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We present an efficient way of heralding photonic qubit signals using linear optics devices. First, we show that
one can obtain asymptotically perfect heralding and unit success probability with growing resources. Second,
we show that even using finite resources, we can improve qualitatively and quantitatively over earlier heralding
results. In the latter scenario, we can obtain perfect heralded photonic qubits while maintaining a finite success
probability. We demonstrate the advantage of our heralding scheme by predicting key rates for device-independent
quantum key distribution, taking imperfections of sources and detectors into account.

DOI: 10.1103/PhysRevA.84.022325 PACS number(s): 03.67.Dd, 03.65.Ud, 42.50.−p

I. INTRODUCTION

Applications such as the verification of entanglement for
quantum communication, and the establishment of secu-
rity proofs in device-independent quantum key distribution
(DIQKD) [1] have generated increasing interest in violations
of Bell’s inequalities over long distances. A violation of Bell’s
inequality is supposed to be a test for a nonlocal correlation
between the outcomes of pairs of events; however, it is difficult
to design an experiment that rigorously shows this nonlocality,
as imperfections in the experimental equipment can open
loopholes, which allow for a local hidden variable (HV)
explanation of the measured data. For example, signal loss
in optical implementations generates the so-called detection
efficiency loophole [2].

In experiments, with growing distance the transmission
loss increases. Consequently, the resulting low total detection
probabilities make violations of Bell’s inequality virtually
impossible. To overcome this issue, the use of heralding
devices [3,4] has been suggested. Such an apparatus performs a
measurement that resembles a quantum nondemolition (QND)
measurement, raising a flag to indicate whenever the desired
signal successfully traverses the channel. The state generated
by conditioning on this flag can then be employed in a Bell
test. This procedure does not lead to a detection loophole as
long as the flagging is independent of the measurement choice.

Gisin et al. [3] have considered an implementation of a
heralding device in a DIQKD scheme employing realistic
sources, linear optical components, and photon-number re-
solving detectors. The proposed scheme uses the transmis-
sivity of one of its beam splitters as an adjustable parameter
to regulate the ratio between vacuum and single photons in
the conditional output state at the expense of the probability
of successful heralding. With input signals consisting only of
vacuum and single-photon states, increasing the single-photon
component to unity in the conditional state can only be
achieved in the limit of vanishing success probability. If the
input also contains multiphoton signals, then the fraction of
single-photon signals in the conditional states cannot reach
unity.

In the present work we investigate improvements on this
scheme to overcome its limitations. We begin by reviewing the

known results on heralding in Sec. II. Then in Sec. III, we in-
vestigate fundamental limits with unlimited resources, staying
within the linear optics toolbox. In this regime, we can employ
large ancilla states to realize a Knill-Laflamme-Milburn–like
(KLM-like) teleportation procedure [5] and demonstrate that
we can perform the desired QND measurement perfectly,
although nondeterministically. Shifting our focus to practical
schemes that allow only limited resources, we then revisit
in Sec. IV the original proposal. Motivated by our general
scheme and the Hong-Ou-Mandel effect [6], we suggest a
modification that significantly improves the heralding device.
The modification is done by adding two beam splitters to
the initial linear optics circuit while maintaining the original
simple ancilla states.

Since the original amplifier was proposed for use in
DIQKD, we analyze the performance of our amplifier in Sec. V
and demonstrate that the improvement of the heralding device
translates into an enhanced key rate.

II. PHOTONIC AND QUBIT AMPLIFIER

We begin by revisiting the noiseless linear photonic
amplifier proposal of Ralph and Lund [4] (see Fig. 1). A single-
photon state passes through a beam splitter of transmissivity t

to create an entangled state of two modes involving vacuum
and single photons. One of the modes will be the output of the
device, while the other is mixed with the input mode, ρin, on
a 50:50 beam splitter. Both output modes of the 50:50 beam
splitter are measured on photon detectors and the observation
of exactly one photon in the measured modes is taken as the
successful heralding flag.

