantage of the joint SIC POMs over the
product SIC POMs increases exponentially with the number of
parties.

A. Bipartite SIC POMs and product SIC POMs

Consider a product measurement on a bipartite system
whose parts A and B have subsystem dimensions d1 and d2,
respectively, and the total dimension is d = d1d2. To show the
optimality of the product SIC POM, we shall use the same
strategy described in Sec. II C. More generally, we show that
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if the product measurement minimizes the MSE averaged
over unitarily equivalent states, then the measurement on
each subsystem is rank 1 tight IC and vice versa. As an
immediate consequence, the product SIC POM is optimal,
and furthermore any minimal optimal product measurement
must be a product SIC POM; recall that SIC POMs are the
only minimal rank-1 tight IC measurements [6].

Since the average of ρ is the completely mixed state, it
suffices to demonstrate our claim when ρ = 1/d according to
Eq. (4). Suppose �j1 are the outcomes of the measurement
on the first subsystem and �j2 are those for the second
subsystem; then each outcome in the product measurement has
a tensor product form �j1j2 = �j1 ⊗ �j2 . The same is true for
the frame superoperator F = F1 ⊗ F2 and the reconstruction
operators �j1j2 = �j1 ⊗ �j2 . According to Eq. (13), we have

C
(

1

d

)
= 1

N

(
F−1

1 ⊗ F−1
2

d
− I

d2

)
,

(41)

EM

(
1

d

)
= 1

dN

[
Tr
(
F−1

1

)
Tr
(
F−1

2

)− 1
]
.

The MSE is minimized if and only if both Tr(F−1
1 ) and

Tr(F−1
2 ) are minimized, that is, when the measurement on

each subsystem is rank 1 tight IC (cf. Sec. II C).
Next, let us focus on the tomographic efficiency of the

optimal product measurement. If the product measurement is
composed of two rank-1 tight IC measurements, as in the case
of the product SIC POM, then each factor in the reconstruction
operator �j1j2 = �j1 ⊗ �j2 is given by Eq. (16). The MSE can
be computed according to Eq. (5),

Eprod
M (ρ) = 1

N

[(
d2

1 + d1 − 1
)(

d2
2 + d2 − 1

)− tr(ρ2)
]
. (42)

Surprisingly, the MSE is almost independent of the true state,
as in the case of the SIC POM. In addition, it is approximately
equal to the product of the MSEs for two subsystems. The
variance Vprod(ρ) of the squared error may depend on the
specific choice of the product measurement according to
Eq. (7). For the product SIC POM, it is approximately given
by

Vprod(ρ) ≈ 2

N2

{(
d2

1 + d1 − 2
)(

d2
2 + d2 − 2

)
× [1 + tr(ρ2) + tr

(
ρ2

1

)+ tr
(
ρ2

2

)]+ (d2
1 + d1 − 2

)
× [1 + tr

(
ρ2

1

)]+ (
d2

2 + d2 − 2
)[

1 + tr
(
ρ2

2

)]}
.

(43)

Note that the variance depends not only on the purity of the
global state but also on the purities of the reduced states, which
means that it generally depends on the entanglement of the
global state. For example, if the true state is pure, the variance
is approximately maximized for product states and minimized
for maximally entangled states.

Compared with the results of the joint SIC POM given
in Eq. (17), the MSE achieved with the product SIC POM
is slightly larger, but the difference is generally very small,
especially when both d1 and d2 are large. In contrast,
the fluctuation over repeated experiments is stronger by a
bigger margin in the product SIC POM. Figure 4 shows
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FIG. 4. The ratio of the MSEs in state tomography with the
product SIC POM and the joint SIC POM when the true state is
the completely mixed state; note that the ratios for other true states
are almost the same. The ratio is maximized when d1 = d2 = 3.

the ratio of the MSEs when the true state is the completely
mixed state; note that the ratios for other true states are
almost the same. The maximal ratio 1.36 is obtained when
d1 = d2 = 3. If d1,d2 � 3, the ratio decreases monotonically
with d1 and d2; if d2 = 2 and d1 � 3, the ratio decreases
monotonically with d1. For sufficiently large d1,d2, the ratio
is about 1 + 1/d1 + 1/d2. In conclusion, there is only a
marginal efficiency advantage of the joint SIC POM over
the product SIC POM. The product SIC POM is thus more
appealing for practical applications since it is much easier to
implement.

