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Extending matchgates into universal quantum computation

Daniel J. Brod* and Ernesto F. Galvão†

Instituto de Fı́sica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, Niterói, RJ, 24210-340, Brazil
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Matchgates are a family of two-qubit gates associated with noninteracting fermions. They are classically
simulatable if acting only on nearest neighbors but become universal for quantum computation if we relax this
restriction or use SWAP gates [Jozsa and Miyake, Proc. R. Soc. A 464, 3089 (2008)]. We generalize this result
by proving that any nonmatchgate parity-preserving unitary is capable of extending the computational power
of matchgates into universal quantum computation. We identify the single local invariant of parity-preserving
unitaries responsible for this, and discuss related results in the context of fermionic systems.
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I. INTRODUCTION

There are good reasons to study quantum circuits with
limited allowed operations. Experimentally, they may cor-
respond to circuits implementable with current technologies
or using a particular physical system. Theoretically, they
can help us understand the minimal requirements for the
quantum computational speedup achieved in problems such
as factoring. When the limited operations are not sufficient
for universal quantum computation, identifying the missing
resource can be revealing. As an example, the set of single-
qubit gates operating on a separable initial state can be
simulated classically, but the addition of any entangling gate
to the set makes it universal for quantum computation.

Matchgates are a restricted family of two-qubit gates first
described by Valiant [1] in the context of graph theory.
Valiant showed that circuits composed only of such gates
acting on nearest-neighbor qubits were classically simulatable.
Nearest-neighbor matchgates were shown to be equivalent to
noninteracting fermions [2] and remain classically simulatable
even in the case of adaptive measurements. This is in contrast
to noninteracting bosons, which allow for universal quantum
computation with adaptive measurements [3].

Many results were obtained by studying the algebraic
properties of matchgates, with no explicit reference to their
fermionic nature. This algebraic approach relies on the
Jordan-Wigner transformation to map fermionic operators into
operators of general two-level systems, whose computational
capabilities can then be studied. For instance, it was shown
that the computational power of nearest-neighbor matchgates
is equivalent to that of space-bounded quantum computation
[4] and of linear threshold gates [5]. It was also shown
that a universal set can be obtained by relaxing slightly
the nearest-neighbor condition, allowing matchgates to act
on next-nearest-neighbor qubits (i.e., one qubit apart) or,
equivalently, by adding the SWAP gate to the set [6]. This
algebraic study of matchgates is important not only for
understanding fundamental properties of quantum circuits,
but also to study possible experimental implementations in
different physical systems such as linear optics, as proposed
in [7].
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In this paper we address the question of which resources
are sufficient to extend the computational power of matchgates
into full quantum computation. We do this by studying
parity-preserving two-qubit gates, a natural generalization
of matchgates. We expand on the result of [6] by showing
that any (nonmatchgate) member of this larger set, together
with matchgates, is sufficient to attain universal quantum
computation. Our discussion relies on the characterization of
two-qubit gates in terms of their nonlocal parameters [8,9].
These are quantities invariant by local, single-qubit unitaries;
one example is the entangling power defined in [10]. We show
that a parity-preserving gate’s ability to extend matchgates
into quantum universality can be attributed to a particular
nonlocal parameter. This identifies the common characteristic
shared by gates as different as SWAP and controlled-Z (CZ),
which enables them to boost the computational power of
matchgates [6,11].

The paper is structured as follows. In Sec. II A we define
matchgates and parity-preserving gates, recalling important
known results and demonstrating the universality of match-
gates + SWAP in a simplified way, and in Sec. II B we review
the characterization of the nonlocal parameters of two-qubit
gates. In Sec. III A we suggest an intuitive generalization of
the SWAP into a continuous family of two-qubit gates, which
can provably boost the computational power of matchgates. In
Sec. III B we provide a complete characterization of match-
gates and parity-preserving unitaries in terms of their nonlocal
parameters, necessary to obtain our main result in Sec. III C.
In that section we show that any nonmatchgate parity-
preserving gate forms a universal set together with matchgates.
Sections IV and V contain a discussion of the results, open
problems, and conclusions.

II. REVIEW

We start by reviewing some basic concepts, definitions,
and known results which will be necessary for our main
discussion. In Sec. II A we recall the definition of two-
qubit matchgates and show how they are inserted in the
larger group of parity-preserving matrices, referring to known
results regarding simulability and universality of these sets. In
section II B we review the characterization of the nonlocal
parameters of general two-qubit gates.
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A. Parity-preserving unitaries and matchgates

Let us consider the most general 4 × 4 unitary matrix
that preserves the parity subspaces ({|00〉,|11〉} and {|10〉,
|01〉}) of a two-qubit system. Denoting it by G(A,B), where
A and B are the 2 × 2 matrices acting on the even and odd
subspaces, respectively, we can write it as