Depending on which of the two detectors is triggering the
flag, an optical phase correction has to be applied at the output
of the device. This feed-forward mechanism is not essential
to our discussions, and we incorporate it directly into the
description of the device. In practice one will have to do this
feed forward, unless the action of the phase correction can be
combined with a subsequent measurement in such a way that,
instead of active feed forward, just a reinterpretation of the
measurement results takes place.
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FIG. 1. (Color online) (a) The Ralph-Lund noiseless linear ampli-
fier scheme: An input mode ρin interacts with an ancilla state through
a 50:50 beam splitter. Conditioned on a successful detection pattern,
which raises the heralding flag, the output ρout is shifted toward the
single-photon state. The parameter t is the transmissivity of the beam
splitter. (b) The Gisin-Pironio-Sangouard qubit heralding device: Two
amplifiers are combined to amplify states in the horizontal-vertical
(h-v) basis; the flag is only raised if both of the amplifiers are
successful. The input state ρin, encoded in the polarization basis (h-v),
is sent through a polarizing beam splitter (PBS) to spatially separate
its modes so that the different amplifiers may be applied. A second
PBS is used to combine the different spatial modes of the output into
the h-v basis. In both schemes the feed-forward mechanism has been
omitted.

For t = 1
2 , this scheme amounts to standard probabilis-

tic quantum teleportation; however, for t > 1
2 , the vacuum

component |0〉 of the outgoing mode ρout is reduced and
the single-photon term |1〉 emerges enhanced relative to the
vacuum component. This corresponds to a mapping induced
by a Kraus operator A,

A (c0|0〉 + c1|1〉) = √
1 − tc0|0〉 + √

tc1|1〉, (1)

which has the important property that, as t → 1, this circuit
approaches a projection onto the single-photon state, |1〉.
We use non-normalized states in our description, so that the
success probability of the heralding device is given by the norm
of the conditional output state and it is naturally dependent of
the input state.

The two-dimensional Hilbert space of exactly one excita-
tion in two optical modes is known as a photonic or dual-rail
qubit [7]. It is the central idea of the work by Gisin et al. [3] to
use two Ralph-Lund amplifiers [4] in parallel on the two modes
to herald such a photonic qubit. A successfully heralded event
is defined as the joint success of both amplifiers. The action is
then represented as

A ⊗ A (c00|00〉 + c10|10〉 + c01|01〉)
= (1 − t)c00|00〉 +

√
t(1 − t) (c10|10〉 + c01|01〉) . (2)

The circuit for this qubit amplifier is shown in Fig. 1, where
the dual-rail qubit is encoded in the polarization. The weight
of the dual-rail qubit component in this conditional state can
reach unity in the limit t → 1. In this limit the probability
of successful heralding vanishes independently of the input
state. If the input state also contains a multiphoton component,
c11|11〉, then the weight of the dual-rail qubit in the output
state can no longer reach unity, as the output will also contain
the component tc11|11〉. In that case, the choice t

1−t
= |c00|

|c11|
optimizes the qubit fraction of the output. This optimal qubit

fraction in the heralded signals is then given by

|c10|2 + |c01|2
2|c11||c00| + |c10|2 + |c01|2 . (3)

Although we have only considered the case of a pure state
input, this bound also applies to mixed states if

√〈ij |ρin|ij 〉 is
used instead of |cij |.

III. KNILL-LAFLAMME-MILBURN PROCEDURE

Before proposing a scheme to overcome the limitations
of the heralding setup by Gisin et al., let us take a more
fundamental point of view. We remain restricted to the linear
optics toolbox, but allow for the use of more complicated
sources for the ancilla states, and show that, in this context, the
heralding measurement for dual-rail qubits can be performed
asymptotically perfectly. Our approach is based on the KLM
framework [5] and the procedure introduced therein, which
successfully accomplishes the teleportation of an arbitrary
state of the form c0|0〉 + c1|1〉 with a probability that can be
brought asymptotically close to 1.

