
PHYSICAL REVIEW A 84, 022308 (2011)

Cheat-sensitive commitment of a classical bit coded in a block of m × n round-trip qubits
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This paper proposes a quantum protocol for a cheat-sensitive commitment of a classical bit. Alice, the receiver
of the bit, can examine dishonest Bob, who changes or postpones his choice. Bob, the sender of the bit, can
examine dishonest Alice, who violates concealment. For each round-trip case, Alice sends one of two spin states
|S±〉 by choosing basis S at random from two conjugate bases X and Y. Bob chooses basis C ∈ {X,Y} to perform a
measurement and returns a resultant state |C±〉. Alice then performs a measurement with the other basis R ( �=S)
and obtains an outcome |R±〉. In the opening phase, she can discover dishonest Bob, who unveils a wrong basis
with a faked spin state, or Bob can discover dishonest Alice, who infers basis C but destroys |C±〉 by setting R to
be identical to S in the commitment phase. If a classical bit is coded in a block of m × n qubit particles, impartial
examinations and probabilistic security criteria can be achieved.
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I. INTRODUCTION

As exhibited by the fruitful research activities undertaken
since 1984 [1], quantum cryptography has attracted the
attention of both physicists and information scientists. The
most successful area of research has been quantum key
distribution (QKD), where the laws of quantum mechanics,
including the uncertainty principle, make it possible for two
distant cooperative parties, Alice and Bob, to share secure
random numbers [2].

In addition to QKD, several two-party computation pro-
tocols [3], such as bit commitment (BC) [4–7], oblivious
transfer (OT), and coin flipping (CF) [8], have been studied in
the quantum cryptography field. The difficulties in the above
tasks are attributed to the assumption that Alice and Bob
do not trust each other. Unlike QKD, quantum mechanics
seems not to provide us with a security solution to those
tasks beyond the computational complexity argument [3]. In
fact, it has been proven that unconditionally secure BC and
OT are impossible even if information is processed with a
quantum object. The only exception is quantum weak or biased
coin flipping, which is claimed to be unconditionally secure
[9–12].

Our interest in this work is focused on a BC task that we
describe below. In the commitment phase of BC, Bob chooses
the bit u and computes the function f = F(u;K) of u with the
key K. He only informs Alice of f so that u can be concealed
from her (concealment). In the subsequent opening phase, he
notifies her of K so that she can compute u inversely. Here u
must be bound to f (binding) so that Bob cannot change u from
the initial value by notifying Alice of a different key K′. The
no-go theorem of quantum BC relies on the fact that perfect
concealment requiring ρ0 = ρ1 results in complete violation
of the binding [4–7], where ρu (u = 0,1) denotes the density
matrix relevant to the commitment bit value u. There have
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been some other quantum protocols proposed for two-party
computation [13–15].

Nevertheless, there is still an open question as regards the
possibility of realizing quantum protocols for cheat-sensitive
BC (CSBC) [16,17]. The CSBC protocol abandons guaranteed
concealment. However, this protocol enables honest Bob to
detect violation of the concealment with an arbitrarily high
probability. With regard to binding, Alice can detect dishonest
Bob if (i) he changes u from its initial value or (ii) he postpones
deciding u until the opening phase such that he can choose u
in a deterministic way to be profitable for him. As the CSBC
protocol does not require the condition ρ0 = ρ1, the no-go
theorem of quantum BC tells us nothing about CSBC.

It has been claimed [11] that secure CSBC is possible
through the combined use of a quantum bit escrow and
quantum weak coin flipping (WCF) [16]. The bit escrow
protocol provides one of two different examination cases.
Case (I): Alice detects dishonest Bob with a finite probability
PA when he tries to violate the binding of u. Case (II): Bob
detects dishonest Alice with a finite probability PB when she
attempts to violate the concealment of u.

Although the two examination cases are mutually exclusive,
they can determine an examiner and an examinee in an
impartial way by employing the quantum WCF protocol
[9–12]. Recently, however, a security loophole has been
claimed for the above framework unless the bit escrow protocol
is independent of the WCF protocol [18]. To avoid such
loopholes, we must take a different approach to ensure Alice’s
and Bob’s impartiality.

This paper proposes an alternative CSBC framework based
on m × n repetitions of an appropriate quantum bit escrow
protocol with a round trip of a qubit particle. We also study
the probabilistic security against some cheating strategies.

This paper is organized as follows. Section II proposes
the quantum bit escrow protocol, which is the building block
of our CSBC protocol. Section III describes the minimal
CSBC protocol. Section IV analyzes security aspects of the
CSBC protocol in a more general framework considering the
entanglement-assisted operations of Bob and Alice. It provides
us with a suggestion that the security might be attributed
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FIG. 1. Legitimate arrangements for sending (S) and readout
basis (R), and subsequent changes in the qubit spin state.

to the complementary relationships between the spin angular
momentum of a composite system and that of the individual
particle. Finally, Sec. V is devoted to a summary.

II. BIT ESCROW PROTOCOL WITH
A ROUND-TRIP QUBIT

In this section, we propose the bit escrow protocol that is the
building block of our CSBC protocol, where X = {|X+〉,|X−〉}
and Y = {|Y+〉,|Y−〉} indicate a pair of conjugate bases that
are related with each other through |Y±〉 = {(1 ± i)|X+〉 +
(1 ∓ i)|X−〉}/2. First, Alice sends one of two spin states |S±〉
by choosing basis S at random from two conjugate bases X and
Y. Next, Bob decides basis C ∈ {X,Y} to perform a projection
measurement and returns a resultant state |C±〉. Alice then
performs a projection measurement with the other basis R
( �=S) and obtains an outcome |R±〉. Figure 1 illustrates our
basic idea, in which Alice always sets the readout basis R
being conjugate to the sending basis S. As shown in Fig. 1,
the different arrangements in the sending (S) and readout (R)
bases afford her no information on his chosen basis C. If Bob’s
coding basis C is the same as S, his resultant coded state |BC〉
is identical to her transmitted state |AS〉. If Bob’s coding basis
C is the same as R, his coded state |BC〉 is identical to her
measurement outcome |AR〉. Thus Alice can always specify
Bob’ coded state |BC〉 after Bob opened his coding basis C.

We detail the protocol in the following:

A. Commitment phase

Step 1. Alice prepares a carrier particle b of a qubit. She
selects a sending basis S ∈ {X,Y} at random and then randomly
chooses a spin state |AS〉 ∈ {|S+〉,|S−〉}. She records the state
choice in a classical register, and then sends particle b to Bob.

Step 2. Bob decides his commitment bit u ∈ {0,1}. Before
measuring particle b, he assigns a coding basis C ∈ {X,Y} in
accordance with their consensus that u = 0 and 1 correspond
to C = X and Y, respectively. With the coding basis C, Bob
performs the projection measurement and obtains one of the
measurement outcomes |BC〉 ∈ {|C+〉,|C−〉}. He defines |BC〉
as his coded state and then returns particle b to Alice.

Step 3. Alice performs a projection measurement for
particle b with a certain readout basis R ∈ {Y,X}, which must
be different from the sending basis S (R �= S). She records the
result |AR〉 ∈ {|R+〉,|R−〉} in her register.

Table I summarizes the relationships between Alice’s
registration patterns (|AS〉,|AR〉) with S �= R and Bob’s coded
states |BC〉 with basis C ∈ {X,Y}.

B. Opening phase

There are two exclusive cases in the opening phase. In
case (I), Alice is an examiner and Bob is an examinee. In
case (II), Bob is an examiner and Alice is an examinee. In the
description of the protocol below, we assume that both parties
are honest unless otherwise stated. First, we describe case (I).

1. Opening phase, case (I): Alice is an examiner

Step 4a. Bob decides a bit v ∈ {0,1} that is identical to u and
takes basis C̃ ∈ {X,Y} in such way that v = 0 and 1 correspond
to C̃= X and Y, respectively. He first unveils v (=u), that is,
C̃(=C).

Step 5a. Alice temporally considers Bob’s coded state to be
|AC̃〉, which is identical to |AS〉 or |AR〉 when C̃ = S ( �=R) or
C̃ = R ( �=S).

Step 6a. Bob then opens his state |BC̃〉(=|BC〉).
Step 7a. If Alice can confirm the coincidence |BC̃〉 = |AC̃〉,

she accepts the unveiled bit v to be identical to the commitment
bit u. Otherwise, she rejects v.

As Table I shows, when Bob opens his selected basis C,
Alice can assert his state |C±〉 correctly. Hence he can always
pass the examination in step 7a.

TABLE I. Alice’s assertion for Bob’s spin state |±〉 depending on his notification of the coding basis C.

Bob’s notification of the basis C coding basis
C ∈ {X,Y }

Alice’s or Bob’s Alice’s transmitted Alice’s readout spin When Bob was notified When Bob was notified
state |±〉 spin state |±〉 state |±〉 (R �= S) of the X basis of the Y basis

P |Y+〉 |X+〉 + +
q |Y−〉 |X−〉 − −
r |Y−〉 |X+〉 + −
s |Y+〉 |X−〉 − +

Alice’s registration patterns
p′ |X+〉 |Y+〉 + +
q ′ |X−〉 |Y−〉 − −
r ′ |X+〉 |Y+〉 + −
s ′ |X−〉 |Y−〉 − +
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FIG. 2. Schematic diagram showing the detection of a dishonest
party. (1) Alice can detect dishonest, Bob who changes the basis (C)
from Y to X. (2) Dishonest Alice can find Bob’s coding basis as Y.
(3) Dishonest Alice fails to answer the spin state |C±〉.