G(A,B) =

⎛
⎜⎜⎜⎝

A11 0 0 A12

0 B11 B12 0

0 B21 B22 0

A21 0 0 A22

⎞
⎟⎟⎟⎠ . (1)

Since G(A,B) · G(C,D) = G(AC,BD), the set of all uni-
tary matrices of this type forms a subgroup of U(4). From this
product rule and the unitarity of G(A,B) also comes the fact
that A and B must be unitary as well. With no loss of generality,
we can fix the global phase of G(A,B) by imposing that
det(A)det(B) = 1. If we also impose the nontrivial constraint
that det(A) = det(B) = ±1, the resulting unitary is known
as a matchgate.1 From this point on, parity-preserving (P.P.,
for short) denotes general unitaries of the form G(A,B),
while matchgate denotes the special case where the additional
determinant constraint is satisfied. Sometimes, we will also
refer to nonmatchgate P.P. unitaries, when det(A) �= det(B).

As mentioned before, the computational power of match-
gates has been studied in the literature, both in the context
of noninteracting fermions and of the algebraic properties of
the unitary matrices themselves. The most well-known result
is due to Valiant [1], who defined matchgates in the context
of graph theory and proved that circuits composed only of
nearest-neighbor matchgates can be classically simulated. This
result was reproduced in the context of fermions by Terhal and
DiVincenzo [2], who showed that circuits composed only of
nearest-neighbor matchgates were mathematically equivalent
to systems of noninteracting fermions. They also showed that
the simulability result holds even in the presence of adaptive
measurements, in contrast to noninteracting bosons, for which
adaptive measurements allow for universal quantum computa-
tion [3]. Subsequently, several results were obtained regarding
how to increment this set of operations to attain universal
quantum computation, for example, by adding certain simple
interactions [11] or allowing for charge measurements [12].

In this work we are interested in the algebraic properties
of matchgates. In particular, we address the question of which
unitaries can single-handedly boost the computational power
of (nearest-neighbor) matchgates to that of full universal
quantum computation. One such example is the SWAP gate,
since it replaces the need for long-range interactions, and it
is known [2,13] that matchgates acting on arbitrary pairs of
qubits form a universal set. Even more, it has been shown
in [6] that one does not need to fully remove the nearest-
neighbor constraint, and only relaxing it slightly to allow for
next-nearest-neighbor interactions (i.e., between qubits one
line apart) is sufficient to achieve (encoded) universality.

1Sometimes, to maintain common convention, we will not take
G(A,B) to belong to SU(4). In this case, G(A,B) will be a matchgate
if det(A) = det(B).

FIG. 1. Universal set of gates in terms of matchgates and SWAP:
(a) arbitrary single-qubit gate A and (b) CZ gate.

Since our work is heavily based on the construction
proposed in [6], we now reproduce a simplified demonstration
of this result. In [6], each logical qubit is encoded in four
physical qubits. Here we will use an encoding which is more
economical (each logical qubit is encoded in two physical
qubits) and which is equivalent up to some technical reasons
which need not concern us. We encode each logical qubit in
the even-parity subspace of two physical qubits:

|0〉L = |00〉, |1〉L = |11〉. (2)

Since matchgates act separately on parity subspaces, any
single-qubit gate A is implemented in the encoded qubit simply
by the matchgate G(A,A), as shown in Fig. 1(a).

Besides arbitrary single-qubit gates, for universality it
is sufficient to implement one of the standard maximally
entangling gates. One choice specially suitable for this con-
struction is the controlled-Z [CZ = diag(1,1,1,−1)], depicted
in Fig. 1(b). Let us label the physical qubits that encode the
first logical qubit with numbers 1 and 2, and similarly with
the second logical qubit (physical qubits 3 and 4). In view
of the encoding, it is simple to see that a CZ between the
logical qubits can be implemented by a single CZ between
physical qubits 2 and 3 only. This is the simplest choice,
which preserves the encoding while still avoiding the need
for long-range interactions. [Compare with the controlled-NOT

(CNOT) gate, for example, which would have to act on qubits
3 and 4 controlled by the state of either qubit 1 or 2.]