The implementation of such procedure relies on the use of
an ancilla state

|tn〉 = 1√
n + 1

n∑
i=0

|sn,i〉, (4)

where |sn,i〉 = |1〉i |0〉n−i |0〉i |1〉n−i . Here the notation |1〉i
refers to the i-fold tensor product |1〉⊗i . We refer to the
first n modes of this state as the teleporting modes, while the
second n modes are referred to as output modes. In order to
perform the teleportation, an (n + 1)-mode Fourier transform
is performed on the teleporting modes of the ancilla |tn〉 and
the input, followed by a photon-counting measurement on
these modes. The Fourier transform is responsible for making
the result of the photon measurements indistinguishable
independently of which modes the photons have originated
from. As a result, if k photons are detected, the remaining
unmeasured output modes are left in the state

c0|0〉k|1〉n−k + e−iφk c1|0〉k−1|1〉n−k+1. (5)

The phase φk depends on the number of counted photons, k,
and the observed detection pattern, and can be corrected with
an appropriately adjusted phase shifter. As in the case of the
linear photonic amplifier, we will incorporate this correction
automatically into our description. Overall, the input state will
then be found in the kth mode of the above state.

This approach can also be adapted to perform a nondemo-
lition measurement onto the single-photon input space of two
modes. To do this, we will consider the auxiliary state

|t̃n〉 = 1√
n + 1

n∑
i=0

|sn,i〉|sn,n−i〉, (6)

which corresponds to those terms in |tn〉 ⊗ |tn〉 containing
exactly n photons in the two sets of teleporting modes in
the |sn,i〉 states. We now show that the application of the
KLM-type procedure, employing the alternative state above,
realizes a QND measurement onto the total photon-number
space of the input modes. To verify this, we first note that
this procedure effectively measures the photon number in the
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input: As the total number of photons in the two pairs of
teleporting auxiliary modes is known to be n, the observed
photon number on the input and these 2n modes tells us how
many photons have entered the heralding device. In a second
step, we need to verify that the output state corresponds to
that of a QND measurement: If the two Fourier measurements
acting each on one input mode and one set of teleporting modes
yield the observation of i and n − i + 1 photons respectively,
giving exactly n + 1 photons in total, and these individual
photon numbers are neither 0 nor n + 1, then the corresponding
conditional state of the remaining 2n output modes is

c01|0〉i |1〉n−i |0〉n−i |1〉i + c10|0〉i−1|1〉n−i+1|0〉n−i+1|1〉i−1.

(7)

This means that the input state has been teleported into the
mode pair with indices (i,2n − i + 1) of the above state. The
probability of failure of this scheme, just as in the original
KLM proposal, is connected to occurrence of 0 or n + 1
photons in the individual Fourier measurements, and is given
by 1

n+1 . Thus, one can perform a probabilistic perfect heralding
measurement and the probability of success can be made
arbitrarily close to unity.

IV. MODIFIED AMPLIFIER CIRCUIT

An obvious strength of the scheme proposed in [3] lies
in the relative simplicity of its ancilla states, which can be
generated with a single-photon source and vacuum states.
Here we take a practical approach, keeping the same ancilla
states, and look for simple modifications we can make to the
amplifier to improve its performance. We focus on modifying
the amplifier so that a vacuum input will no longer trigger
the heralding flag at all. We begin by examining the original
scheme, which consists of two separate Ralph-Lund amplifiers,
each with their own auxiliary single-photon states.

In order for the signal to be heralded by the qubit amplifier,
both of the flags on the separate Ralph-Lund amplifiers need
to be raised by detecting exactly one photon respectively, after
each of the 50:50 beam splitters. This setup can lead to false
flagging for a vacuum input. These false heralding flags occur
if both of the auxiliary photons from the separate amplifiers
travel upward in our diagram toward the heralding detectors
behind the 50:50 beam splitters.