However, if Bob dishonestly changes his mind (C̃ �= C) and
fakes the spin state when he reveals |BC̃〉 in step 4a, Alice can
detect him with a 1/2 probability. This point is apparent from
Table I and Fig. 2(a). Suppose that (i) he obtains |X+〉b and re-
turns it in step 2, (ii) he changes his mind and announces a Y ba-
sis in step 4a, and (iii) he notifies her of |Y+〉b in step 6a. From
(i), he can surely narrow down Alice’s eight registration pat-
terns to four patterns p, r, p′, and r′ in Table I. Nevertheless, he
cannot specify the correct pattern that she obtained in the com-
mitment phase. If she obtained r or r′, he is detected in step 7a.

Next we describe case (II).

2. Opening phase, case (II): Bob is an examiner

Step 4b. Bob opens bit u with the corresponding basis C.
Step 5b. Alice deduces that Bob’s coded state is |AC〉= |AS〉

if C = S ( �=R) or |AC〉 = |AR〉 if C = R ( �=S).
Step 6b. Alice notifies Bob of |AC〉.
Step 7b. Bob checks the coincidence |AC〉 = |BC〉. If

|AC〉 �= |BC〉, he aborts.
Honest Alice can always pass the examination, whereas she

does not know u until he opens it.
However, Alice can dishonestly violate the concealment

of u with a finite probability in the commitment phase if she
sets illegitimately the readout basis R to be identical to the
sending basis S (R = S) as shown in Fig. 2(b). If she finds an
anticoincidence |AR〉 �= |AS〉 in the spin states, which occurs
with a 1/4 probability, she can assert that the coding basis C is
different from the sending basis [C �= (S = R)] and specify the
commitment bit u. However, she fails to pass step 7b with a
finite probability. This is because her illegitimate access with
the mismatched basis R �= C destroys Bob’s coded state |BC〉
and she must fake |AC〉 in step 6b. The probability PB that
Bob detects dishonest Alice is 1/4, which is the product of the
probabilities of C �= (S = R) and |BC〉 �= |AC〉.

Even if dishonest Alice finds the coincidence |AR〉 = |AS〉,
she can guess C = (S = R) with a 2/3 {= (1/2)/[1−(1/4)])}
probability, where 1/2 and 1/4 indicate the probabilities of
C = (S = R) and |AR〉 �= |AS〉, respectively. When C �= (S = R)

holds under the condition |AR〉 = |AS〉, Bob can detect her
failure with a 1/2 probability. Hence PB is estimated as 1/6
{=(1/2) × [1 − (2/3)]} in the above case.

The proposed bit escrow protocol does not require any
quantum memory for storing the quantum state. This feature
is a great advantage from a practical point of view. It may
be worth mentioning that the round-trip transmission is not
the only possible implementation for our CSBC protocol.
For example, the round trip of a qubit can be replaced with
a pair of one-way quantum communications from Bob to
Alice provided that (i) Bob prepares the spin states |BC〉
of the first and second qubits such that they are identical,
and (ii) Alice employs different readout bases for those two
qubits.

III. MINIMAL CSBC PROTOCOL

A. Coding in a block of m × n qubit particles

This subsection describes how m × n repetitions of the
quantum bit escrow protocol can provide impartiality between
Alice and Bob when one examines the other. Suppose that
Bob decides the commitment bit Z ∈ {0,1} and then chooses
m different subordinate bits ui (i = 1 ∼ m) ∈ {0,1} in such
a way that their parity corresponds to his commitment bit Z;
⊕m

i=1 ui = Z. In this case, dishonest Alice must assert all m
subordinate bits in order to determine Z in the commitment
phase. This increases the number of incorrect answers caught
by Bob in step 7b.

In the above scheme, however, dishonest Bob can violate
the binding of Z by changing only one subordinate bit, and
then Alice fails in detecting him with a 1/2 probability. To
improve Alice’s probability PA of detecting dishonest Bob in
step 7a, we propose a protocol in which each subordinate bit ui

has to be coded by Bob with a sequence of n different qubits
bij (j = 1 ∼ n). Here all n qubits belonging to the same ith
sequence are measured by Bob with an identical coding basis
Ci = X or Y, depending on ui = 0 or 1. This forces dishonest
Bob to fake quantum states |BC̃〉ij of all n qubits bij (j = 1 ∼ n)
in step 6a when he changes the subordinate bit from ui to vi

( �=ui). This increases the incorrect answers caught by Alice in
step 7a. In the following, we take the numbers m and n suffi-
ciently large to enable us to ignore the statistical fluctuation.

B. Minimal CSBC protocol executed by honest parties

Here we first describe a scenario that assumes both Alice
and Bob to be honest. Before running the protocol, they agree
on the numbers m and n. They also decide the positive security
parameter κ < 1/3, which determines the numbers κn and
(1−κ)n of test particles per sequence examined by Bob and
Alice, respectively. The parameter value of κ is derived from
the security analysis in Sec. IV B. For simplicity, we assume
here a loss and error-free transmission of particles through
quantum channels. The protocol is tolerant of the transmission
loss, as mentioned in Appendix A.

1. Commitment phase

Step 1. Alice prepares a set of m × n carrier particles bij

(i = 1 ∼ m, j = 1 ∼ n) consisting of qubits. Address i specifies
one of the m different sequences composed of n particles and
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address j locates one of the n different particles belonging to
the ith sequence. For each particle, she selects the sending
basis Sij ∈ {X,Y} at random and then chooses the transmitted
state |AS〉ij ∈ {|S+〉,|S−〉} in a random way. She sends all bij

particles to Bob.
Step 2. Bob chooses m different subordinate bits

ui (i = 1 ∼ m) ∈ {0,1} such that their parity ⊕m
i=1 ui represents

his commitment bit Z ∈ {0,1}. He repeats the following
substeps for the different sequences from i = 1 to i = m. (i) He
assigns the coding basis Ci (= Cij ) ∈ {X,Y} for all j (=1 ∼ n)
particles belonging to the ith sequence such that ui = 0 and
1 correspond to Ci = X and Y, respectively. (ii) With the
coding basis Ci , he performs the projection measurement for
each particle bij and obtains the sequence of the measurement
outcome |BC〉ij (j = 1 ∼ n) ∈ {|Ci+〉,|Ci−〉}. He defines |BC〉ij
as his coded state. (iii) He returns particles bij (j = 1 ∼ n) to
Alice.

Step 3. For each particle, Alice performs a projection
measurement with a certain readout basis Rij ∈ {Y,X} that
must be different from the sending basis Sij . She records the
sequences of her measurement results |AR〉ij ∈ {|R+〉,|R−〉},
where i = 1 ∼ m and j = 1 ∼ n.

Next we describe the protocol for the opening phase, in
which we assume that both parties are honest.

2. Opening phase

Step 4. First, Bob opens his commitment bit Z. For all
different sequences from i = 1 to i = m, he then unveils the
subordinate bit ui ∈ {0,1}, which is the coding basis Ci ∈ {X,Y}.

Step 5. For each particle bij of the ith sequence (j = 1 ∼ n),
Alice redefines |AC〉ij to be identical to the transmitted state
|AS〉ij if Ci = Sij ( �=Rij ), or to be identical to the resultant
state |AR〉ij if Ci = Rij ( �=Sij ).

Step 6. For each sequence, Bob samples an arbitrary set of
κn (κ<1/3) particles at random to use them as test particles
for detecting dishonest Alice, and he notifies Alice of the
locations.

Step 7. For each sequence, Alice answers him with her
deduced state |AC〉ij for κn test particles.

Step 8. For each sequence, Bob examines the coincidence
|AC〉ij = |BC〉ij for all κn particles. Since Alice receives
m different sequences composed of n particles, the total
number of his test particles is m × (κn). Unless he finds an
anticoincidence |AC〉ij �= |BC〉ij in the spin states, he regards
Alice as honest and tells her to move on to the next step.
Otherwise, he aborts.

Step 9. For each sequence, Bob unveils his coded state
|BC〉ij for all (1−κ)n remaining particles.

Step 10. For each sequence, Alice examines the coincidence
|BC〉ij = |AC〉ij for those (1−κ)n particles, which she employs
as test particles. She repeats the examination for every different
sequence from i = 1 to i = m. If she detects no errors, she
accepts his commitment bit Z. Otherwise she rejects the bit Z.

C. Bob’s violation of the binding and Alice’s detection

This section analyzes two typical strategies of dishonest
Bob. One is mind-change strategy and the other is postponing

FIG. 3. Strategy of dishonest Bob, who tries to change his coding
basis for one sequence.

strategy. Alice can detect dishonest Bob provided that the
security parameter κ is chosen to be an appropriate value.

1. Mind-change strategy

If dishonest Bob arbitrarily changes one of the m subordi-
nate bits ui (i = 1 ∼ m) in step 4 to invert the commitment bit
Z = ⊕m

i=1 ui , Alice can detect him in step 10. Suppose that he
changes the hth subordinate bit uh and fakes the coding basis
Ch for the hth sequence. He can always conceal from Alice
arbitrary κn particles that he does not want to be examined in
step 10. This is because it is he who decides κn test particles
in step 6, which can be dependent on the basis that he unveiled
in step 4. Therefore, it is sufficient for him to fake the spin state
|BC〉hj for (1−2κ)n particles rather than (1−κ)n as illustrated
in Fig. 3. Apparently, the protocol does not work when κ�1/2.
Furthermore, Sec. IV B reveals the sufficient condition κ <1/3.
The probability that he can escape her detection is estimated
as (1/2)(1−2κ)n, and the probability PA that Alice can detect
him is given by

PA(mind change) ∼ 1 − (1/2)(1−2k)n with k < 1/3. (1)

2. Postponing strategy

Another strategy of dishonest Bob is to postpone his
decision of the commitment bit until the opening phase.
Suppose that (i) he measures the two different half subsets
of the n particles with X and Y bases, respectively, in the
commitment phase, and (ii) he decides to declare an X or Y
basis in the opening phase. In this case, he can escape Alice’s
detection for n/2 particles. Hence, the probability PA(postpone I)

is given by ∼1−(1/2)(1/2−κ)n with κ < 1/3 and is smaller than
PA (mindchange). However, unlike the mind-change strategy, he
is detected regardless of his later choices X and Y.

