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A scheme to evaluate computation fidelities within the one-way model is developed and explored to understand
the role of correlations in the quality of noisy quantum computations. The formalism is promptly applied to many
computation instances and unveils that a higher amount of entanglement in the noisy resource state does not
necessarily imply a better computation.
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I. INTRODUCTION

Since the advent of quantum computation [1], entangle-
ment, a clear-cut quantum mechanical feature, is commonly
believed the key resource behind it. Not surprisingly, the
importance of correlations for quantum computations has been
a much-debated subject. For pure state quantum computations
certainly some entanglement is necessary if the quantum
protocol is not to be efficiently simulated by classical means
[2,3]. However, entanglement is only a necessary but not
sufficient condition for an exponential gain of quantum
computations over classical ones. There are quantum protocols
that despite producing highly entangled states can still be
efficiently simulated classically [2,4].

The scenario for mixed state quantum computations is far
more subtle [2]. A model for mixed-state quantum computation
introduced in [5], in which the input state consists of a single
qubit in a pure-state and all the others in a uniform incoherent
sum of classical alternatives, and therefore it is not entangled,
offers an exponential speed-up to problems that are believed
intractable by classical computers [6]. Also, room-temperature
NMR implementations of quantum information tasks [7],
which employ a rather noisy state where entanglement is
known not to be present [8], seem to still present gain
over classical computations [9]. Nevertheless, in these cases
generation of entanglement during the computation itself
cannot be ruled out [6]. A definitive statement about the
influence of entanglement is thus challenging.

A clean investigation of the entanglement role in noisy
quantum computations is however possible within the one-way
model [10]. In this model local (projective) measurements on
a highly entangled resource state are responsible for input
preparation, the required computation, and final readout. No
entanglement is created during the computation. We thus have
a clear distinction between the entanglement creation and its
use as a resource.

Employing this model of computation, we address here
still another facet of the entanglement role in noisy quantum
computations: How does the noise affecting the entangled
resource state impact on the “quality” (fidelity) of the
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computation? Does a more entangled resource state always
empower better computations? Or in more practical terms,
should one always try to minimize the influence of the
environment over the entanglement such as to maximize the
fidelity of a computation? To answer in the negative to these
questions, we derive an expression for the fidelity of any one-
way computation when the resource state undergoes various
types of decoherence. Our results extend to noisy computations
the assertion [11] that a too entangled state is not always
advantageous for a measurement based quantum computation.

This article is organized as follows: In Sec. II we briefly
review the one-way model for quantum computations. In
Sec. III we discuss the effects of various models of decoherence
on one-way computations and derive the expression for the
fidelity in such cases. In Sec. IV we apply the developed
formalism to various computation instances, showing that a
higher amount of entanglement in the noisy resource state
does not necessarily imply better computations. In particular,
we obtain that some instances of the Deutsch-Jozsa [12]
algorithm, which in the circuit model of quantum computation
generically create entangled states [13], within the one-way
framework require no entanglement for their execution. In
Sec. IV D we analyze the effects of decoherence in the
ancilla-driven quantum computation proposed in Ref. [14]. In
Sec. V we summarize our results and draw some conclusions.

II. ONE-WAY MODEL OF QUANTUM COMPUTATION

In the one-way model [10] all the interactions between
qubits and local unitary transformations needed by the protocol
are exchanged by a prior entanglement in a graph state and
the possibility to make adaptive local measurements. A graph
state is defined by a set of vertices V and a collection of
edges E . In each vertex i sits a qubit (H2) initialized in
a state |+i〉 = (|0i〉 + |1i〉)/

√
2, and an edge represents an

interaction between vertices {i,j} given by CZij = |0i〉〈0i | ⊗
1j + |1i〉〈1i | ⊗ Zj . Hereafter {1,X,Y,Z} represents the usual
{σ0,σ1,σ2,σ3} Pauli matrices. The N -qubit graph state is then

|G(V,E)〉 =
∏

{i,j}∈E
CZij |+k〉⊗k∈V . (1)

Starting with a N -qubit graph state, an one-way computation
is carried out by measuring M qubits and the remaining
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N − M qubits encode the protocol answer. The algorithm is
then defined by a triple {θi,αi,si}, with instructions on the
measurement basis |Msi

ki
(θi,αi)〉 for the ith qubit. Here∣∣Msi

0i
(θi,αi)

〉 = cos
αi

2
|0〉 + sin

αi

2
e−i(−1)si θi |1〉

(2)∣∣Msi

1i
(θi,αi)

〉 = sin
αi

2
|0〉 − cos

αi

2
e−i(−1)si θi |1〉

with si ≡ si(�k) = si(k1, . . . ,kM ) ∈ {0,1} the adaptation param-
eter that depends on the outcome kj ∈ {0,1} of previous
measurements and implicity on the algorithm being considered
(hereafter, the notation �x represents the M-tuple x1, . . . ,xM ).
The need for adaptations stems from the requirement of
turning every computation deterministic, despite the intrinsic
randomness associated with each quantum measurement.
Adaptations introduce a temporal order for the measurements,
and thus classical correlations other than those already present
in the initial state. The only two instances of αi necessary
for all computations are αi = 0, for measurements along
the z direction, and αi = π/2, for measurements in the x-y
plane (equator) of the Bloch sphere. The measurements are
nonadaptive when the basis is given by the Pauli operator
{X,Y,Z} eigenvectors, and possibly adaptive otherwise. Lastly,
the desired answer is given aside some local unitary transfor-
mations, final by-products (B) of the computation, determined
by the classical outcomes �k of all measured qubits. These
by-products can be dealt with by classical postprocessing.