We suppress this component by adding another 50:50 beam
splitter between these upward directed modes; the Hong-Ou-
Mandel effect [6] ensures that the component with two photons
in each mode will now bunch to either of the outgoing modes
of the beam splitter. This means that the heralding detectors
of one of the Ralph-Lund amplifiers will see zero photons,
while the other will see two, and therefore, the heralding
condition of the qubit amplifier will no longer be met. A second
50:50 beam splitter is added to the output modes of the qubit
amplifier, so that the transformation effected by the amplifier
to the single-photon input does not change. On the other hand,
the action of the second beam splitter corresponds to a change
of polarization basis on the single-photon subspace, and can
be absorbed into the action of any device that is acting on the
output of the heralding device. With these two additional beam
splitters (see Fig. 2), we find that the successful heralding is

FIG. 2. The proposed circuit for the improved qubit amplifier.
Without the two 50:50 beam splitters, marked B1 and B2, it
corresponds exactly to the amplifier suggested by Gisin et al. The
circuit’s inputs are the two modes of ρin. The amplifier is only meant
to output a signal, ρout, when a single photon is measured in each
of the detector sets (d1,d2) and (d3,d4). The required feed-forward
mechanism to correct optical phases is omitted.

connected to the Kraus operator Amod given by

Amod (c00|00〉 + c10|10〉 + c01|01〉 + c11|11〉)
=

√
t(1 − t) (c01|01〉 + c10|10〉) + t

1√
2
c11 (|20〉 + |02〉) .

(8)

This Kraus operator already accounts for the required phase
correction that depends on the exact pattern of single-photon
detection after each of the two 50:50 beam splitters.

The transformation overcomes both of the problems dis-
cussed in Sec. II: First, assuming only vacuum and single-
photon input signals (c11 = 0), this amplifier can perform
a perfect, heralded projection onto the dual-rail component.
Second, even if multiple photons are present in the input
(c11 �= 0), the single-photon fraction in the output can still
be made arbitrarily close to unity in the limit of vanishing
success probability (t −→ 0).

V. APPLICATION TO DEVICE-INDEPENDENT
QUANTUM KEY DISTRIBUTION

The security of device-independent quantum key distribu-
tion (DIQKD) is based on a set of assumptions that is reduced
compared to that of traditional QKD, the most remarkable
difference being that for DIQKD the communicating users
of an entanglement-based scheme can be ignorant of the
precise characterization of their measuring devices without
compromising the security of the protocol. The privacy of
the resulting key depends on the users being able to perform
measurements that violate Bell’s inequality. This approach first
appeared with Einstein-Podolsky-Rosen–based (EPR-based)
QKD [8]. Related work has been done under the headline of
self-testing devices [9–11]. Here we refer to the formulation
by Acin et al. [12].

To bound information of an eavesdropper in DIQKD,
Alice and Bob both randomly and independently select two
measurements that are designed to verify the violation of Bell’s
inequality by evaluating a Bell parameter S. To generate the
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key, the receiver also makes use of a third measurement, σz,
which is designed to obtain highly correlated data with the
sender. These data serve as the raw key from which the final
key will be distilled. On these data, we expect to find binary
error rates Q.

In the proposal for the original qubit heralding device,
a DIQKD simulation was performed to demonstrate how
heralding overcomes transmission losses. The simulation in-
cluded imperfect sources and detectors. We perform analogous
simulations to demonstrate the improvement that our heralding
device offers. For this comparison, we consider three main
scenarios. The first one is motivated by the simulation reported
in Gisin et al. [3], where the authors introduced a theoretical
framework to deal with inconclusive outputs due to imperfect
devices. In this framework restrictions on the eavesdropping
strategies are assumed; we therefore refer to this framework
in our simulations as the restricted device-independent theory,
in Sec. V A 1. In addition we also run simulations that deal
with the inconclusive results by randomly assigning them a
conclusive binary value, thereby allowing us to apply the
usual unrestricted device-independent theory, in Sec. V A 2.
As a third framework, we explore the so-called detection
device-independent theory, in Sec. V A 3, where knowledge
of the source is assumed, but one can remain ignorant about
the measurement device of one of the parties. The assumed
knowledge of the source, in this framework, makes it useful
not only for entanglement-based setups, but also for prepare-
and-measure schemes.