Another postponing strategy is as follows. We should note
that Bob can guess Alice’s registration patterns (|AS〉,|AR〉)
with S �= R summarized in Table I with finite probabilities.
Suppose that (i) Bob measures particle b with the Y basis
and obtains the outcome |Y+〉, and (ii) he returns parti-
cle b being in |X+〉. He can then evaluate the probabil-
ities that she obtains the eight patterns {p,q,r,s,p′,q′,r′,s′}
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as {1/2,0,0,0,1/8,1/8,1/8,1/8}. He can expect a 3/4 {=
[(1/2) × 1]+4 × [(1/8) × (1/2)]} probability of success in the
postpone strategy by answering |X+〉 (or |Y+〉) in step 9 when
he unveils Ci = X (or Ci = Y) in step 4. Therefore, the
probability PA that Alice can detect this postpone strategy
is given by

PA(postpone II) ∼ 1 − (3/4)(1−2k)n with k < 1/3. (2)

The postpone strategy II is slightly beneficial for dishonest
Bob.

Section IV B discusses security against dishonest Bob
in a general framework considering entanglement-assisted
attacks. It will be clarified that the κ value must be sufficiently
less than 1/3.

D. Alice’s violation of the concealment and Bob’s detection

This subsection is devoted to Alice’s straightforward
strategy when she attempts to violate the concealment of
the commitment bit Z. She can certainly assert Z = ⊕m

i=1 ui

if she reads out all m subordinate bits ui or coding bases
Ci (i = 1 ∼ m) from her illegitimate access to the particles.
For each particle, she concludes the coding basis C with a 1/4
probability by the access with the readout basis R identical to
the sending basis S (R = S) as illustrated in Fig. 2(b). Since all
n particles belonging to the same sequence are measured by
Bob with an identical coding basis in step 2, Alice stops the
illegitimate access once she succeeds to reveal his coding basis
C. From those accesses with an illegitimate basis arrangement
Rij = Sij = X, she mostly finds out Ci = Y if Bob assigned
Ci = Y. In the same way, from her accesses with another
illegitimate basis arrangement Rik = Sik = Y, she knows
Ci = X if he assigned Ci = X. Hence she can determine all
ui (i = 1 ∼ m) with a high probability, whereas it is impossible
for her to completely avoid leaving evidence of her illegitimate
accesses for all m sequences.

However, if she compromises not to determine all ui but to
guess some of them with a high probability, there is a strategy
that reduces significantly the total times of the illegitimate
access that is detectable by Bob in step 8. The strategy is as
follows: (i) For each sequence, i = 1,2,. . .,m, she fixes a readout
basis Ri ∈ {X,Y} temporarily for all n particles bij belonging
to the same ith sequence, but she chooses the sending basis
Sij randomly as in step 1. (ii) For all those particles that
satisfy the legitimate basis arrangement (Ri = Rij ) �= Sij , she
performs the prescribed measurement in step 3. (iii) For the
remaining particles specified with the illegitimate arrangement
(Ri = Rij ) = Sij , she continues to access the particles until
she obtains the conclusive outcome |AR〉 �= |AS〉, which reveals
Ci �= Ri on Bob’s basis Ci . (iv) Once she knows his basis, she
switches to using the legitimate arrangement Rij �= Sij for all
the remaining particles.

Since Alice can obtain no information with regard to
Bob’s basis Ci from those particles that satisfy the legiti-
mate arrangement (Ri = Rij ) �= Sij , she is concerned only
with those particles that satisfy the illegitimate arrangement
(Ri = Rij ) = Sij for each sequence. Here she can assume
the two different cases Ri �=Ci and Ri = Ci . Ignoring the
statistical fluctuation, m/2 sequences are accidentally subject
to a conclusive measurement where Alice’s basis is different

from Bob’s coding basis (Ri �= Ci). Whenever this condition is
satisfied, Alice finds Ci �= Ri with a 1/2 probability from the
conclusive outcome |AR〉 �= |AS〉 by accessing one particle. If
she obtains |AR〉 = |AS〉 and fails in the first trial, she accesses
the next particle. Once she can conclude Ci �= R, she changes to
the legitimate access. If she repeats this procedure up to l (�n)
times, she can improve the final success probability to 1−1/2l .
Hence, she can expect to conclude m/2 different subordinate
bits ui if she performs illegitimate access enough times.

Next we consider all possible cases in which Alice obtains
the inconclusive outcomes |AS〉 = |AR〉 for the repeated l times
and then stops the illegitimate access. In the above cases,
although she fails to obtain conclusive results on his basis
Ck , she can guess the basis Ck to be Rk with a probability
(1/2)/{1/2+(1/2)(1/2l)} = (1+1/2l)−1. Here (i) 1/2 is in
the numerator and the first term in the denominator is the
probability of Rk = Ck , and (ii) 1/2l means the probability
that the inconclusive outcome |AR〉 = |AS〉 continues to appear
l times when Rk �= Ck holds. Therefore, even if Alice’s basis is
accidentally consistent with Bob’s coding basis (Rk = Ck),
she can guess uk with a high probability. The probability
(1+1/2l)−1 asymptotically approaches unity with the increase
of l, where the possibility of Rk �= Ck decreases exponentially
with respect to l. Thus the remaining m/2 sequences that are
subject to the inconclusive measurement (Ri = Ci) are also
meaningful for dishonest Alice to guess C.

In the following, we discuss the evidence of her illegitimate
access. With regard to the m/2 sequences that are subject to
the conclusive measurement (Ri �= Ci), she must access at least
one particle per sequence to specify the subordinate bit ui . This
access necessarily destroys the state |BC〉 of the particle and
can be detected by Bob with a 1/2 probability in step 7. Here
we assume that she repeats the illegitimate access up to l (�n)
times if she needs; we can estimate the expected number of
her access times for one sequence as follows:

l∑
k=1

k(1/2)κ−1(1/2) + l (1/2)l = 2 − (1/2)l−1.

The second term on the left-hand side corresponds to
the case in which she unfortunately fails to specify ui . The
expected number is at most 2, even though she takes a large l
value. On the other hand, the remaining m/2 sequences that are
subjected to the inconclusive measurement (Rk = Ck) leave no
evidence of the illegitimate access. The relevant access does
not destroy the quantum state |BC〉 of the particle, and Alice
can always respond with the correct spin state |AC〉 = |BC〉 in
step 7.

In conclusion, the above straightforward strategy can
reduce the total times of her illegitimate access that Bob
can detect, whereas she can guess the commitment bit
Z (=⊕m

i=1 ui ) with a high probability. Here it is possible
for her to determine m/2 subordinate bits by the conclusive
measurement, and she can guess the other m/2 subordinate bits
by the inconclusive measurement (Ri =Ci). The probability of
her correct guess is evaluated by {(1+1/2l)−1}m/2 ∼ 1−(m/2)
(1/2)l approximately in the first order of the very small
quantity (1/2)l . Section IV C reexamines this strategy in a
general framework taking entanglement-assisted operations
into consideration.
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FIG. 4. General configuration of the whole system considering
entanglement-assisted operations.

We then move to the view of the examiner, Bob. He can
sample κn particles for his examination in each sequence,
where κ is the security parameter. Since (i) the number of the
sequences subject to the conclusive measurement (Ri �= Ci)
is m/2, (ii) the expected number of the illegitimate access is
at most 2 for each sequence, and (iii) the probability that one
arbitrary particle is sampled accidentally is κ , the total number
of Alice’s illegitimate accesses that are detectable by him is
given by [(m/2) × 2] × κ = κm for a block of m × n particles.
As Alice passes the examination with a 1/2 probability in each
conclusive measurement, the probability PB of Bob’s detection
of dishonest Alice can be estimated by

PB = 1 − (1/2)k(m/2)×2 × (1)k(m/2)×l = 1 − (1/2)km

with k < 1/3. (3)

Here the term (1)κ(m/2)l means that the m/2 sequences
subject to the l times of the inconclusive measurement
(Ri = Ci) do not prevent Alice from answering the correct
spin states.

E. Bob’s examination of the identity for the transmitted state

Finally, we mention the supplementary substep that Bob
executes in step 2 of the minimal CSBC protocol. Honest Bob
examines whether Alice really sent the four different states
|X±〉 and |Y±〉 at random in step 1 by assessing the sequences
of the resultant states |BC〉ij (i = 1 ∼ m, j = 1 ∼ n). If and only
if Bob can confirm the identity I/2 = (1/2)(|+〉〈+| +|−〉〈−|)
for her transmitted spin state, Bob considers Alice to be honest.
By requiring this condition, we can reduce our problem to a
simple form when we analyze the strategies of dishonest Alice
in Secs. IV C and IV D.