Once a computation to be performed on a graph state
|G(V,E)〉 is defined, the M qubits to be measured can be
immediately written in their measurement basis (adaptations
included) which elicits the answer

|G(V,E)〉 = 1

2
M
2

∑
�k

M⊗
i=1

∣∣Msi

ki
(θi,αi)

〉|A�k(�θ,�α)〉, (3)

with |A�k(�θ,�α)〉 = B�k|A�0(�θ,�α)〉, and |A�0(�θ,�α)〉 the desired
answer without the by-products. The latter, in turn, can be
expressed as local unitaries

B�k =
N⊗

i=N−M+1

(−1)fi,Sig (�k)X
fi,X(�k)
i Z

fi,Z (�k)
i , (4)

with fSig , fX, and fZ Boolean functions of the outcomes �k
defined by the protocol at hand. In a noise-free computation,
the sign Boolean function fSig only introduces a global phase
on each answer and is then of no importance. However, under
the action of the environment, some of the answers will be
mixed, and this phase then becomes a relative one. As such,
it cannot be neglected. It is important to notice that out of
2M possible measurement outcomes in a given protocol, only
4N−M of them possibly lead to different answers (modulo a
global phase), meaning that in general many answers are the
same.

III. FIDELITY OF NOISY ONE-WAY
QUANTUM COMPUTATIONS

Once the hardware (graph state) and algorithm (measure-
ment basis + possible adaptations) are defined, we want to
gauge how the quality of a computation decays due to different

noisy environments and how this is related to the decay of the
initial entanglement resource.

The standard measure for the computation quality is the
output fidelity F [1,15–20]. This measure compares the
desired state |�out〉 with the actually obtained one �out, giving
F(|�out〉,�out) := 〈�out|�out|�out〉. The fidelity measure is also
used to define the error threshold for quantum computations
[21,22].

In what follows, we consider that each qubit of the
initial graph state is individually coupled to its own thermal
environment. A great variety of single-qubit open dynamics is
encompassed by the map [23]

�k( �) =
3∑

j=0

λk
j (t) σj

�σj + μk(t)

× [σ3 �σ0 + σ0 �σ3 − iσ1 �σ2 + iσ2 �σ1] (5)

with

λk
0(t) = 1 + 2e−Ckt + e−Bkt

4
,

λk
1(t) = λk

2(t) = 1 − e−Bkt

4
,

(6)

λk
3(t) = 1 − 2e−Ckt + e−Bkt

4
,

μk(t) = (2Sk − 1)
1 − e−Bkt

4
.

For the kth qubit, the parameters Bk and Ck are, respectively,
the decay rate of inversion and polarization, and Sk ∈ [0,1]
depends on the temperature of the bath. Sk = 1 corresponds
to zero-temperature bath, and Sk = 1/2 the limit of infinite
temperature [23]. Maps which are described by the above
parameterization include, but are not restricted to, Pauli
channels, dephasing, depolarizing, and amplitude damping
[1,23].

The decohered state after time t is obtained by the
composition of the individual evolutions �k , i.e., �(t) =
�(|G(V,E)〉〈G(V,E)|) := �1 ⊗ · · · ⊗ �N (|G(V,E)〉〈G(V,E)|). The
assumption of mutually independent environments is well
justified whenever the separation between the vertices is large
enough so that collective effects need not be taken into account.

To evaluate the computation fidelity after the noisy evo-
lution, we note that once a measurement basis is defined,
only the diagonal terms in such basis are relevant to the
measurement outcome. The action of the channel (5) on
a general measurement basis term |Mki

〉〈Mk′
i
| is such that

nondiagonal (ki 
= k′
i) terms are mapped onto nondiagonal

terms, while diagonal (ki = k′
i) terms evolve as

|Mki
〉〈Mki

| �→ (1 − pi)|Mki
〉〈Mki

| + pi |Mki⊕1〉〈Mki⊕1|
+ off-diagonal terms, (7)

where henceforth we use a simplified notation whenever
ambiguities are impossible.

In the equation above, pi is a function of time and of
the parameters describing the channel (5). In the case of a
measurement in the x-y plane,

p
xy

i = λi
1(t) + λi

3(t), (8)
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and for a measurement in the z direction it reads

pz
i = 2λi

1(t) + (−1)ki+12μi(t). (9)

As an example, consider the following two particular noise
instances (which will be used later):

(i) Phase-flip error (pf) — With a probability ppf/2 the
state |0〉 + |1〉 is mapped onto |0〉 − |1〉 and vice versa. This is
obtained by setting Bi = 0 and Ci = 2
pf in (5). Accordingly,
the state evolution maps �i �→ (1 − ppf/2)�i + ppf(Z�iZ)/2,
with ppf = [1 − exp(−2
pf t)]. The impact of the decoherence
on the measurement basis is then given by (8) and (9):

p
xy

i,pf = ppf/2,

pz
i,pf = 0. (10)

(ii) White noise (w) — Add to the previous case the possibility
of errors into the other independent directions x and y. This
causes the initial state to be exchanged with a maximally mixed
one with probability pw. This is described by setting Si = 1/2
and Bi = Ci = 4
w in (5). Under this dynamics, the state
evolves to (1 − pw)�i + pw1/2, with pw = 1 − exp(−4
wt).
In this case we have

p
xy

i,w = pz
i,w = pw/2. (11)

It is important to notice that depending on the required
measurement by an algorithm, some noisy maps might have
no effect and the corresponding measurement outcomes are
thus undisturbed. This feature will be further exploited in
Sec. III A.