It can be easily checked that the circuit in Fig. 1(b),
implementing

CZ23 = G(H,H )G(X,X) SWAP G(H,H ), (3)

has the desired effect and thus completes the universal set
(in the encoded space), having used only matchgates and the
SWAP gate. Note that qubit initialization and measurements
are not an issue here, as both preparation and measurement in
the logical computational basis are trivially implemented by
preparation and measurement in the physical computational
basis, and there is no need for previously entangled or other-
wise inaccessible states. In short, this gate-set can efficiently
simulate any quantum computation.
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There are other examples in quantum information of a single
gate uplifting a classically simulatable set into universal quan-
tum computation. For instance, circuits with nonentangling
gates only are classically simulatable, while adding a single
entangling gate allows for full quantum computation. Another
example is the Toffoli gate, which by itself results in classically
simulatable circuits (in fact, Toffoli is universal for classical
computation), but adding the Hadamard gate promotes the set
to quantum universality [14]. However, the matchgate + SWAP

result is also surprising, as the added resource seems to be a
very trivial one (the simple swapping of qubits) as opposed to
the resources in the other cases, which are considered to be
fundamentally quantum in nature (entanglement and quantum
superposition, respectively). Also of notice is that, in contrast
with the Toffoli gate, matchgates are expected to be much
weaker even than full classical computation, as it can be shown
that any Boolean function calculated by a circuit composed
of nearest-neighbor matchgates is trivial in the sense that it
depends only on one bit of the input [5]. In this sense, the SWAP

gate is bridging the gap between a subclassical complexity
class and full quantum computing.

In [6] the role of the SWAP gate was seen as to pro-
vide the long-range interactions missing in nearest-neighbor
matchgates. In this case we could expect other gates that
exchange the role of the qubits in the computational basis
to do just as well, such as iSWAP [=G(I,iX)], and fermionic
SWAP [=G(Z,X)]. It is easy to check, however, that these
two gates are matchgates, and thus cannot confer universality
to matchgates as SWAP can. Another aspect in which they
differ from the SWAP is that they are entangling. The fermionic
SWAP, for example, is a perfect entangler (it can be written
as CZ·SWAP). Their entangling action might create unwanted
correlations that corrupt the computation and may be the
reason neither gate can play the role of SWAP in this context.

We clarify this question by pinpointing precisely the
characteristic that a parity-preserving gate must have in order
to form a universal set together with matchgates. Before we
address this question, we must turn to the characterization of
two-qubit unitaries in terms of their nonlocal parameters.

B. Nonlocal parameters

Let us begin this section by stating a result which will be
fundamental for the discussion that follows:

Theorem II.1. [15,16]. Any two-qubit gate U ∈ SU(4) can
be written as

U = (U1 ⊗ U2)UNL(V1 ⊗ V2)

= (U1 ⊗ U2)ei(aX⊗X+bY⊗Y+cZ⊗Z)(V1 ⊗ V2) (4)

where Ui and Vi are single-qubit gates on qubit i, and a, b and
c are real parameters in the interval [0, π

2 ).
In other words, Theorem II.1 states that, out of the 15

parameters that define a general 4 × 4 unitary matrix (up to a
global phase), only 3 are truly nonlocal (in the sense that they
require some interaction between the two qubits), while the
remaining 12 can be implemented by two sets of single-qubit
gates, to the left and to the right of this nonlocal “core.”

The set of nonlocal parameters described above is conve-
nient because it gives an explicit way to parameterize two-qubit

unitaries, but it does not seem to offer much physical insight.
One reason is the nonuniqueness of the decomposition, as
we can implement permutations of the type a ↔ c using
only single-qubit gates (in this case, H⊗2). This generates an
ambiguity if one tries to characterize unitaries in terms of the
triplet {a,b,c}, since any unitary gate U can be associated with
a (discrete) number of different sets of parameters, related to
each other by permutations. One usual way of dealing with this
is choosing a � b � c or a similar condition, which eliminates
the ambiguity by fixing one among all possible sets for a
particular matrix. (Alternatively, for a geometrical approach
in terms of what is known as the Weyl chamber, see [9].) As
we see in the next sections, however, for the sets of matrices
we are interested in this is not an issue, and we will make no
such restriction.

While {a,b,c} are not, strictly speaking, local invariants,
one can always write true local invariants as (symmetric)
functions of these parameters. One such example is the set
of invariants defined by Makhlin in [8], as shown in [9].
Another example, in which we are particularly interested in
the discussion that follows, is the entangling power defined by
Zanardi et al. in [10].

The entangling power ep(U ) of a unitary U is defined as
the average entanglement generated by the action of U on all
product states |ψ1〉 ⊗ |ψ2〉 [10]:

ep(U ) = E(U |ψ1〉 ⊗ |ψ2〉)(ψ1,ψ2)
, (5)

where the bar denotes average with respect to some probability
distribution p(ψ1,ψ2). Simple manipulations show that this is
equal to

ep(U ) = 2 tr[U⊗2�pU †⊗2P −
13], (6)

where P −
13 is the projector on the antisymmetric subspace of

qubits 1 and 3 (notice that the trace is taken over a doubled
Hilbert space), while

�p =
∫

dμ(ψ1,ψ2)(|ψ1〉〈ψ1| ⊗ 〈ψ2||ψ2〉)⊗2,

and dμ denotes the measure over the space of product states
induced by probability distribution p(ψ1,ψ2).