IV. ENTANGLEMENT-ASSISTED FRAMEWORKS

We can expand the minimal CSBC protocol into a more
general form by considering entanglement-assisted operations.
This expansion greatly facilitates our ability to analyze the
security aspect of the minimal CSBC protocol. As shown
in Fig. 4, Alice and Bob, respectively, entangle the states
|h〉a and |ξ 〉c of their own ancillary particle a and system c
with the state |λ〉b of flying particle b. Here, Alice prepares
an initial entangled state of particles a and b such that
|�〉ab = c1|h1〉a|λ1〉b+c2|h2〉a|λ2〉b, whereas Bob executes
an appropriate entangling operation M on flying particle b
and his ancillary system c. Then Bob returns particle b to
Alice. We assume that they utilize quantum memories to store
the quantum information of the particles and the ancillary
system.

A. Revisiting the opening phase for checking dishonest Bob
in the minimal CSBC protocol

We can reexamine the security of the minimal CSBC
protocol against dishonest Bob using the framework in
which honest Alice utilizes an entangled pair of qubits
a and b,

|�+〉ab =
√

1/2(|X+〉a |X+〉b + |X−〉b |X−〉b)

=
√

1/2(|Y+〉a |Y−〉b + |Y−〉a |Y+〉b).

In what follows we consider Bob, who wants to escape
Alice’s detection completely while he delays his decision of
the basis C until the opening phase. The state |�+〉ab is one
of the four different Bell states, which are summarized in
Table II. Here she sends particle b to Bob while retaining
ancillary particle a in her quantum storage and then she
receives the returned particle b. Unlike the minimal protocol,
she can delay choosing the measurement bases for particles
a and b, respectively, until Bob unveils the coding (C) basis
in the opening phase. In particular, after he unveils C, she
can measure both particles a and b with the same basis
that is identical to his unveiled coding basis C. Furthermore,
she is later informed of the spin state |BC〉b of particle b
from Bob, except for κn test particles that are chosen by
him as the test bit with the condition κ < 1/3. As she
postpones her measurement until the opening phase, she takes
no action to extract Bob’s basis information in the commitment
phase. In this sense, she is honest and always passes Bob’s
examination.

The above procedures enable her to execute the two
different examinations as follows. (i) For all n pairs in a
sequence, since she is informed of the coding basis C, she can

TABLE II. Four different Bell states.

Z basis X basis Y basis Composite spin angular momentum

|�+〉ab
|Z+〉a |Z+〉b+|Z−〉a |Z−〉b√

2
|X+〉a |X+〉b+|X−〉a |X−〉b√

2
|Y+〉a |Y−〉b+|Y−〉a |Y+〉b√

2
(s = 1, sY = 0)

|�+〉ab
|Z+〉a |Z−〉b+|Z−〉a |Z+〉b√

2
|X+〉a |X+〉b−|X−〉a |X−〉b√

2
|Y+〉a |Y+〉b−|Y−〉a |Y−〉b

i
√

2
(s = 1, sz = 0)

|�−〉ab
|Z+〉a |Z−〉b−|Z−〉a |Z+〉b√

2
−|X+〉a |X−〉b+|X−〉a |X+〉b√

2
−|Y+〉a |Y−〉b+|Y−〉a |Y+〉b

i
√

2
(s = 0, si = 0; i = x,y,z)

|�−〉ab
|Z+〉a |Z+〉b−|Z−〉a |Z−〉b√

2
|X+〉a |X−〉b+|X−〉a |X+〉b√

2
|Y+〉a |Y+〉b+|Y−〉a |Y−〉b√

2
(s = 1, sx = 0)
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compare her outcomes |AC〉a and |AC〉b, which she obtains
from the measurement on particles a and b, respectively. She
examines the parallel spin correlation when C = X is informed,
or the antiparallel spin correlation for the C = Y cases (see
|�+〉ab in Table II). (ii) For (1−κ)n untested particles in the
sequence of particles b, since she is informed of |BC〉b in
addition to the basis C, she can compare |AC〉b with |BC〉b.
She examines whether they match.

Therefore, dishonest Bob must pass both examinations at
the same time with regard to the above (1−κ)n particles. If
dishonest Bob wants to pass the first examination completely,
he may return particle b without disturbing the entangled
state |�+〉ab. However, if he does this, he cannot pass the
second examination. This is because he is ignorant of the spin
state |AC〉b that she obtains. On the other hand, if he wants
to pass the second examination completely, he may prepare
a dummy pair of particles a′ and b′ in the entangled state
|�+〉a′b′ and send only particle b′ to Alice while keeping
particle b in his hand. As he can always make sure of her
measurement outcome |AC〉b ′ from his outcome |BC〉a ′ for
particle a′ with the measurement basis C, he can achieve
his purpose regardless of his delayed choice C = X or Y.
However, if he does this, he cannot pass the first examination.
This is because he cannot ensure the spin correlation between
|AC〉a and |AC〉b ′ . This observation suggests that the security
against dishonest Bob is attributed to the principles of quantum
mechanics as regards the complementary nature between the
spin angular momentum of a composite system represented by
the entangled state |�+〉ab and the spin angular momentum of
each particle a or b.

Hence, dishonest Bob may not be able to pass the first and
second examinations simultaneously in this expanded proce-
dure in which Alice utilizes the entangled state |�+〉ab and
the quantum state storage. The first and second examinations
in the expanded procedure correspond to the C = S and R
cases in the minimal CSBC protocol, respectively. In the
C = S case, the role of |AC〉b in the first examination can
be regarded as being replaced with that of |BC〉b, which is
compared with her transmitted state. In the C = R case, |BC〉b
is compared with her read-out state. Although the two cases
are exclusive in the minimal CSBC protocol, dishonest Bob is
ignorant of her sending (S) and readout (R) bases. Therefore,
the opening phase for checking dishonest Bob in the minimal
CSBC protocol is reasonable from the viewpoint given above.

B. Security against dishonest Bob using an entangled state

By utilizing an entanglement-assisted attack, dishonest
Bob can reduce the probability of being detected. To clarify
this point, we refine his operation for particle b of the
entangled pair |�+〉ab in a general form. First, he prepares his
ancillary system |ξ 〉c, which is defined in a three-dimensional
Hilbert space spanned with the basis {|ξ 1〉,|ξ 2〉,|ξ 3〉}, and |ξ 1〉
is the initial state. Then he performs a unitary entangling
operation M(c1,c2,c3) on particle b in step 2, as shown in
Fig. 4. He then returns particle b to Alice. The operation
M(c1,c2,c3) is defined by

M(c1,c2,c3) = c1Ib(|ξ 1〉〈ξ 1|)c + c2Xb(|ξ 2〉〈ξ 1|)c
+ c3(−iYb)(|ξ 3〉〈ξ 1|)c, (4)

where (Xb,Yb) and Ib are the Pauli operators and the identity
operator acting on particle b, respectively.

For example, honest Bob who selected C = X in step 2
employs MX ≡ M(

√
1/2,

√
1/2,0). The state of the system

evolves into

|ψX〉abc = MX|φ+〉ab|ξ 1〉c =
√

1/2(|X+〉a|X+〉b × |φ1〉c
+ |X−〉a|X−〉b × |φ2〉c) (5a)

with

|φ1〉c =
√

1/2(|ξ 1〉c + |ξ 2〉c) and

|φ2〉c =
√

1/2(|ξ 1〉c − |ξ 2〉c). (5b)

He then performs a projection measurement for his ancillary
system with the basis {|φ1〉,|φ2〉,|ξ 3〉} in step 4 so that he can
unveil the correct state |ϕC〉b ∈ {|X+〉b,|X−〉b}. For C = Y, he
employs MY ≡ M(

√
1/2,0,

√
1/2) as

|ψY 〉abc = MY |φ+〉ab|ξ 1〉c =
√

1/2(|Y+〉a|Y−〉b|ψ1〉c
+ |Y−〉a|Y+〉b|ψ2〉c) (6a)

with

|ψ1〉c =
√

1/2(|ξ 1〉c + i|ξ 3〉c) and

|ψ2〉c =
√

1/2(|ξ 1〉c − i|ξ 3〉c), (6b)

and he adopts another basis {|ψ1〉,|ψ2〉,|ξ 2〉} for the an-
cillary system. Hence, his choice of either coding basis
X or Y is generalized into the choice of entangling op-
eration MX or MY . He cannot transform between |ψX〉abc

and |ψY 〉abc by performing any local deterministic opera-
tion on his ancillary system. We can prove this point by
comparing the diagonal forms for the two reduced density
matrices Trab(|ψX〉〈ψX|)abc = (1/2)(|ξ 1〉〈ξ 1|+|ξ 2〉〈ξ 2|)c and
Trab(|ψY 〉〈ψY |)abc = (1/2)(|ξ 1〉〈ξ 1|+|ξ 3〉〈ξ 3|)c, where Trab

indicates the partial trace out of the quantum states of a pair
of particles a and b. This point ensures that dishonest Bob
cannot pass the first and second examinations simultaneously
as discussed in Sec. IV A. Appendix B examines a more
extended entangling operation.

Next we consider dishonest Bob, who tries to perform a
sophisticated postpone strategy; he can utilize Mpostpone ≡
M(

√
1/3,

√
1/3,

√
1/3), which is derived in Appendix B. The

evolved state of the system can be represented by

Mpostpone|φ+〉ab|ξ 1〉c =
√

2/3|�X〉abc +
√

1/3|�−〉ab|ξ 3〉c
=

√
2/3|�Y 〉abc +

√
1/3|�+〉ab|ξ 2〉c,

(7)

where |�±〉ab represents the certain Bell states summarized in
Table II. When he tells either coding basis, he can adopt either
basis {|φ1〉,|φ2〉,|ξ 3〉} or {|ψ1〉,|ψ2〉,|ξ 2〉} for his ancillary
system depending on his delayed choice of C = X or Y. If
he chooses the former basis and then obtains the result |φ1〉
or |φ2〉, he is aware of his success and he can pass Alice’s
examination by unveiling the basis C = X and the state |X+〉b or
|X−〉b. On the other hand, if he obtains |ξ 3〉, which occurs with
a 1/3 probability, the state of the pair falls into the illegitimate
entangled state |�−〉ab and he fails to answer the correct spin
state of particle b with a 1/2 probability. Then he is detected
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with a 1/2 probability per particle in step 10 of the minimal
protocol. A similar scenario holds for C = Y.