Note also that these decoherence processes can be inter-
preted as if the performed measurement was not perfect, being
unable to distinguish between the two possible outcomes with
probability pi .

Now we are set to evaluate the fidelity of any one-way noisy
quantum computation. Given a result �r for the measurements,
we want to determine F(|A�r (�θ,�α)〉,��r ), with ��r the (N − M)
qubit state encoding the noisy protocol answer. We are
thus interested in the projection of �(|G(V,E)〉〈G(V,E)|) onto⊗M

i=1 |Msi (�r)
ri

〉〈Msi (�r)
ri

|.
However, since 〈Msi (�r)

ri
|Msi (�k)

ki
〉 
= 0 in general, we first note

that∣∣Msi (�k)
ki

〉 = 1

2

{
[1 + (−1)ki e−2iθi [si (�k)⊕si (�r)]]

∣∣Msi (�r)
0i

〉
+ [1 − (−1)ki e−2iθi [si (�k)⊕si (�r)]]

∣∣Msi (�r)
1i

〉}
, (12)

and therefore the state in (3) can be rewritten as

|G〉 = 1

2
3M
2

∑
�k

M⊗
i=1

{
[1 + (−1)ki e−2iθi [si (�k)⊕si (�r)]]

∣∣Msi (�r)
0i

〉

+ [1 − (−1)ki e−2iθi [si (�k)⊕si (�r)]]
∣∣Msi (�r)

1i

〉}|A�k〉. (13)

In the last two expressions above, when the measurement is in
the z direction there is no adaptation, i.e., si = 0.

Due to the noise, the components |Msi (�r)
0i

〉〈Msi (�r)
0i

| and

|Msi (�r)
1i

〉〈Msi (�r)
1i

| mix according to the prescription in Eq. (7),
reducing the fidelity of the protocol. The state after the action
of the noise reads

1

23M

∑
�k,�l

M⊗
i=1

{
[1 + (−1)ki e−2iθi [si (�k)⊕si (�r)]][1 + (−1)li e2iθi [si (�l)⊕si (�r)]]

[
(1 − pi)

∣∣Msi (�r)
0i

〉〈
M

si (�r)
0i

∣∣ + pi

∣∣Msi (�r)
1i

〉〈
M

si (�r)
1i

∣∣]

+ [1 − (−1)ki e−2iθi [si (�k)⊕si (�r)]][1 − (−1)li e2iθi [si (�l)⊕si (�r)]]
[
(1 − pi)

∣∣Msi (�r)
1i

〉〈
M

si (�r)
1i

∣∣ + pi

∣∣Msi (�r)
0i

〉〈
M

si (�r)
0i

∣∣]
+ of-diagonal terms

}
�(|A�k〉〈A�l |). (14)

The projection onto the subspace corresponding to �r leads the remaining N − M qubits in the state

��r = 1

23M

1

Z�r

∑
�k,�l

M∏
i

{(1 − pi)[1 + (−1)ki+ri e−2iθi [si (�k)⊕si (�r)]][1 + (−1)li+ri e2iθi [si (�l)⊕si (�r)]]

+pi[1 − (−1)ki+ri e−2iθi [si (�k)⊕si (�r)]][1 − (−1)li+ri e2iθi [si (�l)⊕si (�r)]]}�(|A�k〉〈A�l|), (15)

with Z�r the probability of obtaining the outcome �r . Note that in the above expression, the channels acting in each qubit can
be different and might influence the state for different time intervals. This is an important feature for the qubits might be of a
different nature and could be measured at different times.

We are thus in a position to evaluate the computation fidelity FOneWay(�r) = 〈A�r |��r |A�r〉 for the decohered graph state, to get

FOneWay(�r) = 1

23M

1

Z�r

∑
�k,�l

M∏
i

{(1 − pi)[1 + (−1)ki+ri e−2iθi [si (�k)⊕si (�r)]][1 + (−1)li+ri e2iθi [si (�l)⊕si (�r)]]

+pi[1 − (−1)ki+ri e−2iθi [si (�k)⊕si (�r)]][1 − (−1)li+ri e2ii[si (�l)⊕si (�r)]]}A�r,�k,�l (16)

with A�r,�k,�l = 〈A�r |�(|A�k〉〈A�l |)|A�r〉.
Instead of looking for the fidelity of a particular outcome �r

of the computation, one is often more interested in the average

fidelity over all the outcomes, simply given by

FOneWay =
∑

�r
Z�rFOneWay(�r). (17)
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With this expression in hand and the results in [24], which
allow for the evaluation of noisy graph-state entanglement,
one can compare the dynamics of entanglement in the state
used as a resource with the fidelity dynamics of any noisy
one-way computation. Furthermore, from the expression (16)
one can immediately infer that the computation fidelity shows
a continuous decay in time, as each pj is a continuous function
of time. That is in clear contrast with a generic entanglement
evolution, where the amount of entanglement may vanish in
finite time [25]. As noted in [17] (considering the particular
effects of individual decoherence in a four-qubit cluster state),
the finite time disentanglement does not cause changes in the
behavior of the computation fidelity. Entanglement decay is
shown here, in great generality, to not display a one-to-one
correlation with computation quality.