It can be shown that if the average is taken over the uniform
distribution, the entangling power is both local invariant and
SWAP invariant (that is, it remains the same if U is multiplied
by the SWAP or by single-qubit gates on either side), which,
as previously mentioned, suggests that it must be written as
some function of {a,b,c}. In fact, simply by plugging Eq. (4)
in the above definition (and rescaling the value of ep(U ) so
it goes from 0, for local gates and SWAP, up to 1, for perfect
entanglers) we find that

ep(U ) = 1 − cos22a cos22b cos22c − sin22a sin22b sin22c.

(7)

It is clear from the expression above that any local gate
has ep(U1 ⊗ U2) = 0. It can also be seen that ep(CNOT) = 1,
since for the CNOT {a,b,c} = {π

4 ,0,0}, and that ep(SWAP) = 0,
since for the SWAP we have {π

4 , π
4 , π

4 }, all results which were
expected. We also see that the above expression is invariant
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under permutations of {a,b,c}, another previously anticipated
feature.

Recall that the set of single-qubit gates together with any
entangling gate is universal for quantum computation. We can
check that a gate is entangling by calculating the nonlocal
invariant defined above. Can a similar characterization be given
in the context of matchgates? The SWAP gate, which seems to
be responsible for boosting their computational power, cannot
be implemented only by single-qubit gates and thus must
clearly have some nonlocal property (even though it is not
entangling). We show in the next section that this property
can be characterized in terms of the {a,b,c} parameters above
and that it is fundamental for granting computational power to
matchgates.

III. EXTENDING MATCHGATES WITH
PARITY-PRESERVING UNITARIES

In this section we present our main result, regarding which
parity-preserving (P.P.) unitaries can be added to the set of
nearest-neighbor matchgates in order to create a universal
set. In Sec. III A we define a continuous family of P.P. gates
that interpolates between the SWAP and iSWAP in order to
understand why SWAP can boost nearest-neighbor matchgates
to quantum universality whereas iSWAP cannot. In Sec. III B
we characterize an arbitrary P.P. gate in terms of its nonlocal
parameters, identifying both the subgroup of matchgates and
the continuous family of Sec. III A in this context. Finally, in
Sec. III C we prove the main theorem by determining under
which conditions a specific P.P. gate can replace the SWAP in
the universal set of Sec. II A, and explicitly constructing a
universal set whenever these conditions are satisfied.

A. Interpolating between SWAP and iSWAP

Let us begin by addressing a question raised at the end of
Sec. II A: Why is it that, in the context of nearest-neighbor
matchgates, the SWAP gate is sufficient to generate a universal
set but other gates similar to it (such as iSWAP or fermionic
SWAP) are not? In order to answer this question, let us replace
the SWAP by a continuous family that interpolates between it
and iSWAP, given by

G(I,eiτX) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 eiτ 0

0 eiτ 0 0

0 0 0 1

⎞
⎟⎟⎟⎠ , (8)

where τ goes from 0 (SWAP) to π/2 (iSWAP). This is clearly a
P.P. gate [cf. Eq. (1)], but it is also a matchgate whenever τ =
π/2 (i.e., only in the case of the iSWAP). Thus we expect the
gate that arises from this substitution in the circuit of Fig. 1(b)
to complete the universal set [together with the single-qubit
gates from Fig. 1(a)] for one extreme value of τ and to fail to
do so for the other extreme. What about intermediate values? In
those cases the resulting gate implemented in the logical qubits

is given by G(H,H )G(X,X)G(I,eiτX)G(H,H ) or, explicitly,
by ⎛

⎜⎜⎜⎝
1 0 0 0

0 eiτ 0 0

0 0 eiτ 0

0 0 0 −1

⎞
⎟⎟⎟⎠ . (9)

This matrix is diagonal and thus preserves the encoding
[cf. Eq. (2)], which is a requirement for it to be used in
an encoded universal set. Simple calculations show us that
the three nonlocal parameters [cf. Eq. (4)] for this gate are
{0,0, π

4 − τ
2 } and so, by Eq. (7), we find that its entangling

power is cos2 τ . This confirms our previous intuition: the
entangling power is maximum when we use the SWAP but
goes to 0 as the gate used approaches the iSWAP, in which case
any circuit composed of these gates must become classically
simulatable. The simulability of the resulting circuit can be
understood in two ways: either by remembering that, in this
case, the whole circuit is composed of matchgates, or by
noticing that, when the two-qubit gate creates no entanglement,
any circuit acting on the logical qubits can be expressed in
terms only of single-qubit gates.

However, perfect entanglers are not necessary to form a
universal set [17]. If arbitrary single-qubit gates are available,
a gate that creates any (nonzero) amount of entanglement is
sufficient for universal quantum computation, with at most a
polynomial overhead with respect to the set with perfect entan-
glers. In view of this, we see that the G(I,eiτX) gate above is
sufficient to achieve universal quantum computation together
with matchgates if and only if τ �= π/2, or, equivalently, if and
only if it is not a matchgate.