Since (i) (2/3)n particles per sequence can pass Alice’s
examination on average in step 10 and (ii) Bob can conceal
κn arbitrary particles in a set of his test particles, the
probability that he can escape her detection is represented
by (1/2)max[n/3−κn,0]. This is the reason that the security
parameter κ must be set sufficiently less than 1/3 when
they achieve the consensus on κ . Thus, if Alice executes the
minimal protocol, the probability PA that she can defeat the
sophisticated postpone strategy is estimated by

PA(postpone III) = 1 − (1/2)(1/3−k)n with k < 1/3. (8)

C. Security against dishonest Alice using an entangled state

The purpose of dishonest Alice is to find a combination of
the initial transmitted state of particle b and the measurement
basis for returned particle b such that she can obtain much
information relevant to Bob’s basis choice without leaving ev-
idence of the illegitimate access. In the entanglement-assisted
framework, she uses the maximally entangled state |�+〉ab

and postpones measuring staying particle a until receiving
particle b. Note in this framework that the use of |�+〉ab

ensures the identity I/2 = Tra(|�+〉〈�+|)ab for the particle
b; she can always pass the supplemental examination by Bob
as regards the identity of the transmitted state (see Sec. III E).
More generally, we can start from the condition in which she
prepares initially a product state |χ〉 = ⊗n

j=1|�+〉ab
(j ) for a

sequence of n different pairs of staying and flying particles.
Once Alice prepares the initial product state |χ〉, she

can postpone choosing a measurement basis for the set of
n staying particles until she receives the set of n flying
particles. Her prior choice of the initial transmitted state is
replaced by the posterior choice of the measurement basis
in the entanglement-assisted framework. In fact, if Alice
obtains the measurement outcome |ψk〉A as a result of her
collective projection measurement with the basis {|ψi〉A;
i = 1 ∼ 2n} on n staying particles, this is equivalent to
her sending the entangled state |ϕk〉B of n flying particles
provided that |χ〉 = ∑2n

i=1 ci |ψi〉A|ϕi〉B (i = 1 ∼ 2n) holds,
where |ψi〉A (or |ϕi〉B) denotes a set of 2n different orthog-
onal normalized entangled states of n staying (or flying)
particles, and

∑2n

i=1 |ci |2 = 1 holds. Therefore, a variety of
Alice’s strategies is attributed to her different choices of
the measurement basis for a sequence of n different pairs
of staying and returned particles, which is initially prepared
in |χ〉.

With regard to each pair of particles a and b, two different
density matrices relevant to the different basis choices of
honest Bob are given by

ρX = Trc(|�X〉 〈�X|)abc and ρY = Trc(|�Y 〉 〈�Y |)abc.

ρX and ρY are derived, respectively, from Eqs. (5) and (6),
where Trc denotes the partial trace over the states of Bob’s
ancillary system. When Bob chooses either coding basis C = X
or Y for particle b in step 2, Alice receives the density matrix
ρX or ρY in step 3. Therefore, her purpose is to find the
measurement basis for a particle pair that makes it possible for
her to perform an unambiguous state discrimination between

ρX and ρY . Since ρX and ρY are expressed in diagonal forms
simultaneously as

ρX = 1

2

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ and ρY = 1

2

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦

with the Bell basis {|�+〉ab,|�−〉ab,|�+〉ab,|�−〉ab}, the Bell
state serves as the unambiguous state discrimination. (i) Her
measurement outcomes |�+〉 and |�−〉 reveal C = X and Y,
respectively, without errors. (ii) The outcome |�+〉 affords her
no information. (iii) The outcome |�−〉 is never obtained.

This observation holds directly for a sequence of returned
n particles bij (j = 1 ∼ n) that are coded with an identical basis
of either Ci = X or Y. As the initial state of n pairs is prepared
in |χ〉 = ⊗n

j=1|�+〉ab
(j ), the density matrices of the sequences

of n pairs are given by the direct products over n individual
pairs as

ρi
X = n⊗

j=1
ρ

ij

X and ρi
Y = n⊗

j=1
ρ

ij

Y ,

where the above density matrices are defined in a 4n-
dimensional Hilbert space. We can express ρi

X and ρi
Y in

diagonal forms simultaneously provided that we employ the
Bell basis for each pair. Therefore, Alice can distinguish ρi

X

and ρi
Y by choosing the Bell basis for different individual pairs.

If she repeats the measurement until she obtains a conclusive
outcome, she can determine the coding basis Ci or subordinate
bit ui . Its success probability is given by 1−(1/2)n. Hence,
she can determine the commitment bit Z = ⊕m

i=1 ui with the
probability (1− 1/2n)m.

On the other hand, the Bell state measurement neces-
sarily leaves behind evidence of her illegitimate access, as
explained below. The Bell state measurement is equivalent
to determining the spin angular momentum for a composite
system of spins a and b [19]. Table II summarizes this
point. However, the projection to the possible three Bell
states {|�+〉ab,|�+〉ab,|�−〉ab} for a pair of spins a and b
necessarily destroys the spin state |BC〉b of particle b. This
means that Alice cannot escape Bob’s examination as long as
she executes the Bell state measurement. Thus security against
dishonest Alice is attributed to the complementary relationship
between the spin angular momentum of the composite system
and that of an individual particle [19].

More generally, as the information relevant to Bob’s basis
choice is coded in the composite spin angular momentum
of each pair, collective measurements over several pairs
necessarily disturb this information. Moreover, collective
measurements over pairs destroy the spin state |BC〉b of
each particle b and may bring incorrect answers when she
is subjected to Bob’s examination. Therefore, it seems less
beneficial for dishonest Alice to employ a collective attack for
the set of different pairs.

Finally, it is worth mentioning the relationship be-
tween the Bell state measurement above and the straight-
forward strategy supposed in the minimal CSBC pro-
tocol (see Sec. III D). Assume that she replaces the
Bell basis with the product state basis {|X+〉a|X+〉b,
|X+〉a|X−〉b, |X−〉a|X+〉b, |X−〉a|X−〉b}. Alice can consider
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the projection onto a certain product state |X+〉a|X−〉b or
|X−〉a|X+〉b to be equivalent to the projection into the
Bell state |�−〉ab = √

1/2(−|X+〉a|X−〉b+|X−〉a|X+〉b) and
she can conclude C = Y. This is because ρX and ρY

do not contain the Bell state |�−〉, which is defined as√
1/2(|X+〉a|X−〉b+|X−〉a|X+〉b). On the other hand, the

projection onto the state |X+〉a|X+〉b or |X−〉a|X−〉b provides
no conclusive result while it preserves the spin state |X+〉b
or |X−〉b. Whenever Alice obtains the result |X+〉a|X+〉b or
|X−〉a|X−〉b on successive l occasions for the kth sequence,
however, she can reduce the probability of Ck = Y to 1/2l and
guess Ck = X with a probability (1+1/2l)−1 without leaving
behind evidence. Thus she can reduce the evidence of the
illegitimate access by about 50% without sacrificing gained
information.

Finally, we mention the appropriate (m,n,κ) values for a
given security criteria ε. We define ε as Bob’s failure probabil-
ity 1−PB = (1/2)κm in detecting the straightforward strategy
of dishonest Alice [see Eq. (3)]. We set the same criteria ε

for Alice’s failure probability 1−PA(postpone III) = (1/2)(1/3−κ)n

in detecting the third postpone strategy of dishonest Bob [see
Eq. (8)]. Hence, m and n are given by m = (log1/2ε)/κ and
n = (log1/2ε)/(1/3−κ), respectively. κ = 1/6 minimizes the
total round-trip times m × n. The criterion ε = 10−9 requires
(m,n) = (180 180) and 32 400 times of the round trip for the
cheat-sensitive commitment of a classical one-bit.

D. Complementary relationships between the spin-state
assertion and the coding basis determination

As discussed in Sec. IV C, dishonest Alice is inevitably
detected by Bob in the opening phase whenever she tries to
determine or guess his coding basis C in the commitment
phase. This subsection shows an example in which she can
obtain no information relevant to his coding basis C in
the commitment phase as long as she tries to escape his
examination. If she attempts to pass the examination perfectly
in the opening phase, what kinds of illegitimate measurements
are allowed for Alice in the commitment phase?

To find the above type of illegitimate measurements, we
introduce a measurement � performed with a four-dimensional
projection basis {|P〉,|Q〉,|R〉,|S〉} for a pair of staying and
returned particles in the commitment phase. Alice must design
the measurement � such that she can assert the correct
spin state |C±〉 of particle b whenever she is notified of
Bob’s coding basis C. As she must prepare the maximally
entangled state |�+〉ab to satisfy the identity condition
I/2 = Tra(|�+〉〈�+|)ab for particle b (see Section III E),
the correlation between the quantum state |�〉ab of the particle
pair and the state |ξ 〉c of Bob’s ancillary system is always
represented by |ψX〉abc [see Eq. (5)] or |ψY 〉abc [see Eq. (6)]
depending on his basis choice C = X or Y.