A. Computations without adaptations

Computations that need no adaptations (NA) turn out to
be a very interesting subset of all possible computations. If
a computation requires no adaptations, si(�k) = 0 ∀i and ∀�k,
then all the outcomes happen with the same probability, Z�r =
1/2M ∀�r . In this case, Eq. (16) simplifies to

FNA
OneWay(�r) =

∑
�k

M∏
i

(1 − pi)
1⊕ki⊕ri p

ki⊕ri

i A�r,�k,�k . (18)

Expression (18) shows that the overall effect of quite general
decoherence processes, as parametrized in (5), over the
nonadaptive measured qubits is to incoherently combine all the
possible noisy answers associated with such measurements.
The sign Boolean function fSig in the definition of the
by-products (4) can, also in such cases, be safely ignored.

Further simplification is possible for nonadaptive com-
putations when the channel acting on the answer qubits is
given by a Pauli map 
, obtained by setting μ(t) = 0 in
the general expression (5). In this case 
[B�k|A�0〉〈A�0|B†

�k ] =
B�k
[|A�0〉〈A�0|]B†

�k and A�r,�k,�k = A�0,�r⊕�k,�r⊕�k , which implies that

FNA
OneWay(�r) = FNA

OneWay(�0). The average fidelity (17) is then the
same as the fidelity of any outcome, tremendously simplifying
its evaluation.

A greater insight on the nature of correlations necessary for
a one-way computation without adaptations is possible when
considering noise of the form

�j ( �) = (1 − pj ) �+ pjRn̂j
(φj ) �R

†
n̂j

(φj ), (19)

with Rn̂j
(φj ) = exp(−iφj n̂j · �σ/2) a rotation around the axis

n̂j in the Bloch sphere. This map has two invariant states, the
eigenvectors |n̂j 0,1(φj )〉 of the rotation. Now remember that a
measurement in a certain basis can be done directly on it, or
by first applying a unitary transformation to a convenient basis
and then the measurement. It stands for a simple relabelling.
Therefore for all nonadaptive measurements (NAMs), if the
noise is of the type in (19), it is possible to find U (φj ,θj ,αj ) that
transforms |Mkj

(θj ,αj )〉 → |n̂j kj
(φj )〉. This perfectly protects

the outcome probability distribution of the NAMs, even for
highly mixed resource states, as the measurement outcomes
will not be affected. For computations in which all the N qubits
are measured in a nonadaptive fashion, this procedure protects

the whole computation, and the graph state can be exchanged
by a mixed state which bears only classical correlations —
that is, a separable mixed state that can be written in a basis
formed by the tensor product of single-qubit orthonormal basis
[26]. The noisy computation without adaptations can thus be
classically simulated.

To exemplify this, consider the state in which the ith qubit
is to be measured in the X basis, namely,

|GN 〉 = 1√
2

(|+i〉|A+〉 + |−i〉|A−〉), (20)

with |A±〉 = (1/
√

2)(|GN−1〉 ± ⊗
j∈Ni

Zj |GN−1〉), and Ni

the neighbors of the ith qubit. Applying a bit-flip channel
�X

i ( �) := (1 − p) �+ pX �X on the ith qubit decreases the
entanglement between this qubit and the rest of the graph,
while it does not affect the measurement outcome. Therefore,
since applying X on a qubit i of a graph is equivalent to apply
Z’s in all its neighbors Ni [23], preparing the state

1

2

(
|GN 〉〈GN | +

∏
j∈Ni

Zj |GN 〉〈GN |
∏
j∈Ni

Zj

)

= 1

2
(|+i〉〈+i | ⊗ |A+〉〈A+| + |−i〉〈−i | ⊗ |A−〉〈A−|),

(21)

which is a separable state between the ith qubit and the rest
of the graph state and is invariant under the application of bit
flip to the ith qubit, leads to the same probability distribution
of outcomes for a measurement of the ith qubit on the X

basis. Moreover, it generates the same answers {|A±〉}, and
this procedure can be iterated to the remaining qubits to be
measured nonadaptively.

The NAMs are related to the so-called Clifford-group
transformations of part of a quantum protocol, and as such can
be simulated efficiently in a classical computer [4,10,27]. From
the framework presented here, it is clear that the entanglement
between the qubits to be measured nonadaptively and the rest
of the graph state can be interchanged by simple classical
correlations encoded in a mixed-state without compromising
the computation. When adaptations are necessary this scheme
cannot prevail. Adaptive measurements are thus related to
the quantum part of the computation, where some resilient
entanglement may be of use.

IV. APPLICATIONS

In the following we apply the formulas developed above to
specific examples and compare the fidelity dynamics of noisy
one-way quantum computations to the entanglement decay of
the resource state. In general, a mismatch between the two
dynamics is found: higher entanglement is not connected with
higher quality computations.