Although the product SIC POM is not even a tight IC
measurement, comparison of Eqs. (42) and (43) shows that the
relative deviation of the squared error is quite small, especially
when d1 and d2 are large. Hence, Eq. (22) is still a good
approximation for computing the mean HS distance. The mean
trace distance can be calculated approximately according to
Eq. (21), with the result

Etr(ρ) ≈ 4
√

d1d2

3π
√

N

√(
d2

1 + d1 − 1
)(

d2
2 + d2 − 1

)− tr(ρ2).

(44)

Generally speaking, the larger the values of d1 and d2 are,
the more accurate this formula is. The ratio of the mean trace
distance for the product SIC POM to that for the joint SIC
POM is thus approximately equal to the square root of the
ratio of the MSEs.

To compare the resource requirements in the joint SIC POM
and the product SIC POM, let us consider an example in which
the mean trace distance between the estimator and the true state
is supposed to be capped at 0.1. According to Eqs. (25) and
(44), the number of copies of the true state needed in the
joint SIC POM and the product SIC POM, respectively, are
approximately given by

N
joint
tr ≈ 18d(d2 + d − 1),

(45)
N

prod
tr ≈ 18d

(
d2

1 + d1 − 1
)(

d2
2 + d2 − 1

)
.
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TABLE I. Theoretical and numerical simulation results of the scaled mean trace distances for the two-qubit joint SIC POM (Joint) and
product SIC POM (Prod). The theoretical values are computed according to Eqs. (25) and (44), respectively. N = 1000 is chosen in the
numerical simulation. For the completely mixed state, the scaled trace distance is averaged over 1000 repeated experiments. For pure states, it
is averaged over 1000 randomly generated states, each averaged over 1000 repeated experiments. The standard deviations of the scaled trace
distances over the 1000 randomly generated pure states (including a partial contribution of the fluctuation over repeated experiments for each
state due to the finite number of experiments) are 0.033 and 0.027 for the product SIC POM and the joint SIC POM, respectively, both of which
are very small.

Completely mixed state Average over pure states

POM Theory Numerical Error (%) Theory Numerical Error (%)

Prod 4.223 4.255 −0.8 4.158 4.162 −0.1
Joint 3.676 3.716 −1.1 3.601 3.575 +0.7
Ratio 1.149 1.145 1.155 1.164

In contrast, the corresponding numbers are

N
joint
HS ≈ 100(d2 + d − 1),

(46)
N

prod
HS ≈ 100

(
d2

1 + d1 − 1
)(

d2
2 + d2 − 1

)
,

if the trace distance is replaced by the HS distance. The two
equations in Eq. (46) follow from Eqs. (17) and (42), respec-
tively, noting that the mean HS distance is approximately equal
to the square root of the MSE for both the joint SIC POM
and the product SIC POM. All these numbers are almost
independent of the identity of the true state, and they are
inversely proportional to the square of the precision required.

Table I shows the theoretical and numerical simulation
results on the scaled mean trace distances for the two-qubit
product SIC POM and joint SIC POM. There is quite a
good agreement between theoretical calculation and numerical
simulation even though d1 and d2 are so small. The mean
trace distances achieved by the product SIC POM are roughly
15% larger than that achieved by the joint SIC POM. As a
consequence, with the product SIC POM, we need about 32%
more copies of the true states to reach the same accuracy
achieved by the joint SIC POM. Despite its slightly lower
efficiency, the product SIC POM is more appealing than the
joint SIC POM due to the relative ease of its implementation in
real experiments. The same conclusion has also been reached
in Ref. [32], where the maximum-likelihood method was
adopted for state reconstruction.

B. Multipartite SIC POMs and product SIC POMs

Suppose k parties want to reconstruct a quantum state
shared among them with a product measurement, and dj for
j = 1,2, . . . ,k is the dimension of the Hilbert space of the
j th party. According to the same analysis as in the bipartite
setting, under linear state tomography, the product SIC POM is
optimal among all product measurements. The MSE achieved
by the product SIC POM can also be calculated in the same
manner, with the result

Eprod
M (ρ) = 1

N

⎡
⎣ k∏

j=1

(
d2

j + dj − 1
)− tr(ρ2)

⎤
⎦ , (47)

which is almost independent of the true state. When the true
state is the completely mixed state, the variance of the squared

error is given by

Vprod(ρ) = 2

N2

⎡
⎣ k∏

j=1

(
d3

j + 2d2
j − 2

)
dj

−
k∏

j=1

1

d2
j

⎤
⎦ . (48)

For a generic true state, the variance depends on the purity of
the global state as well as the purities of various reduced states
and can be much larger than the value given above.