A. Experimental Setup

We now describe the proposed experimental setup for
DIQKD. To mediate the communication, a spontaneous
parametric down-conversion (EPR-SPDC) source is used
which generates entangled photons. The (unnormalized) state
obtained through this process is given by

ρsource = |0〉〈0| + p|φ+〉〈φ+| + p2|φ+2〉〈φ+2| + O(p3),

(9)

where |φ+〉 is an EPR pair, |1010〉 + |0101〉 and |φ+2〉 =
|2020〉 + |1111〉 + |0202〉, up to a normalization. The parame-

ter p is related to the pumping power. This EPR-SPDC source
is located near one of the parties, Alice, and the two-mode
signal that is received by the more distant party, Bob, is
subject to transmission loss ηt . The loss which results from
using imperfect detectors and coupling into fibers is taken into
account with efficiency parameters ηd and ηc respectively. In
our simulations we assume that all the detectors have the same
efficiency so we model the detectors as perfect and include
the detector loss in the coupling efficiency ηcd = ηcηd . The
photons employed in the auxiliary states of the amplifiers
are generated from a heralded SPDC process that outputs the
state [13]

ρaux = p′ηcd|1〉〈1| + 2(1 − ηcd)ηcdp
′2|2〉〈2|

+ 3(1 − ηcd)2ηcdp
′3|3〉〈3| + O(p′4), (10)

where p′ is again the pumping power. The amplifier therefore
acts on the state

ρtotal = ρsource ⊗ ρ⊗2
aux ⊗ |0〉〈0|⊗2 (11)

which includes both components of the source states: the one
that remains at Alice’s site, and that which enters the amplifier.
The whole setup is depicted in Fig. 3 to indicate where
coupling and detection efficiencies are included. Note that
we include coupling efficiencies for the heralding detectors.
Omitting these reproduces for the original heralding device
the simulation shown in [3]. The source is on Alice’s side of
the setup. Therefore, transmission loss affects only the signal
traveling from the source to the amplifier, which is located in
Bob’s site.

In order to maximize the key rate, an optimization is per-
formed over the pump parameter p and over the transmissivity
t of the beam splitter used in the heralding device. The range
of the parameters p and p′ are restricted to 0 � p,p′ � 10−2,
as we use a perturbative approach in our simulations. This
constraint, however, affects only the simulations of the
detection device-independent scenario.

Our simulations are done as perturbative approximations
in the pump parameters p and p′. To bound the error in this
approximation, we also provide lower bounds on the expected
key rates by calculating the total weight of the neglected terms,

FIG. 3. Experimental setup for the amplifier in the DIQKD simulations we consider. An EPR-SPDC source is used to generate photons that
are sent to the two distant parties. Two additional SPDC sources are used as heralded single photon sources for the amplifier. Each wire in this
diagram represents a separate optical mode (i.e., we use two wires to represent a single spatial mode if we are using both of the polarization,
horizontal (h) and vertical (v), degrees of freedom). The signal received by Bob is only processed if the right detection pattern appears on the
amplifier.
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and by using this weight in independent worst-case values for
the Bell parameters S and quantum bit error rates Q.

For simulation purposes, we follow the choices made in [3].
This includes modeling our detectors with photon-number
resolving capabilities, neglecting dark counts, assuming a
detection efficiency as high as 95% and running the sources
at a repetition rate of 10 GHz. Dark counts can be neglected
if the total dark count rate is negligible compared to the total
rate of heralded events.

Superconducting nanowire single-photon detectors and
transition-edge superconducting detectors have shown these
properties, although not in a single device [14,15]. Transition-
edge superconducting detectors are photon-number resolving
detectors and have also been demonstrated to work at an
efficiency of 95%. However the repetition rate of the sources
we use, 10 GHz, is several orders of magnitude higher then
the optimal clock rate of these detectors, which run at 1000
counts per second. Alternatively, superconducting nanowire
single-photon detectors are capable of working at the clock
rates we consider in our simulations. These detectors are not
photon-number resolving, however, a cascade of single-photon
detectors may be used to approximate a number resolving
detector. However, the nanowire detectors work at efficiencies
that are much lower than what we have assumed in our
simulations, typically the efficiency is 20% [14].