A. Remote state preparation (RSP)

Take the simplest possible one-way protocol, i.e.,
to remotely prepare the single-qubit state cos(φ/2)|0〉 −
i sin(φ/2)|1〉 [15]. Within the one-way model, we start with
a graph state of two qubits, |G2〉 = (|00〉 + |01〉 + |10〉 −
|11〉)/2, and apply a measurement on the first qubit to produce
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the desired state on the second one. For this task, one chooses
to measure the observable with eigenvectors |Mk(φ,π/2)〉 =
[|0〉 + (−1)k exp(−iφ)|1〉]/√2, where k ∈ {0,1} represents
the two possible measurement outcomes. After the mea-
surement, the second qubit is left in the state |�out〉 =
Xk[cos(φ/2)|0〉 − i sin(φ/2)|1〉]/√2. Apart from the by-
product Bk = Xk , which is known, the desired state is obtained
with maximal fidelity. However, quantum computations are
prone to errors. Let us assume, for simplicity, a favorable
scenario where only the first qubit (the one to be measured) is
subjected to noise. The initial two-qubit state evolves then to
(�1 ⊗ 1)(|G2〉〈G2|). Since no adaptations are necessary and
the second qubit is not under the action of an environment, the
mean fidelity for this protocol, as evaluated by (18), reads

FRSP = FRSP(0) = (1 − p1)A0,0,0 + p1A0,1,1. (22)

If the measurement is on the x-y plane, then p1 = p
xy

1 . Further-
more, A0,0,0 = |〈A0|A0〉|2 = 1 and A0,1,1 = |〈A0|X|A0〉|2 =
0. This leads to FRSP = (1 − p

xy

1 ), which now depends only
on the specific nature of the noise acting on the first qubit.

To address the connection between computation fidelity
and entanglement, consider the two instances of open system
dynamics introduced in Sec. III:

(i) Phase-flip error (pf) — The state evolution
maps |G2〉〈G2| �→ (1 − ppf/2)|G2〉〈G2| + ppf/2(Z ⊗ 1)|G2〉
〈G2|(Z ⊗ 1), with ppf = [1 − exp(−2
pf t)]. The entangle-
ment dynamics of the noisy resource state can be inferred by
its concurrence [28], C

pf
RSP(t) = exp(−2
pft). Now, applying

the state preparation protocol described above to the decohered
state, the output fidelity, given that p

xy

1 = ppf/2, is Fpf
RSP(t) =

[1 + exp(−2
pf t)]/2. The correlation between decreasing
entanglement with decreasing fidelity is as supposed.

(ii) White noise (w) — By adding noise to the other
independent directions, the resource state evolves to (1 −
pw)|G2〉〈G2| + pw1/4, with pw = 1 − exp(−4
wt). As be-
fore, we evaluate the entanglement dynamics via concurrence,
Cw

RSP(t) = max{0,[3 exp(−4
wt) − 1]/2}. Finally, the proto-
col fidelity with white noise, p

xy

1 = pw/2, reads Fw
RSP(t) =

[1 + exp(−4
wt)]/2. Once again, a smaller value of entangle-
ment leads to a worse computation.

Nevertheless, a comparison between both situations shows
unexpected behavior (see Fig. 1): the computation fidelity
is higher when the entanglement is more fragile against
disturbances. Note that even after the entanglement is fully
exhausted, the white noise case still outperforms the always
entangled phase-flip case. Even in the simplest one-way
protocol the entanglement is neither sufficient nor a necessary
signature of higher quality for the noisy quantum computation.

In fact, this reasoning can be extended to quantum discord,
a recently proposed measure of quantum correlations which
does not include only entanglement [31]. This measure
attracted lots of attention lately, since it seems to pinpoint
efficient quantum computations even in the apparent absence
of entanglement [6]. Quantum discord is defined as Q(�) =
I(�) − C(�), where the mutual quantum information

I(�) = S(�A) + S(�B) − S(�) (23)

is a measure of total correlations, and

C(�) = sup
{�k}

S(�A) − S
(
�k

A|{�k
B

})
(24)

is a measure of classical correlations, with the supremum taken
over all sets of orthogonal projectors {�k

B}. As usual, S(�) =
−Tr(� log2 �) denotes the von Neumann entropy, and �i =
Trj 
=i(�) with i,j = A,B is the partial density matrix. For
classical systems I = C, and thus equivalent definitions for
the mutual information, resulting in zero quantum discord.

Evaluating the quantum discord, as shown in Ref. [32], for
the toy protocol described above shows that a lower quantum
discord may lead to a higher computation fidelity (see Fig. 2).
Also quantum discord cannot be employed to signal higher
quality in a noisy quantum computation scenario.

As a last possible signature of a higher quality noisy
quantum computation, we may employ the measure of
nonclassicality very recently proposed in [33] (see also [34]
for a slightly different but equivalent approach), namely, the
minimum entanglement potential (PME) of a given state �A.
As a result of the following activation protocol (see [33] for
details),

(i) Act with local unitaries UA in each subsystem of �A,
(ii) Interact, through a controlled-NOT (CNOT), each subsys-

tem of �A with an ancilla initialized in the state |0〉,
any nonclassical state becomes entangled (for any choice of

UA) with the ancillary system A’. The minimum entanglement
generated across the A : A′ split quantifies the nonclassicality
of state, that is,

PME (�A) = minUA
EA:A′(�′

A:A′), (25)

where �′
A:A′ is the system-ancilla state generated in the end of

the activation protocol.
Choosing as a measure of entanglement the negativity [29],

we can readily compute the PME for the resource state in the
two noise scenarios mentioned above. In these cases we get
M(�pf/w[|G2〉〈G2|]) = (1 − ppf/w) =: (PME)pf/w