This shows that there is a continuous family of gates akin
to the SWAP which can be used to create a universal set.
Furthermore, the inability of iSWAP or fermionic SWAP to
provide the extra computational power cannot be attributed
to the fact that they are also entanglers, since the family
G(I,eiτX) includes members with all possible values of
entangling power. While it is true that the most efficient gates
in this set are the least entangling (which is evident by the
particular cases of the SWAP and iSWAP), it will become clear
in the next sections that this is just an attribute of this particular
family and there is no such relation for P.P. gates in general.

This shows that the parameter τ in the parameterization
above seems fundamental for the gate’s ability to generate a
universal set together with matchgates. In what follows we
relate τ to the nonlocal parameters defined in the previous
section and to the relative phase between the submatrices
of a P.P. gate (Sec. II A), investigating its importance to the
computational power of general P.P. matrices when associated
with matchgates.

B. Nonlocal parameters of P.P. matrices

Let us start by obtaining a convenient parameterization of
general P.P. matrices. To this end, let us recall that any single-
qubit unitary matrix can be parameterized as

(
cos θei(β+α) i sin θei(β+γ )

i sin θei(β−γ ) cos θei(β−α)

)
,

022310-4



EXTENDING MATCHGATES INTO UNIVERSAL QUANTUM . . . PHYSICAL REVIEW A 84, 022310 (2011)

where θ , β, α, and γ are real parameters in the interval [0,2π ].
Notice that the determinant of this matrix, e2iβ , depends
only on β, which is crucial for the following discussion. By

parameterizing A and B this way, the most general P.P. matrix
can be written as

G(A,B) =

⎛
⎜⎜⎜⎝

cos θ ei(β+α) 0 0 i sin θ ei(β+μ)

0 cos φ ei(−β+γ ) i sin φ ei(−β+ν) 0

0 i sin φ ei(−β−ν) cos φ ei(−β−γ ) 0

i sin θ ei(β−μ) 0 0 cos θ ei(β−α)

⎞
⎟⎟⎟⎠ (10)

in terms of seven real parameters: {θ,α,γ,φ,μ,ν,β}. Notice
that while A and B are each described by four parameters,
G(A,B) is defined only up to global phase, which means we
can choose the determinant parameter suitably such that det(A)
= det(B)−1 = e2iβ .

How much nonlocal freedom remains in the seven-
parameter family above? In other words, how does the P.P.
restriction constrain the nonlocal parameters of G(A,B)? To
answer this, let us explicitly write the nonlocal “core” defined
in Eq. (4):

UNL =

⎛
⎜⎜⎜⎝

cos(a − b) eic 0 0 i sin (a − b) eic

0 cos(a + b) e−ic i sin (a + b) e−ic 0

0 i sin (a + b) e−ic cos (a + b) e−ic 0

i sin (a − b) eic 0 0 cos(a − b)eic

⎞
⎟⎟⎟⎠ . (11)

Comparing Eq. (10) and Eq. (11), we see that UNL is, itself,
a P.P. gate. Not only that, but simple inspection shows us that
the nonlocal parameters of G(A,B) are given by { θ+φ

2 ,
φ−θ

2 ,β},
which points us to two important facts. The first is that general
P.P. gates can have any value of the nonlocal parameters (and
consequently, of any local invariant derived from them), which
means that any matrix in U(4) is locally equivalent to a P.P.
gate. The second is that the matchgate condition (β = 0) is
equivalent to fixing one of these nonlocal parameters (c = 0).

An important remark must be made here regarding the
previously mentioned ambiguity of the triplet {a,b,c}. In the
previous section we mentioned that permutations between
these parameters could be implemented using only local gates,
which meant these parameters were not local invariants per se
(and any true invariant, such as the entangling power in Eq. (7),
must be symmetric under these permutations). Notice, how-
ever, that the local gates which implement these permutations
are, in general, not parity-preserving (the Hadamard gate, for
example). In fact, as becomes clear below, all single-qubit P.P.
gates commute with the Z ⊗ Z gate. This means that the P.P.
condition distinguishes parameter c from the other two in a
qualitative way, by making it a true local invariant (and so our
characterization of matchgates as the particular case of P.P.
gates with c = 0 is meaningful).