Instead of |X±,X±〉ab or |Y±,Y∓〉ab, she can find an
alternative expression for |�〉ab in |ψX〉abc or |ψY 〉abc by
considering the preservation of the inner products such
as (〈X−,X−|X+,X+〉)ab = 0, (〈Y−,Y+|Y+,Y−〉)ab = 0,
(〈Y±,Y∓|X+,X+〉)ab = 1/2, and (〈Y±,∓|X−,X−〉)ab = 1/2.

TABLE III. Alice’s assertion for Bob’s spin state |±〉 depending
on his basis notification.

Bob’s notification of basis C

Alice Bob notified Bob notified
Measurement outcomes of X basis of Y basis

|P 〉 + +
|Q〉 − −
|R〉 + −
|S〉 − +

For example, she can rewrite |X±,X±〉ab and |Y±,Y∓〉ab with
the basis {|P〉,|Q〉,|R〉,|S〉} as follows:

|X+〉a|X+〉b =
√

1/2(|P 〉ab + |R〉ab),

|X−〉a|X−〉b =
√

1/2(|Q〉ab + |S〉ab),

|Y+〉a|Y−〉b =
√

1/2(|Q〉ab + |R〉ab),

|Y−〉a|Y+〉b =
√

1/2(|P 〉ab + |S〉ab).

Furthermore, she can determine the basis state
{|P〉,|Q〉,|R〉,|S〉} by solving the above equations with |Y±〉 =
{(1 ± i)|X+〉 + (1 ∓ i)|X−〉}/2. Thus she can find the alter-
native expressions for |ψX〉abc and |ψY 〉abc such that

|�X〉abc =
√

1/2{
√

1/2(|P 〉ab + |R〉ab)|φ1〉c
+

√
1/2(|Q〉ab + |S〉ab)|φ2〉c}, (9)

|�Y 〉abc =
√

1/2{
√

1/2(|Q〉ab + |R〉ab)|ψ1〉c
+

√
1/2(|P 〉ab + |S〉ab)|ψ2〉c}. (10)

As shown in Eqs. (9) and (10), if she employs the
above basis {|P〉,|Q〉,|R〉,|S〉} for the measurement � in the
commitment phase, she can answer the correct spin state
|C±〉 to Bob in the opening phase. She can always assert
the spin state of particle b from her measurement outcome in
accordance with Table III. This framework is very similar to
the assertion scheme proposed by Vaidman, Aharonov, and
Albert [20].

With regard to the extraction of Bob’s basis information,
however, the measurement � provides Alice with no infor-
mation. We can clarify this point from the expressions for
ρX = Trc(|ψX〉〈ψX|)abc and ρY = Trc(|ψY 〉〈ψY |)abc with the
basis {|P〉,|Q〉,|R〉,|S〉},

ρX = 1

4

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦ and ρY = 1

4

⎡
⎢⎢⎣

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎤
⎥⎥⎦ .

Each diagonal element is identical for ρX and ρY . Hence,
she can obtain no information with regard to his basis choice
C = X or Y. Thus, in this example, it is impossible for Alice
to pass the examination by Bob and to obtain Bob’s basis
information simultaneously. Appendix C discusses this point
for more general cases, where the initial state of the particle
pair is extended to a nonmaximally entangled state.

As shown in Appendix D, the following basis
{|p〉,|q〉,|r〉,|s〉} or {|p′〉,|q′〉,|r′〉,|s′〉} is an explicit example
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for the basis state {|P〉,|Q〉,|R〉,|S〉} with the additional phase
factors eiφ :

{|p〉,|q〉,|r〉,|s〉}
= {|Y−〉a|X+〉b,|Y+〉a|X−〉b,|Y+〉a|X+〉b,|Y−〉a|X−〉b}

or

{|p′〉,|q ′〉,|r ′〉,|s ′〉}
= {|X+〉a|Y+〉b,|X−〉a|Y−〉b,|X+〉a|Y−〉b,|X−〉a|Y+〉b}.

This is exactly the legitimate arrangements (S �= R) in the
sending (S) and readout (R) bases, which are prescribed for
Alice in the minimal protocol. Thus the security of the minimal
protocol is given by the nature of the measurement �.

Here it is worth mentioning that the above assertion scheme
for the spin state with the two conjugate bases {|p〉,|q〉,|r〉,|s〉}
and {|p′〉,|q′〉,|r′〉,|s′〉} has a similar structure to that of a
quantum communication channel analogous to one out of two
oblivious transfers that we have proposed [21]. Appendix D
also outlines this point.

Furthermore, by considering an appropriate projection
measurement �̃ that is modified from the measurement �, we
can study the quantitative relationship between the information
that Alice can obtain and the probability of being detected by
Bob. She can choose the projection measurement �̃ such that
she can obtain a small amount of information on Bob’s coding
basis C while leaving little evidence of her illegitimate access.
She may be able to guess the coding basis C by increasing the
number of measurements per sequence. This strategy, however,
offers no advantage. Appendix E examines this point.

V. SUMMARY

First, in this paper we proposed a quantum protocol for
bit escrow with a round trip of a qubit. Alice, the receiver of
the bit, sends one of two spin states |S±〉 by choosing basis
S in a random way from two conjugate bases X and Y. Bob,
the sender of the bit, performs a projection measurement with
coding basis C ∈ {X,Y} and returns a resultant state |C±〉. She
performs a projection measurement with another basis R ( �=S)
and obtains an outcome |R±〉. Thus she can assert the spin
state |C+〉 or |C−〉 depending on the coding basis C that is
announced later from Bob. Afterward, she can discover Bob,
who unveils a wrong basis with a faked spin state. On the other
hand, if Alice infers the coding basis C, but destroys |C±〉, by
setting basis R identical to S, Bob can detect this by requesting
that she guess the spin state |C±〉.

Then we constructed a quantum communication protocol
for the cheat-sensitive commitment of a classical bit (CSBC)
by utilizing the above bit escrow protocol as a building block.
Our proposed scheme avoids the loophole relevant to the
decomposability of a quantum bit escrow and quantum weak
coin flipping [18] that is addressed for the conventional CSBC
protocol. To ensure impartial examinations for the two parties
and probabilistic security improvements with respect to m and
n, the classical bit is encoded in a block of m × n particles of
a qubit. Bob can probabilistically detect dishonest Alice when
she violates concealment in the commitment phase. Alice can

probabilistically detect dishonest Bob provided that (i) he tries
to change the commitment bit from its initial value in the
opening phase, or (ii) he postpones deciding the bit value until
the opening phase.

Our CSBC protocol is composed of the quantum commu-
nication part and the classical information part. The former
is relevant to each round trip of a qubit particle. The latter
involves (i) coding a classical bit in a block of m × n
qubits and (ii) using all particles as test bits for impartial
examinations between the two parties. With regard to the
bottom-up approach from the quantum communication part,
our heuristic study suggests that the security is attributed to
the complementary nature of the spin angular momentum
of a composite spin system and that of the individual spin.
On the other hand, it is still unclear how we can prove
unconditional security. This question is open for future
studies. We hope that our proposal stimulates more discussion
on the topic of a quantum protocol for cheat-sensitive bit
commitment.
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APPENDIX A

For simplicity, in this paper we assume a lossless and
error-free transmission of particles through quantum channels.
If the quantum channel has a finite dissipation, however,
the minimal protocol is insecure against dishonest Alice.
This is because she can always fake the failure of the
transmission and discard a certain particle when the quantum
state of the particle is destroyed by her illegitimate access.
To eliminate this fault in a simple way, Bob can scramble
the transmission order of the particles when he returns a set
of m × n particles to Alice in step 2. After confirming her
reception of the particles, he reveals the correct addresses (i,j)
only for those particles transmitted successfully. With regard
to the transmission error, the minimal protocol requires an
error rate ε that is sufficiently less than 2/n. If not ε  2/n,
Bob has difficulty discriminating the evidence of Alice’s
illegitimate access from the transmission errors. Modification
to improve the error tolerance is planned for future
work.

APPENDIX B

We derive the entangling operation Mpostpone ≡
M(

√
1/3,

√
1/3,

√
1/3) that minimizes the failure probability

of dishonest Bob, who tries to postpone his decision until the
opening phase. After the entangling operation M(c1,c2,c3) [see
Eq. (4)] on the initial state |�+〉ab|ξ 1〉c, the state of the whole
system is represented as follows:
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M(c1,c2,c3)|φ+〉ab|ξ 1〉c = c1|φ+〉ab|ξ 1〉c + c2|�+〉ab|ξ 2〉c + c3|�−〉ab|ξ 3〉c
= |X+〉a|X+〉b

(
c1|ξ 1〉c + c2|ξ 2〉c√

2

)
+ |X−〉a|X−〉b

(
c1|ξ 1〉c − c2|ξ 2〉c√

2

)
+ c3|�−〉ab|ξ 3〉c

= |Y+〉a|Y−〉b
(

c1|ξ 1〉c + ic3|ξ 3〉c√
2

)
+ |Y−〉a|Y+〉b

(
c1|ξ 1〉c − ic3|ξ 3〉c√

2

)
+ c2|�+〉ab|ξ 2〉c. (B1)

The following four conditions are requested for a set of
(c1,c2,c3): (i) normalization condition |c1|2+|c2|2+|c3|2 = 1,
(ii) orthogonal relationship between c1|ξ 1〉 + c2|ξ 2〉 and
c1|ξ 1〉 − c2|ξ 2〉, (iii) orthogonal relationship between c1|ξ 1〉 +
ic3|ξ 3〉 and c1|ξ 1〉 − ic3|ξ 3〉, and (iv) equal failure
probabilities for the two different delayed choices of
X and Y. From the above conditions, we can de-
termine (c1,c2,c3) = (

√
1/3,

√
1/3,

√
1/3). The quantity

|c3|2 = |c2|2 = 1/3 indicates the possible minimum failure
probability for Bob’s delayed choice of Y or X.