RSP. For the RSP
protocol the relation (PME)pf/w

RSP = 2Fpf/w
RSP − 1 then holds, and

therefore a higher PME implies higher computation quality.
At least for this simple example, the nonclassicality of the

FIG. 1. (Color online) RSP: Entanglement decay vs computation
fidelity (
w = 0.375 
pf = 
). A less entangled state may lead to a
higher computation fidelity (the same ordering is obtained if the
negativity [29] is used instead of concurrence). In the white noise
case, entanglement vanishes when the fidelity reaches 2/3 (horizontal
dashed line) [30]. Entanglement is thus superfluous for achieving
fidelities below this threshold.
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FIG. 2. (Color online) RSP: Quantum discord decay vs com-
putation fidelity (
w = 0.57 
pf = 
′). As for concurrence, a state
with less quantum discord may lead to a better-quality computation.
Quantum discord vanishes only asymptotically.

resource state, quantified by the minimum entanglement po-
tential, seems to be correlated to the quality of the computation.

B. Primitives for universal quantum computation

The basic gates for universal quantum computation are a
generic single-qubit rotation (R) and a two-qubit controlled
operation, say, a controlled-not (CNOT) gate. How is the fidelity
of these basic building blocks related to the entanglement of
their resource states?

Any U(2) rotation can be decomposed into successive
rotations over three different angles, known as the Euler angles,
as R(φ1,φ2,φ3) = Rx̂(φ3)Rẑ(φ2)Rx̂(φ1). Any qubit state can
be created out of any other qubit state via this operation.
Within the one-way framework this task is implemented via
adaptive measurements in a five-qubit cluster state [10]. The
measurement pattern and required adaptations are depicted in
Fig. 3(a). Given that the input qubit was initially in the state

FIG. 3. (Color online) Universal gates: One-way implementation
of a universal set of gates. The blue qubits encode the initial state,
and the green ones the output state after the measurements. Gray
qubits represent intermediate steps of the computation. All the
measurements required are in the xy plane (αi = π/2), with the
latitude angle θi specified for each qubit in the picture. (a) Single-qubit
rotation. A general rotation requires adaptive measurements, which
are indicated by the arrows above. These arrows are translated into the
adaptation parameter for each qubit as s1(�k) = 0,s2(�k) = k1,s3(�k) =
k2, and s4(�k) = k1 + k3. (b) Controlled-NOT. Despite that this is an
entangling gate, it requires no adaptations. This means that once the
input state is defined, it can be classically simulated (see Sec. III A).

|ψin〉, after a execution of this protocol with outcomes �r , the
output qubit is left on B�r R(φ1,φ2,φ3)|ψin〉. The by-products
B�k of this computation are defined as in (4) with

f5,Sig(�k) = k3k2;

f5,X(�k) = k4 + k2;

f5,Z(�k) = k3 + k1.

For the CNOT gate a cluster of 15 qubits is necessary, but
no adaptations are required [10]. The measurement pattern
defining the algorithm is shown in Fig. 3(b). The CNOT acts on
two qubits, called target and control, such that if the control is
in the state |1〉〈1| the target qubit is flipped and nothing happens
otherwise, that is, CNOTij = |0i〉〈0i | ⊗ 1j + |1i〉〈1i | ⊗ Xj . If
the initial control-target state in the qubits 1 and 9 is |χin〉, the
outcome state in the qubits 7 and 15, after measurements with
outcome �r , is |χout〉 = B�r CNOT|χin〉. The by-products of this
operation are given by setting

f7,X(�k) = k2 + k3 + k5 + k6;

f15,X(�k) = k2 + k3 + k8 + k10 + k12 + k14;

f7,Z(�k) = k1 + k3 + k4 + k5 + k8 + k9 + k11 + 1;

f15,Z(�k) = k9 + k11 + k13.

As no adaptations are necessary for this gate, we can ignore
the Boolean function fSig.

Now consider that all measured qubits, for both protocols,
are under the influence of identical local environments (pi =
p). As before we consider the cases of phase-flip and white
noise. The noisy evolution of the fidelity for the rotation
protocol, Fw/pf

R , can be assessed by expressions (16) and
(17). For the CNOT gate, however, the dynamics of Fw/pf

CNOT
is obtained via Eq. (18), with no need of averaging over
the possible measurement outcomes. For both protocols do
not need measurements along the z direction, if we have
pw

xy = p
pf
xy , then the fidelity decay under the two kinds of

FIG. 4. (Color online) R: Entanglement decay vs computation
quality. Noisy rotation of the initial state |ψin〉 = |0〉 setting φ1 =
φ2 = φ3 = π/4, when pw = ppf, i.e., 
pf = 2
w = 
. In this case,
Fpf

R = Fw
R , represented by the solid black line. Nevertheless, the

entanglement dynamics differs for each noisy instance. The entan-
glement between the output qubit with the remaining of the cluster,
as estimated by the negativity [29], is depicted by the dashed blue
line for the white noisy case (N w

R ), and by the dot-dashed red line for
phase flip (N pf

R ). A lower amount of entanglement can thus yield as
good a computation as a higher amount. A similar result holds for the
CNOT gate.
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noise is exactly the same. That is, for both noisy scenarios
Fpf

R = Fw
R and Fpf

CNOT = Fw
CNOT. This is in stark contrast to

the entanglement decay of the resource states which will be
generically different under the two noise instances. See Fig. 4
for a quantitative account of this fact. This once more shows
that entanglement dynamics is detached from the fidelity
dynamics, and as such a less entangled state can lead to higher
(or equal) quality computations.