If the dimension of the Hilbert space of each party is equal
to d1, then the ratio of the MSE for the product SIC POM
to that for the joint SIC POM grows exponentially with the
number of parties k,

Eprod
M (ρ)

E joint
M (ρ)

≈
(

1 + 1

d
− 1

d2

)−1 (
1 + 1

d1
− 1

d2
1

)k

. (49)

The ratio of the variances grows with an even higher rate,
whose specific value may heavily depend on the true state.
In other words, the efficiency advantage of the joint SIC
POM over the product SIC POM grows exponentially with
the number of parties.

Although the fluctuation in the reconstruction error over
repeated experiments is stronger in the product SIC POM as
compared with the joint SIC POM, the relative fluctuation is
still small. Hence, Eq. (22) is still a good approximation for
computing the mean HS distance. When k is not too large, the
mean trace distance can be calculated approximately according
to Eq. (21), with the result

Etr(ρ) ≈ 4
√

d

3π
√

N

√√√√ k∏
j=1

(
d2

j + dj − 1
)− tr(ρ2). (50)

Since the ratio of the mean trace distance achieved by
the product SIC POM to that by the joint SIC POM is
approximately equal to the square root of the ratio of the
MSEs, it also increases exponentially with the number of
parties; the same is true for the ratio of the mean HS distances.
Figure 5 shows theoretical and numerical simulation results of
the scaled mean trace distances for the product SIC POMs and
the joint SIC POMs on multiqubit systems. There is a pretty
good agreement between theoretical prediction and numerical
simulation for k up to 5. Figure 5 further confirms that the
efficiency advantage of the joint SIC POM over the product
SIC POM increases exponentially with the number of parties.
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FIG. 5. (Color online) Theoretical and numerical simulation
results of the scaled mean trace distances for the joint SIC POMs
and the product SIC POMs on multiqubit systems, where k is the
number of qubits. The theoretical values are computed according to
Eqs. (25) and (50), respectively, with ρ = 1/d . N = 1000 + 20d2 is
chosen in the numerical simulation. For the completely mixed state,
the scaled trace distance is averaged over 1000 repeated experiments.
For pure states, it is averaged over 1000 randomly generated states,
each averaged over 100 repeated experiments.

V. SUMMARY

We have introduced random-matrix theory for studying
the tomographic efficiency of tight IC measurements, which
include SIC POMs as a special example. In particular, we
derived analytical formulas for the mean trace distance and the
mean HS distance between the estimator and the true state and
showed the different scaling behaviors of the two error mea-
sures with the dimension of the Hilbert space. The accuracy of
these formulas was confirmed by extensive numerical simula-
tions on state tomography with SIC POMs. As a by-product,
we also discovered a special class of tight IC measurements

called isotropic measurements, which feature exceptionally
symmetric outcome statistics and low fluctuation over repeated
experiments. In the case of a qubit, we provided several
concrete examples of isotropic measurements, which are
constructed out of platonic solids other than the tetrahedron,
and discussed in detail the similarities and differences between
isotropic measurements and the SIC POM. We also derived
exact formulas for the mean trace distances for both isotropic
measurements and the SIC POM and explained the dependence
of the reconstruction error on the Bloch vector of the true state.

In the bipartite and multipartite settings, we showed
that the product SIC POMs are optimal among all product
measurements in the same sense as the joint SIC POMs are
optimal among all joint measurements. We further showed
that, for bipartite systems, there is only a marginal efficiency
advantage of the joint SIC POMs over the product SIC POMs,
which disappears in the large-dimension limit. Hence, it is
not worth the trouble to perform joint measurements at the
current stage. However, for multipartite systems, the efficiency
advantage of the joint SIC POMs over the product SIC POMs
increases exponentially with the number of parties.

Our study provided a simple picture of the scaling behavior
of the resource requirement in state tomography with the
dimension of the Hilbert space and of the efficiency gap
between product measurements and joint measurements. The
idea of applying random-matrix theory to studying tomo-
graphic efficiencies may also find wider applications in other
state estimation problems.
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