A more general entangling operation is as follows.
Bob prepares an additional ancillary system |χ〉d and
sets the initial state |χi〉d = d1|χ1〉d +d2|χ2〉d with
the two different orthogonal states |χ1〉d and |χ2〉d .
When he employs an extended entangling operation
Mx⊗(|χ1〉〈χ1|)d+MY ⊗(|χ2〉〈χ2|)d on |�+〉ab|ξ 1〉c|χ1〉d , he
obtains the state |ζ 〉abcd = d1|χ1〉d |ψX〉abc+d2|χ2〉d |ψY 〉abc.
The accidental projection to |χ1〉d or |χ2〉d results in |ψX〉abc

or |ψY 〉abc. However, Bob cannot control the results of the
projection in a deterministic way and therefore he cannot
utilize this operation to postpone his decision.

Although he can alter the quantum state from |ζ 〉abcd by
performing a local deterministic operation on his ancillary sys-
tems, all transformable quantum states must be characterized
by certain eigenvalues peculiar to the reduced density matrix
σ = Trab(|ζ 〉〈ζ |)abcd . Here Trab denotes the partial trace over
the states of a particle pair in Alice’s hand. Actually, σ is
expressed as

σ = [|d1|2(|χ1〉〈χ1|)d (|ξ 1〉〈ξ 1| + |ξ 2〉〈ξ 2|)c + |d2|2
× (|χ2〉〈χ2|)d (|ξ 1〉〈ξ 1| + |ξ 3〉〈ξ 3|)c + {d1d

∗
2 (|χ1〉〈χ2|)d

+ d∗
1 D2(|χ2〉〈χ1|)d}(|ξ 1〉〈ξ 1|)c]/2

and has the specific eigenvalues {1, |d1|2, 0, 0, 0, 0, |d2|2, 0}.
Therefore, once Bob fixes the amplitudes (d1,d2) = (1,0) in the
commitment phase, he cannot alter them into (d1,d2) = (0,1)
in the opening phase in a deterministic way.

APPENDIX C

Suppose that Alice replaces |�+〉ab with a general non-
maximally entangled state |η〉ab of the particle pair with the
normalization |α|2+|β|2 = 1,

|η〉ab = a |μ〉a |X+〉b + β |ν〉a |X−〉b ,

where |μ〉a and |ν〉a indicate arbitrary normalized states of
particle a and 〈μ|ν〉 = 0 is not necessarily satisfied. Regardless
of |η〉ab, she can always introduce the measurement � by
choosing an appropriate basis {|P〉,|Q〉,|R〉,|S〉}, whereas �

provides no information on Bob’s choice of basis. We show
this point in the following.

Instead of Eqs. (5) and (6), we define quantum states |�̃X〉
and |�̃Y 〉as

|�̃X〉 = MX |η〉ab |ξ 1〉c
= α |μ〉a |X+〉b |φ1〉c + β |ν〉a |X−〉b × |φ2〉c

and

|�̃Y 〉 = MY |η〉ab |ξ 1〉c
=

√
1/2(α eiπ/4 |μ〉a + β e−iπ/4 |ν〉a) |Y−〉b

∣∣ψ1〉
c

+
√

1/2(α e−iπ/4 |μ〉a + β eiπ/4 |ν〉a) |Y+〉A |ψ2〉c,
respectively. First, � must satisfy the following two expres-
sions:

|μ〉a |X+〉b = a |P 〉ab + b |R〉ab with |a|2 + |b|2 = 1

and

|ν〉a |X−〉b = c |Q〉ab + d |S〉ab with |c|2 + |d|2 = 1

such that the basis {|P〉,|Q〉,|R〉,|S〉} can bring the following
expression:

|�̃X〉 = (αa|P 〉ab + αb |R〉ab)|φ1〉c
+ (βc |Q〉ab + βd |S〉ab)|φ2〉c. (C1)

Then the orthogonal relationship with |μ〉a|X+〉b deter-
mines the form of |μ〉a|X−〉b as

|μ〉a|X−〉b = s(b∗|P 〉ab − a∗|R〉ab) + t |Q〉ab + u|S〉ab

with |s|2 + |t |2 + |u|2 = 1.

The form of |ν〉a|X+〉b can be determined in the same way
as

|ν〉a |X+〉b = v(d∗ |Q〉ab − c∗ |S〉ab) + w |P 〉ab + x |R〉ab

with |v|2 + |w|2 + |x|2 = 1.

Using the relationships |μ〉a |Y±〉b =√
1/2(e±iπ/4 |μ〉a |X+〉b + e∓iπ/4 |μ〉a |X−〉b) and

|ν〉a |Y±〉b =
√

1/2(e±iπ/4 |ν〉a |X+〉b + e∓iπ/4 |ν〉a |X−〉b),

we can rewrite |�̃Y 〉 with the basis {|P〉,|Q〉,|R〉,|S〉} as
follows:

i|�̃Y 〉 = (1/2){(iαa − A)|P 〉ab + (iβc + C)|Q〉ab

+ (iαb + B)|R〉ab + (iβd − D)|S〉ab}|ψ1〉c
+ (1/2){(iαa + A)|P 〉ab + (iβc − C)|Q〉ab

+ (iαb − B)|R〉ab + (iβd + D)|S〉ab}|ψ2〉c,
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where A = αsb∗−βw, B = αsa∗+βx, C = βvd∗−αt, and
D = βvc∗+αu.

If we take the set of conditions

iαa = A, (C2a)

iβd = D, (C2b)

iαb = B, (C2c)

iβc = C, (C2d)

we can obtain a desired expression for |�̃Y 〉,
|�̃Y 〉 = {βc|Q〉ab + ab|R〉ab}|ψ1〉c

+{αa|P 〉ab + βd|S〉ab}|ψ2〉c. (C3)

A pair consisting of Eqs. (C1) and (C3) means the
successful achievement of measurement � with the basis
{|P〉,|Q〉,|R〉,|S〉}, where Alice can always assert the spin state
of particle b correctly once she has been notified of his coding
basis in the opening phase.

However, the measurement � provides no information on
Bob’s coding basis in the commitment phase. We can examine
this point from the expressions for ρ̃X = Trc(|�̃X〉〈�̃X|) and
ρ̃Y = Trc(|�̃Y 〉〈�̃Y |) with the basis {|P〉,|Q〉,|R〉,|S〉},

ρ̃X = 1

2

⎡
⎢⎢⎢⎢⎣

|α|2|a|2 0 |α|2ab∗ 0

0 |β|2|c|2 0 |β|2cd∗

|α|2ba∗ 0 |α|2|b|2 0

0 |β|2dc∗ 0 |β|2|d|2

⎤
⎥⎥⎥⎥⎦

and

ρ̃Y = 1

2

⎡
⎢⎢⎢⎢⎣

|α|2|a|2 0 0 αβ∗ad∗

0 |β|2|c|2 α∗βcb∗ 0

0 αβ∗bc∗ |α|2|b|2 0

α∗βda∗ 0 0 |β|2|d|2

⎤
⎥⎥⎥⎥⎦ .

For each diagonal element, ρ̃X and ρ̃Y have an iden-
tical value. Therefore, Alice obtains no information on
Bob’s coding basis. This is an intuitive proof of the im-
possibility of performing � and determining Bob’s basis
simultaneously.

We explain below how Alice determines (a,b), (c,d),
(s,t,u), and (v,w,x) in an appropriate way when she
prepares |η〉ab. From the conditions (C2a)–(C2d), we obtain
(i) a pair consisting of a∗w+b∗x = i(α/β)(|b|2−|a|2)
and ct∗+du∗ = i(β∗/α∗)(|c|2−|d|2) by computing
(C2c) × b∗−(C2a) × a∗ and (C2b) × d∗−(C2d) × c∗,
(ii) a pair consisting of ax−bw = −(α/β)(s−i2ab)
and ax+bw = s(α/β)(|b|2−|a|2) by calculating
(C2c) × a ± (C2a) × b, and (iii) a pair consisting of
cu−dt = −(β/α)(v−i2cd) and cu+dt = v(β/α)(|d|2−|c|2)
by calculating (C2b) × c ± (C2d) × d. We utilize the above
relationships just below.

In addition to the normalization conditions, we can derive
directly the following two constraints:

(〈μ|a〈X±|b)(|ν〉a|X±〉b)

= 〈μ | ν〉 = a∗w + b∗x = ct∗ + du∗, (C4a)

(〈μ|a〈X−|b)(|ν〉a|X+〉b)

= −(ax − bw)s∗ − (cu − dt)∗v = 0. (C4b)

Then Eqs. (C4a) and (C4b) can be reformulated by

−iα∗β〈μ | ν〉 = |α|2 (|b|2 − |a|2) = |b|2 (|c|2 − |d|2)

and

|α|2 (|S|2 − i2s∗ab) + |β|2 (|v|2 + i2vc∗d∗) = 0,

respectively. For example, the condition 〈μ|ν〉 = 0 brings
|b|2 = |a|2 = 1/2 and |c|2 = |d|2 = 1/2. When both
(α,β) = (

√
1/2,

√
1/2) and 〈μ|ν〉 = 0 are satisfied, Eqs. (9)

and (10) hold.