1. Restricted device-independent theory

The framework proposed by Gisin et al. follows the
standard device-independent protocol [16], but augments it
by an analysis that makes an additional assumption about the
eavesdropping strategies. Thanks to this assumption, all of the
inconclusive results can be discarded during postprocessing,
though the rate of inconclusive results affects the resulting key
rate. The key rate, which is given by

K � μcc

{
1 − h[Qcc]

−
[(

1 − μc

μcc

)
χ

(
μccScc − 4μc

μcc + μc

)
+ μc

μcc

]}
, (12)

with

h[x] = −x log2[x] − (1 − x) log2 [1 − x] and (13)

χ [x] =
{

h
[ 1+

√
(x/2)2−1
2

]
if x > 2

1 otherwise
. (14)

Here, μcc is the probability that both parties obtain a conclusive
result. Within this set of conclusive data, Scc is the measured
Bell parameter, and Qcc is the error rate. The probability that
only one of the parties obtains a conclusive result is denoted by
μc. The results are shown in Fig. 4. We find that our heralding
device improves the distance and rate significantly.

2. Unrestricted device-independent theory

The scheme utilizing the unrestricted device-independent
theory differs solely from the setting in the previous section in
its data postprocessing stage. Any inconclusive measurement
result on either side has binary outcomes assigned at random.
Knowledge of the placements of such inconclusive results is
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FIG. 4. (Color online) Key rate vs distance, plotted for both the
original [3] and the modified amplifier. The simulations are done
using the restricted device-independent theory framework. The key
rate is calculated from Eq. (12), multiplied by the repetition rate of
the source and the probability that the amplifier successfully heralds
the signal. The efficiency parameters are chosen as ηd = 0.95 and
ηc = 0.90, resulting in an overall efficiency of ηcd = 0.855.

later used in the error correction step [17]. For this reason,
the key rate includes quantities that reflect the fraction of
conclusive results. The resulting key rate is

K = μ−c (1 − h[Q−c]) − χ [S]. (15)

Here, μ−c is the probability of Bob obtaining a conclusive
result and Q−c is the error rate within Bob’s conclusive
measurement results. Finally, h[x] and χ [x] are the same as in
Eqs. (13) and (14). The Bell parameter S is evaluated using the
data from all of the measurement results, including the random
assignments of inconclusive results.

From Eq. (15), we can see that the parties need nonclassical
correlations with at least S > 2 to generate a positive key, since
χ [S] = 1 otherwise. With our chosen postprocessing strategy,
we randomly assign binary outcomes to inconclusive measure-
ment results, so that only the subset of measurements that yield
conclusive outcomes on both sides make nonzero contributions
to the Bell parameter, S. As quantum mechanics bounds the
Bell parameter in any subset to 2

√
2 the requirement that S > 2

leads to the bound μcc > 1√
2

∼ 0.707, on the probability of
conclusive-conclusive measurement outcomes. However, if we
use a SPDC source to generate the signals, we find from Eq. (3)
that the qubit fraction after heralding is bounded by μcc < 3/5
when using the original heralding device, even when using
ideal detectors and single-photon sources. Therefore, such
an amplifier cannot be employed to generate positive key
rates in this framework, unless a different source is used to
generate the entangled photons. Note that other assignments
of inconclusive results are possible [1], which may allow the
extraction of a secret key with the original heralding device.
The discussion requires more detailed analysis, as it depends
on the exact configuration of the setup. It is omitted here,
as these studies go beyond the scope of the current research.
However, some discussion of this question can be found in the
work by Moroder and Curty [18].
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FIG. 5. (Color online) Key rate vs distance, plotted on a log-
arithmic scale for our proposed amplifier using the unrestricted
device-independent theory framework. We calculate the key rate from
Eq. (15), multiplied by the repetition rate of the source, 10 GHz, and
the probability that the amplifier successfully heralds the signal. The
efficiency parameter is ηcd = 0.95. The bound for the influence of
the higher photon terms is not included in this plot since the bound
differed negligibly from the perturbative calculation.