C. Deutsch-Jozsa (DJ) algorithm

Let f : {0,1}N �→ {0,1} be an unknown Boolean function
which can be either constant, with all entries giving the same
answer, or balanced, with half of the entries yielding 0 and
the other half 1. What is the minimum number of times one
has to query an Oracle that implements f to discover the
function’s type? Classically, in general, one needs at least
2N−1 + 1 queries. Quantum mechanically, a single query via
the DJ algorithm is sufficient [12]. In the quantum version,
the Oracle applies a unitary Uf on the N qubits of the
input state plus an auxiliary qubit (A) as follows: Uf |x〉|y〉 =
|x〉|y ⊕ f (x)〉, where x and y are the decimal representations
of binary strings. The DJ algorithm takes advantage of the
superposition principle to evaluate all the entries at once and
can be cast as the unitary D = H⊗(N+1) Uf H⊗(N+1), with
H = 1/

√
2(|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|) the Hadamard

gate. It is a simple calculation to deduce that D(|0〉⊗N |1〉)
leads to the outcome �0, after measurement of the N qubits in
the computational basis, if and only if f is constant. This is
clearly spelled out by the state below:

D(|0〉⊗N |1〉) = H⊗N+1 1

2N/2

2N −1∑
i=0

(−1)f (i)|i〉|−〉. (26)

If f is constant the final state gets only a global phase (−1)f (0)

in relation to the initial state (remember that H 2 = 1). In
its noiseless implementation, the DJ is known to generically
create entanglement [13]. Note that along all the protocol the
auxiliary qubit is never entangled with the N -qubit principal
system. However, depending on the function f that the Oracle
implements, the N -qubit system can become entangled. For
a constant function f the state is never entangled, as can be
readily seen from (26). Despite that, for example, the balanced
function f : {0,1}3 → {0,1} with truth table,

x f (x)

0 = 000 0
1 = 001 0
2 = 010 0
3 = 011 1
4 = 100 1
5 = 101 1
6 = 110 1
7 = 111 0

generates an entangled state during the execution of the DJ
protocol [35]. For three qubits this balanced function can
be performed by the unitary operation Uf = CNOT1,ACZ2,3,

FIG. 5. (Color online) Graph-state and measurement pattern
for the DJ protocol simulating the balanced function Uf =∏N−1

i=2 Z
(C)
i,i+1CNOT1,A. All the qubits are measured without adaptations,

and so the entangled graph state can be replaced by a mixed state with
only classical correlations (see Sec. III A).

and can be easily generalized for N qubits as Uf =
CNOT1,A

⊗N−1
i=2 CZi,i+1. Note that the operation Uf can be done

within the one-way framework by measurements without any
adaptations (see Fig. 5).

On the other hand, a noisy implementation of the DJ, still
within the circuit model, was analyzed in [36] and shown
to present a small but finite advantage over its classical
counterpart, even for fully separable states. This indicates that
to unveil the role of the entanglement in the mixed DJ protocol
one has to split the generation and use of entanglement. In the
one-way setting the DJ problem can be posed as follows [37]:
the Oracle prepares a graph state that allows her to implement a
function f by local measurements. She hands to Neo (the user)
a set of input qubits and a set of output qubits. By encoding
(through measurements) a certain value x into the input qubits,
Neo can read out f (x) in the output qubits. As before, an
appropriate choice of measurements allows Neo to discover
whether the function is constant or balanced in a single run of
the protocol.

In the example shown in Fig. 5, neither the implementation
of f nor the measurements by Neo require adaptations. It
is thus possible for the Oracle to interchange the NAMs
in a entangled graph state with a mixed state without any
entanglement, and even though Neo can decide whether f

is constant or balanced in a single query. To design such a
classically correlated state the Oracle proceeds as follows:
(i) Think of the original cluster state needed to encode the
desired function for any input. (ii) Apply to it a hypothetical
noise of the type in (19), but protecting the measurement
outcomes by rotating the qubits to a convenient basis. In this
step the Oracle can only protect a single instance of input
states, and she does that for the H⊗N |�0〉. (iii) Finally, she
evaluates the stationary state of the decoherence process and
rotates the qubits back to their original basis. The resulting
(theoretical) state can be effectively prepared by the Oracle
only by classical means, and it is ready to be handed in to Neo.
If now Neo performs the correct set of measurements on the
input qubits, the output qubits will encode whether the function
is constant or balanced. It is interesting to notice that despite
the fact the state bears only classical correlations, the quantum
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possibility of measuring on a different basis entails advantages
over a fully classical implementation. In fact, many Boolean
functions, that in a circuit model generate entangled states,
can be decomposed into combinations of CZs, CNOTs, H ’s,
and possible relabelling of the qubits, transformations that can
be attained within the one-way model without adaptations. As
such, they can be simulated by a classically correlated resource
state. These ideas, therefore, extend to many algorithms, for
instance, to the Simon’s [38] algorithm, as long as the function
evaluated by the Oracle does not require adaptations. An
interesting question, that we leave open, is to determine the
fraction of Boolean functions that can be evaluated without
adaptations.