APPENDIX D

For the {|p〉,|q〉,|r〉,|s〉} basis or the {|p′〉,|q′〉,|r′〉,|s′〉} basis,
we can derive the following relationships with use of |Y±〉 =
{(1 ± i)|X+〉 + (1 ∓ i)|X−〉}/2 or |X±〉 = {(1 ∓ i)|Y+〉 +
(1 ± i)|Y−〉}/2:√

1/2(eiπ/4|p〉 + e−iπ/4|r〉) =
√

1/2(e−iπ/4|p′〉 + eiπ/4|r ′〉)
= |X+〉a|X+〉b,√

1/2(eiπ/4|q〉 + e−iπ/4|s〉) =
√

1/2(e−iπ/4|q ′〉 + eiπ/4|s ′〉)
= |X−〉a|X−〉b,√

1/2(eiπ/4|q〉 + e−iπ/4|r〉) =
√

1/2(e−iπ/4|q ′〉 + eiπ/4|r ′〉)
= |Y+〉a|Y−〉b,√

1/2(eiπ/4|p〉 + e−iπ/4|s〉) =
√

1/2(e−iπ/4|p′〉 + eiπ/4|s ′〉)
= |Y−〉a|Y+〉b.

In the above expressions, we can confirm that each
basis satisfies � with the definition of {|P〉,|Q〉,|R〉,|S〉} ≡
{eiπ/4|p〉, eiπ/4|q〉, e−iπ/4|r〉, e−iπ/4|s〉} or {|P〉,|Q〉,|R〉,|S〉} ≡
{e−iπ/4|p′〉, e−iπ/4|q′〉, eiπ/4|r′〉, eiπ/4|s′〉}. Moreover, we can
derive another set of the expressions as follows:√

1/2(e−iπ/4|p〉 + eiπ/4|r〉) =
√

1/2(eiπ/4|q ′〉 + e−iπ/4|s ′〉)
= |X−〉a|X+〉b,√

1/2(e−iπ/4|q〉 + eiπ/4|s〉) =
√

1/2(eiπ/4|p′〉 + e−iπ/4|r ′〉)
= |X+〉a|X−〉b,√

1/2(e−iπ/4|q〉 + eiπ/4|r〉) =
√

1/2(eiπ/4|p′〉 + e−iπ/4|s ′〉)
= |Y+〉a|Y+〉b,√

1/2(e−iπ/4|p〉 + eiπ/4|s〉) =
√

1/2(eiπ/4|q ′〉 + e−iπ/4|r ′〉)
= |Y−〉a|Y−〉b

By use of the pair of {|p〉,|q〉,|r〉,|s〉} and {|p′〉,|q′〉,|r′〉,|s′〉}
bases, we can realize a communication channel analogous to
one out of two oblivious transfers from Bob to Alice, which
has been proposed in [21]. Here we suppose that Bob sends
a product state |ϕ〉a|ψ〉b of particles a and b to Alice. He
can code the two-bit of information (u,v) ∈ {(0,0), (0,1), (1,0),
(1,1)} on the pair by employing one of the two conjugate
bases {|X±,X±〉ab} and {|Y±,Y±〉ab}, where they decide the
following rules:

(i) For (u,v) = (0,0), he sends |X+〉a|X+〉b or
|Y−〉a|Y+〉b.
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(ii) For (u,v) = (0,1), he sends |X−〉a|X+〉b or
|Y−〉a|Y−〉b.

(iii) For (u,v) = (1,0), he sends |X+〉a|X−〉b or
|Y+〉a|Y+〉b.

(iv) For (u,v) = (1,1), he sends |X−〉a|X−〉b or
|Y+〉a|Y−〉b.

As Bob chooses either one of the two conjugate bases in a
random way, Alice can never determine u and v without errors
at the same time. However, if she chooses the {|p〉,|q〉,|r〉,|s〉}
basis to measure the pair, she can conclude u = 0 and 1
whenever she obtains the outcomes |p〉 and |q〉, respectively. If
she obtains the outcome |r〉 or |s〉, she notifies him of the failure.
In the same way, if she chooses the {|p′〉,|q′〉,|r′〉,|s′〉} basis to
measure the pair, she can conclude v = 0 and 1 whenever she
obtains the outcomes |p′〉 and |q′〉, respectively. We can design
the protocol such that Bob cannot infer her choice without
being detected by her [21].

APPENDIX E

We can observe an intuitive relationship between the
information Alice can obtain from a sequence of n pairs
and Bob’s detection probability. She can always choose her
projection basis {|P̃ 〉,|Q̃〉,|R̃〉,|S̃〉} in such way that |ψX〉abc

[see Eq. (5)] and |ψY 〉abc [see Eq. (6)] are represented by

|�X〉abc

=
√

1/2(|X+〉a|X+〉b|φ1〉c + |X−〉a|X−〉b|φ2〉c)

= (1/2)[(
√

1 − sin 2θ |P̃ 〉 + √
1 + sin 2θ |R̃〉|φ1〉c)

+ (
√

1 − sin 2θ |Q̃〉 + √
1 + sin 2θ |S̃〉)|φ2〉c] (E1)

and

|�Y 〉abc =
√

1/2(|Y+〉a|Y−〉b|ψ1〉c + |Y−〉a|Y+〉b|ψ2〉c)

= (1/2)[{cosθ (|Q̃〉 + |R̃〉) − sinθ (|P̃ 〉 − |S̃〉)}|ψ1〉c
+{cosθ (|P̃ 〉 + |S̃) − sinθ × (|Q̃〉 − |R̃〉)}|ψ1〉c].

(E2)

If the parameter angle θ decreases to zero, the ba-
sis {|P̃ 〉,|Q̃〉,|R̃〉,|S̃〉} approaches the {|P〉,|Q〉,|R〉,|S〉} basis,
which gives the measurement � discussed in Sec. IV D.
Angle θ determines the information that Alice can obtain and
the probability that she is detected. In practice, when θ = 0,
she can obtain no information relevant to Bob’s choice but she
leaves behind no evidence.

First we evaluate the probability that Alice’s guess on
Bob’s basis is correct. The diagonal elements of the den-
sity matrices are different for ρX = Trc(|ψX〉〈ψX|)abc and
ρY = Trc(|ψY 〉〈ψY |)abc with the {|P̃ 〉,|Q̃〉,|R̃〉,|S̃〉} basis,

ρX; [ρX]PP = [ρX]QQ = 1

4
− sin 2θ

4
,

[ρX]RR = [ρX]SS = 1

4
+ sin 2θ

4
,

ρY ; [ρY ]PP = [ρY ]QQ = [ρY ]RR = [ρY ]SS = 1

4
.

With ρY , two different pairs of outcomes {|P̃ 〉,|Q̃〉} and
{|R̃〉,|S̃〉} appear with an equal probability of 1/2. On the other

FIG. 5. Probability of Alice’s correct guess with respect to
parameter λ.

hand, if ρX is received, the pairs {|P̃ 〉,|Q̃〉} and {|R̃〉,|S̃〉} appear
with different probabilities (1−sin2θ )/2 and (1+sin2θ )/2,
respectively.

Therefore, she can guess the coding basis X or Y from the
measurement outcomes for a set of n pairs identically prepared
in ρX or ρY . If Alice performs the measurement for l (�n)
pairs, she can expect to observe the outcomes {|P̃ 〉,|Q̃〉} with
the different frequencies for ρX and ρY . This difference is
evaluated by � ≡ (sin2θ /2)l. To distinguish between the two
different probability distributions with high probability, the
difference � has to be sufficiently larger than the statistical
variance δ∼(

√
lcos2θ )/2 of the binary distribution relevant to

ρX. Thus we can introduce a parameter λ ≡ �/δ = √
l tan2θ as

a quantity specifying the information she can obtain. Figure 5
shows the probability of her correct guess with respect to λ for
l = 12 and 36.

We then estimate the probability PAlice-escape that she can
escape the detection. Equation (E1) implies that she can always
pass the examination when she is notified of the X basis by Bob.
In contrast, Eq. (E2) means that she is detected with a finite
probability of sin2θ when she is notified of the Y basis. The
total amount of illegitimate access that is detectable by Bob
is approximately given by κ × (m/2) × l for a set of m × n
particles, where (i) l is the number of pairs measured with
the {|P̃ 〉,|Q̃〉,|R̃〉,|S̃〉} basis per sequence, (ii) m/2 denotes the
number of the sequence coded with the Y basis by Bob, and
(iii) security parameter κ is the probability that one arbitrary
particle is sampled by him for the test. Hence, the probability
PAlice-escape can be estimated at

PAlice-escape = (cos2θ )k(m/2)l =
(

1 + 1/
√

1 + λ2/l

2

)κ(m/2)l

(E3a)

∼ [exp(−λ2/8)]km for λ/
√

l = tan2θ  1.

(E3b)

The probability PB that Bob can detect Alice is given by
1−PAlice-escape.

Although a large λ value improves the probability of
her correct guess to close to unity, it becomes more dif-
ficult for her to escape detection. When sin2θ = 1, the
basis {|P̃ 〉,|Q̃〉,|R̃〉,|S̃〉} becomes {i|X−〉a|X+〉b, i|X+〉a|X−〉b,
|X+〉a|X+〉b, |X−〉a|X−〉b}. This basis choice is exactly the
straightforward strategy that we discussed in Sec. III D, where
the probability of detection per particle is cos2θ = 1/2 and the
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parameter λ becomes infinitely large. By substituting l = 2 as
the average value of the required access times, we can obtain
Eq. (3) for the probability PB . If Alice chooses a small angle
θ and a large time l for the measurements to achieve a large
λ value, the probability PAlice-escape is estimated by Eq. (E3b).

By comparing the term [exp(−λ2/8)]κm in Eq. (E3b) with the
term (1/2)κm on the right-hand side of Eq. (3), we can observe
that her strategy here is not advantageous. In fact, exp(−λ2/8)
is quite a bit smaller than 1/2 for the λ value, that causes a
high probability in guessing.
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