Now compare Eq. (10) and Eq. (11) again. Three of the
independent parameters of G(A,B) have been accounted for
in terms of {a,b,c}. The remaining four parameters are given by
individual phases and can be achieved by multiplying whole
rows and columns by phases (i.e., by applying Z rotations
to the left and to the right). In fact, a simple calculation

shows that

G(A,B) = [Rz(χ1) ⊗ Rz(χ2)]UNL[Rz(ξ1) ⊗ Rz(ξ2)],

(12)

with an appropriate choice of χ1, χ2, ξ1, and ξ2 in terms of α,
γ , μ, and ν. Now, notice that these Z rotations can be rewritten
as

Rz(χ1) ⊗ Rz(χ2) =diag(ei(χ1+χ2),ei(χ1−χ2),ei(χ2−χ1),ei(−χ1−χ2))

= G(Rz(χ1 + χ2),Rz(χ1 − χ2)),

which is a matchgate. Together with Eq. (12), this leads to a
simple result which is important later on:

Lemma III.1. Any P.P. gate can be written as

G(A,B) = G(Rz(τ1),Rz(τ2))ei(aX⊗X+bY⊗Y+cZ⊗Z)

×G(Rz(τ3),Rz(τ4)). (12′)

The importance of this result is that it offers a decomposition
for P.P. gates in terms of matchgates and a single nonmatchgate
P.P. gate. Since we are interested in the most general P.P.
gate with the ability to enhance the computational power
of matchgates, we will be able to disregard the Z rotations
in the above decomposition. Being matchgates themselves,
they cannot offer any computational power beyond that of the
whole matchgate group and it is sufficient to consider only the
nonlocal term in the middle [i.e., UNL in Eq. (4)].

022310-5
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C. Main result

We are now in condition to generalize the result of
Sec. III A, by searching for the most general G(A,B) gate
to replace the SWAP alongside matchgates in the universal set.
First, let us consider how far we can generalize the circuit in
Fig. 1(b).

In view of the encoding given in Eq. (2), we see that in order
to consider gates acting only on the pair (2,3), the resulting gate
must be diagonal. Any nondiagonal component would change
the parity of one of the pairs (1,2) or (3,4), thus disrupting the
encoding. By the property that G(A,B) is block diagonal, we
see that if both A and B satisfy

H X A H = eicRz(σ1),

H X B H = e−icRz(σ2),

then the resulting gate is

G((eicRz(σ1),e−icRz(σ2)),

which is the most general diagonal gate.
This means that both A and B must be, at most, X

rotations (multiplied by a phase), and it is clear that the family
considered previously (which interpolates between SWAP and
iSWAP) is a particular case of this. The most general case is thus
a matrix of the form G((eicRx(θ ),e−icRx(φ)), given explicitly
by
⎛
⎜⎜⎜⎝

cos(θ ) eic 0 0 i sin (θ ) eic

0 cos(φ) e−ic i sin (φ) e−ic 0

0 i sin (φ) e−ic cos(φ) e−ic 0

i sin (θ ) eic 0 0 cos(θ ) eic

⎞
⎟⎟⎟⎠ ,

(13)

which has the exact form of the nonlocal gate UNL, if we take
a − b = θ and a + b = φ.

Thus we conclude that the most general gate which
can replace the SWAP in the circuit in Fig. 1(b), while
still preserving the encoding, is of the form UNL =
exp [i(aX ⊗ X + bY ⊗ Y + cZ ⊗ Z)], which by the remark
at the end of the previous section, also happens to be the most
general P.P. gate we need to consider in order to characterize
the ability of any P.P. gate to boost the computational power
of matchgates.

By replacing the SWAP with the gate in Eq. (13) above,
the resulting gate, G(H,H )G(X,X)UNLG(H,H ), is given
explicitly by (in terms of {a,b,c})
⎛
⎜⎜⎜⎝

ei(a−b+c) 0 0 0

0 ei(a+b−c) 0 0

0 0 −ei(−a−b−c) 0

0 0 0 −ei(−a+b+c))

⎞
⎟⎟⎟⎠ . (14)

Again, in the same fashion as in Sec. III A, we must determine
the gate’s entangling power. As long as the entangling power
is nonzero, this gate completes the universal set together with
the single-qubit gates of Fig. 1(a). By obtaining the nonlocal
parameters of the above gate and using expression (7), we
find that its entangling power is sin2(2c). Again, as before,
this means that the gate creates some entanglement as long as

c �= 0 – that is, as long as it is not a matchgate. We now have
all ingredients for the proof of our main result:

Theorem III.1. Let G(A,B) be any parity-preserving uni-
tary, and M be the set of all matchgates +G(A,B). Then
if G(A,B) is not a matchgate [i.e., if det(A) �= det(B)], a
universal set can be created from gates in M acting only on
nearest-neighbor qubits.

Let us give a constructive proof by supposing one has
the ability to use nearest-neighbor matchgates whenever
necessary, in addition to a particular G(A,B) gate.

(1) Encode logical qubits as |0〉L = |00〉 and |1〉L = |11〉.
(2) Obtain the parameters for matrix G(A,B) such that it is

written in the form

Rz(χ1) ⊗ Rz(χ2)ei(aX⊗X+bY⊗Y+cZ⊗Z)Rz(ξ1) ⊗ Rz(ξ2).