Due to the above, the simulations for the unrestricted
device-independent theory are performed only for our pro-
posed amplifier (see Fig. 5). This framework is the most
demanding on coupling and detection efficiencies that need to
be used in order to generate a positive key: In our simulations,
we use a total loss term ηcd = 0.93.

3. Detector device-independent theory

The final framework we consider is not fully device
independent and, as a result, the security does not require a
loophole-free violation of Bell’s inequality. Here, the standard
Bennett-Brassard 1984 (BB84) protocol is used [19] and we
trust the source on Alice’s side only. Bob’s detectors remain
uncharacterized. This scenario has been considered by Mayers
[20], and later also by Koashi [21]. The scenario makes random
assignment of inconclusive results on Bob’s side necessary and
therefore places a constraint on the detection probability that
is required in order to generate a secure key [17]. Again we use
the fact that the position of events with random assignment are
known to Bob, who can utilize this knowledge in the later error
correction step. The security proof [17] is therefore a variation
of corresponding proofs of Koashi [21]. This scenario is more
tolerant to transmission loss. For example, with perfect photon
pair sources and detection devices, this scenario tolerates a
total efficiency accounting for transmission, coupling, and
detection loss of 64.5% without heralding [17]. The key rate
for this scheme is given by [17]

K � μ−c (1 − h[Q−c]) − h[δb]. (16)

Here, δb = μ−cQ−c + (1 − μ−c) 1
2 is an effective phase

error rate, μ−c is the probability of Bob obtaining a conclusive
result [as in Eq. (15)], and Q−c is the error rate when
Bob’s measurement is conclusive. This framework is the least
demanding on the coupling and detector efficiencies.

The simulations’ results are shown in Fig. 6. In this case
the pump parameters are larger compared to the other two
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FIG. 6. (Color online) Key rate vs distance, plotted for both
the original and the modified amplifier using the detection device-
independent theory framework. We calculate our key rate from
Eq. (16), multiplied by the repetition rate of the source, 10 GHz,
and the probability that the amplifier successfully heralds the signal.
The efficiency parameter is ηcd = 0.75.

scenarios. Therefore, the gap between the approximated rates
and the lower bounds is more pronounced.

VI. CONCLUSIONS

Heralding devices can play an important role in quantum
key distribution. In principle, they allow to overcome the
limitation posed by transmission losses to device-independent
quantum key distribution. In addition, other areas of quantum
communication can benefit from such heralding devices.
For example, some quantum memory approaches do not
provide intrinsic heralding devices. Using external heralding,
as proposed in this paper, will allow the use of such memories
in quantum repeater technologies [22].

In this regard, we have explored the KLM framework and
employed it in the implementation of a conceptually optimal
heralding strategy that, in the limit of asymptotic resources,
achieves a perfect QND-like measurement onto the desired
signal subspace with success probability approaching unity.

Departing from the conceptual scenario, we discussed a
simple and experimentally viable improvement on the original
work by Gisin et al. [3], enhancing the performance of the
heralding device. Specifically, we were able to overcome the
undesired relation between how reliably the device works in
heralding its input, and the success probability of the heralding
process. Our device allows, in an idealistic implementation,
perfect operation on the important input subspace containing
at most one photon in each of the optical modes that define the
dual-rail qubit.

This improvement not only increases the achievable key
rates, in the context of a restricted device-independent theory,
by roughly one order of magnitude in distance and rate as
compared to the scheme in [3], but also allows us to enter
the domain of fully unrestricted device-independent theory.
Our simulations show that, under similar assumptions as those
made in [3], we can obtain positive key rates in this desirable
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scenario. Note, however, that the requirements on detection
and coupling efficiency are more demanding.

Finally, we showed that, for detector device-independent
theories with a well characterized source but uncharacterized
detection devices, a secret key can be generated with relaxed
requirements on the detection and coupling efficiencies, push-
ing these scenarios now into the domain where experimental
realization can be attempted.
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