D. Ancilla-driven quantum computation

The idea used in Sec. III can be readily applied to the
ancilla-driven model of quantum computation [14]. In this
model all the necessary unitary transformations to be realized
in a quantum register are done through measurements in an
ancillary qubit coupled to the register. A coupling interaction
given simply by E = Ha Hri

CZari
is sufficient to allow for

universal quantum computation. The index a represents the
ancilla and ri the ith qubit of the quantum register. After
the interaction the ancilla is measured in the same basis (2) of
the usual one-way model (see Fig. 6 for details).

The effects of an inaccurate measurement (the projection
direction is deviated from the ideal one) in the fidelity of
the ancilla-driven quantum computation was analyzed in [20].
There it was shown that for a faulty measurement, the more
the qubit being coupled to the ancilla is entangled with the rest
of the qubits in the register, the smaller the mean fidelity of

(a)

(b)

.

FIG. 6. (Color online) (a) Single-qubit rotation. After the inter-
action E = Ha Hri CZari between the ith qubit on the register and
the ancilla, the latter is measured in the (|0〉 ± eiφ |1〉)/√2 basis.
As a result the transformation XkHRẑ(φ) is applied to the qubit
in the register (with k the classical outcome of the measurement).
(b) Two-qubit entangling gate. After the interaction the ancilla is
measured in the basis {|0〉,|1〉}, and as a result the two qubits on the
register undergo the transformation (Xk

i Hi ⊗ Hj )CZij .

the operation. The relation is given by

F � 1 − SL sin2 ε

2
, (27)

where the entanglement is quantified by SL = 2[1 − Tr(�2
ri

)],
the normalized linear entropy of the reduced density matrix
�ri

, and ε quantifies the angular deviation from the ideal
measurement. Here we derive an analogous expression, but
instead of an inaccurate measurement we consider that the
ancilla qubit is undergoing one of the decoherence processes
described by the map (5). In this scenario we arrive at the
relation

F � 1 − p SL, (28)

which is fully equivalent to (27). For a given amount SL of
entanglement we can thus estimate how small the decoherence
parameter p should be, such that the computation fidelity is
not below a given threshold.

The derivation of (28) follows the same ideas as in Ref. [19].
Consider that the register state |ψr〉 is given by

|ψr〉 = α|0〉|η0〉 + β|1〉|η1〉. (29)

After the interaction of a register-qubit with the ancilla
(initialized in |+〉), the register-ancilla state |φar〉 is given by
(see Fig. 6(a))

|φar〉 = α|0〉a|+〉|η0〉 + β|1〉a|−〉|η1〉 (30)

= 1√
2

(|M0〉a|A0〉 + |M1〉a|A1〉), (31)

where |Ak〉 = α|+〉|η0〉 + (−1)keiφβ|−〉|η1〉. From the results
of the Sec. III we know that the effect of a map (5) on the ancilla
is to mix the answers of the computation. It is straightforward
to calculate the mean fidelityF = Z0F(0) + Z1F(1) (withZk

the probability of measuring |Mk〉 with a associated fidelityFk)
given by

F = 1 − p(1 − ξ 2), (32)

where ξ = Tr(Zk�k). Since SL � 1 − [Tr(Zi�i)]2 we imme-
diately obtain relation (28). The same result holds for the
situation where the ancilla is coupled to two qubits of the
register state (see Fig. 6(b)).

V. CONCLUSION

In this paper we have shown that the effect of very general
local decoherence maps on the measurement bases employed
by the one-way model is to mix the two measurement
directions with a certain weight p, which characterizes the
map. With this observation the fidelity of any computation
within the one-way model can be readily obtained. This
allowed us to conclude that the impact of the noise on the
entanglement in the resource state is not generically related to
loss of computation quality.

Even for the simplest one-way protocol, the remote-state
preparation (Sec. IV A), a state with more entanglement (or
discord) does not necessarily yield a higher quality compu-
tation. In other words, robust entanglement does not mean
robust one-way quantum computations. Rather on the contrary,
for the ancilla-driven measurement-based computation model
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(Sec. IV D), the fidelity sensitivity to decoherence is bigger
the higher the entanglement in the resource state.

Even more surprisingly, the framework developed here
made clear that the parts of algorithms that do not require
adaptations can be replaced by a classically correlated resource
state. This implies, for example, that some instances of the
Deutsch-Josza algorithm can be realized in the one-way
paradigm without any entanglement (Sec. IV C).

Thus, if entanglement (discord) cannot be assigned as the
signature of efficient noisy quantum computations, which
other quantities may assume this role? For the RSP protocol,
the amount of nonclassicality in the resource state (quantified
by the minimum entanglement potential) seems to also point
out the computation quality (Sec. IV A). We believe that
it would be interesting to extend or falsify this connection
between nonclassicality and computation fidelity to more
general cases.

All these results show that entanglement may not be
the most important resource for the quality of noisy

quantum computations. The mere use of a quantum logic,
in a mixed-state scenario, seems to entail considerable gain
over classical computations. This has obvious implications
to experimental implementation of quantum information
processes, for it relaxes the required isolation of the quan-
tum system from its environment. In fact, this can shed
some light on the functioning of biological systems, which,
despite being strongly influenced by the surroundings, are
mesoscopic systems that may profit from their quantum
nature [39].
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