(3) Use the circuit in Fig. 1(a) to implement any single-
qubit gate.

(4) Modify the circuit of Fig. 1(b) such that the Z rotations
cancel out, and all that is left is

G(H,H )G(X,X)ei(aX⊗X+bY⊗Y+cZ⊗Z)G(H,H ).

This is an allowed procedure, since the gates required to
modify the circuit are matchgates themselves. The final circuit
can be seen in Fig. 2.

(5) The modified circuit now implements the unitary

⎛
⎜⎜⎜⎝

ei(a−b+c) 0 0 0

0 ei(a+b−c) 0 0

0 0 −ei(−a−b−c) 0

0 0 0 −ei(−a+b+c))

⎞
⎟⎟⎟⎠ ,

which generates entanglement sin2(2c). By a known result
[17], we know that any entangling matrix, along with arbitrary
single-qubit gates, is universal for quantum computation. So
the gate implemented by the circuit in Fig. 2 completes the
universal set as long as c �= 0 or, in other words, as long as it
is not a matchgate.

Note that this result can be complemented by the well-
known classical simulability of matchgate circuits [2]. This
means that, at least when restricted to parity-preserving
nearest-neighbor operations, the jump from (sub-)classical
computation to full universal quantum computation is abrupt
in the sense that either the set M of matchgates + G(A,B)
is universal for quantum computation or it generates only
classically simulatable circuits. This did not need to be so,
as there are recent results about families of quantum circuits
which are expected to be neither universal for quantum
computation nor classically simulatable. Examples include the
commuting unitaries that comprise the complexity class known
as IQP [18] and linear optics without adaptive measurements.
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FIG. 2. Circuit where the SWAP is replaced by G(A,B) and some
additional matchgates.

IV. DISCUSSION

So far we have restricted our attention to P.P. gates, as they
are a natural generalization of matchgates. Which other SU(4)
unitaries can, together with matchgates, form a universal set?
It is easy to see that matchgates + arbitrary single-qubit gates
form a universal set, since matchgates include many perfect
entanglers [2]. We also know that the Hadamard gate alone
is sufficient for this purpose, since, as mentioned in Sec. II B,
conjugating a P.P. unitary by H⊗2 implements the permutation
a ↔ c. Thus we could take a matchgate with a �= 0 and,
using the H gate, construct a gate with c �= 0, satisfying the
conditions of Theorem III.1. Clearly, other H -like gates which
implement similar permutations (i.e., a ↔ c and b ↔ c, but
not a ↔ b) can be used in the same way. It can also be shown
easily that such gates are the only single-qubit gates which
take matchgates into general P.P. gates by conjugation. While
the ability of H to extend the power of matchgates appears
very naturally in the present construction, it is not particularly
surprising: matchgates contain all single-qubit Z rotations
which, when added to the H gate, can generate arbitrary
single-qubit gates, completing a universal set even without
encoding.

Our results used minor modifications of the encoding
proposed in [6] and rely heavily on it. Since we encoded each
logical qubit in the parity of the physical qubits, we considered
only P.P. gates or, alternatively, operations which are not P.P.
themselves but which preserve a certain subset of P.P. unitaries
(i.e., conjugation by H⊗2). It is an open question whether
different encodings may help identify different unitaries which
generate a universal set together with matchgates.

Another question we may ask is whether there are other
interesting subsets of P.P. gates which can be shown to be
either classically simulatable or quantum universal. Since
matchgates are P.P. gates with c = 0, two other natural subsets
to consider would be P.P. gates with a = 0 or b = 0. Let us
consider this latter case and denote by Mb the subset of all P.P.
gates with b = 0. Notice that in Figs. 1(a) and 2, only G(A,A)
matrices are used, along with an arbitrary G(A,B) and local
Z rotations. Inspecting Eq. (10) we see that in addition to
having c = 0, G(A,A) has b = 0 (i.e., φ = θ ). This means
that the present construction already uses mostly gates from
Mb. By choosing G(A,B) as any gate from Mb with c �= 0,
we satisfy the conditions of Theorem III.1 and thus complete
a universal set. This proves that P.P. gates with b = 0, or
equivalently with a = 0, are already universal for quantum
computation, in sharp contrast with the c = 0 case. Thus the
theorem actually ascribes a special status for parameter c,
which we already anticipated in Sec. III B by showing it was
qualitatively different from the others.

The above result can be understood easily within the context
of the fermionic nature of matchgates. As can be seen in [2,6],
matchgates are the group generated by the set {X ⊗ X, Y ⊗
Y , 1 ⊗ Z, Z ⊗ 1, X ⊗ Y , Y ⊗ X}. Using the Jordan-Wigner
transformation, these matrices are shown to be equivalent to
Hamiltonians quadratic in creation and annihilation operators,
describing the evolution of noninteracting fermions. On the
other hand, the Z ⊗ Z matrix, related to parameter c in our
construction, is equivalent to a Hamiltonian quartic in creation
and annihilation operators, and so it describes an interaction.
Thus the break in the permutation symmetry imposed by the
P.P. condition, which is not obvious in the algebraic approach,
turns out to have a very physical meaning in the fermionic
approach.

In fact, in [11] Bravyi and Kitaev have shown that the
exp{i π

4 Z ⊗ Z} interaction can be used to implement a CZ,
which is then used to generate a universal set with fermionic
modes. Our result is similar in spirit to this one but is also
more general, as we provide an explicit construction where
any nonmatchgate G(A,B) matrix is sufficient to generate a
universal set. This alternative approach can be useful if one is
attempting to implement circuits of P.P. gates in other physical
systems, rather than fermions. In this case, it is not obvious
what property gates such as CZ and SWAP have in common,
except for their ability to provide matchgates with full quantum
computational power. The power of the SWAP is attributed
to the long-range interaction it simulates, whereas the CZ is
used to generate entanglement between the encoded qubits
[see Fig. 1(b)]. Thus, Theorem III.1 connects both results by
identifying the property these gates share, showing that it is
precisely the resource missing in the group of matchgates and
providing an explicit construction for any other gate of this
kind.

Other interesting subsets of P.P. gates for which simi-
lar results are known are the unitary evolutions generated
by Heisenberg isotropic (Hi = X ⊗ X + Y ⊗ Y + Z ⊗ Z)
or anisotropic (Ha = X ⊗ X + Y ⊗ Y ) interactions [13,20].
These sets are of great physical interest, as they provide
examples where a quantum computer could be built out of
a single interaction Hamiltonian. Explicit constructions for
said universal sets can be found, respectively, in [21] and
[22]. One fundamental difference between these results is
that the isotropic interaction considered in [21] acts only on
nearest-neighbors, while the anisotropic interaction in [22] acts
on next-nearest-neighbors. Furthermore, it has been shown
that the anisotropic interaction is not universal while acting
only on nearest-neighbors, meaning that distant interactions
are actually necessary in this case [23]. These two results
are clearly consistent with our own, as any unitary evolution
generated by Ha must be a matchgate, while Hi generates
nonmatchgate P.P. unitaries. It is important to point out,
however, that neither result implies or is implied by our own.

Finally, we must reiterate our initial motivation, which is
to study matchgates regardless of the physical implementation
used. Thus, if one is attempting to achieve universal quantum
computation with fermions, the simplest operation which
implements a maximally entangling gate in our construction
is the exp{i π

4 Z ⊗ Z} obtained by Bravyi and Kitaev in [11],
and which corresponds to an interaction quartic in fermionic
creation and annihilation operations. However, if the physical
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setup is linear optics (as in the experiment of [7]), the simplest
(and quite trivial) operation which completes the universal
set with matchgates is the SWAP, which does not require any
interaction between the photons. This happens because, in
this context, matchgates are being implemented as unitaries
on two-level systems (say, photon polarization), with no
connection to noninteracting fermions. The natural trade-off in
the case of photonic systems is that some matchgates necessary
in the construction [such as G(H,H )] are entangling, which
requires that the photons interact. In other implementations
where parity-preserving gates arise naturally, the simplest gate
to use could be yet another nonmatchgate P.P. gate, with its
ability to generate entanglement in the encoded space being
determined by the parameter c, as discussed in the proof of
Theorem III.1.

V. CONCLUSION

In [6] it was shown that the SWAP gate can be used to extend
the computational power of nearest-neighbor matchgates to
full quantum computation. We have expanded on this result by
showing that the SWAP can be replaced by any parity-preserving
(P.P.) two-qubit gate which is not a matchgate itself. We
have also characterized arbitrary parity-preserving gates in
terms of their three nonlocal parameters {a,b,c}, showing that
matchgates form a particular subgroup of these where c = 0.
Thus, parameter c is seen to be qualitatively different from the

other two. This is supported by the fact that the set of P. P.
gates with b = 0 is universal for quantum computation (which
is true also for gates with a = 0).

We have also discussed the relationship between our work
and other known results in the context of fermions. While
matchgates are equivalent to noninteracting fermions, the
parameter c is known to be associated with certain interactions,
providing an underlying physical interpretation to its special
status. Our result, however, is more general in the sense
that it does not rely on the fermionic nature of matchgates,
being also suitable for implementations in other physical
systems.

We hope that the characterization of unitaries in terms
of their nonlocal parameters will prove fruitful in under-
standing further aspects of the separation between classi-
cal and quantum computation. On a more practical note,
we believe it could open the way to the construction
of different universal sets of quantum operations, perhaps
more adequate for particular experimental quantum computer
implementations.
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