
PHYSICAL REVIEW A 84, 022306 (2011)

Optimal unitary dilation for bosonic Gaussian channels

Filippo Caruso,1 Jens Eisert,2 Vittorio Giovannetti,3 and Alexander S. Holevo4

1Institut für Theoretische Physik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
2Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, D-14195 Berlin, Germany

3NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
4Steklov Mathematical Institute, Gubkina 8, RU-119991 Moscow, Russia

(Received 6 September 2010; revised manuscript received 9 March 2011; published 4 August 2011)

A general quantum channel can be represented in terms of a unitary interaction between the information-
carrying system and a noisy environment. In this paper the minimal number of quantum Gaussian environmental
modes required to provide a unitary dilation of a multimode bosonic Gaussian channel is analyzed for both
pure and mixed environments. We compute this quantity in the case of pure environment corresponding to the
Stinespring representation and give an improved estimate in the case of mixed environment. The computations
rely, on one hand, on the properties of the generalized Choi-Jamiolkowski state and, on the other hand, on an
explicit construction of the minimal dilation for arbitrary bosonic Gaussian channel. These results introduce a
new quantity reflecting “noisiness” of bosonic Gaussian channels and can be applied to address some issues
concerning transmission of information in continuous variables systems.
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I. INTRODUCTION

Bosonic Gaussian channels (BGCs) constitute an important
special class of transformations that act on a collection of
bosonic modes preserving the Gaussian character of trans-
mitted quantum states. In quantum information science the
class of BGCs is singled out from a theoretical viewpoint [1],
but most significantly also from the perspective of practical
implementations, since it emerges naturally as the fundamental
noise model in several experimental contexts. In the majority
of physical implementations of quantum transmission lines
quantum information is sent using photons—through optical
fibers [2], in free space [3], or via superconducting transmis-
sion lines [4]—the physical situations for which BGCs provide
a very satisfactory model. Moreover, BGCs play a major
role in characterizing the open quantum system dynamics of
various setups which use collective degrees of freedom to store
and manipulate quantum information, including systems from
cavity quantum electrodynamics, nanomechanical harmonic
oscillators [5], or clouds of cold atomic gases [6].

The study of Gaussian quantum channels (or quasifree
maps) has a long tradition [7]. Intense recent research was
mostly focused on properties of BGCs with respect to
their ability to preserve and transmit quantum information
(for a review, see, e.g., Ref. [8] and references therein).
Recent contributions include the computation of the quantum
capacity [9] of a large class of single-mode BGCs [10], a
characterization in terms of degradability [11] that allows one
to identify zero-quantum capacity BGCs, and a criterion for
BGCs being entanglement breaking [12]. A general unitary
dilation theorem for BGCs was proven in Ref. [13]: It shows
that each BGC � acting on a system A formed by n input
bosonic modes admits a unitary dilation in terms of a bosonic
environment E composed of � � 2n modes, the initial state
ρ̂E of which is Gaussian, with a Gaussian unitary coupling
ÛA,E corresponding to Hamiltonians that are quadratic in the
canonical observables (see Sec. II for more precise description
of the Gaussian unitaries),

�(ρ̂) = TrE[ÛA,E(ρ̂ ⊗ ρ̂E)Û †
A,E]. (1)

Here ρ̂ is the input quantum state of the system A and
TrE denotes the partial trace over the degrees of freedom
associated with E. In the case of pure environment state ρ̂E

the representation (1) is closely related to the Stinespring
dilation [14] and with some abuse of terminology, we then
speak of Eq. (1) as of Gaussian Stinespring dilation.

Let us stress that here, as anywhere in quantum information
science, “environment” means those degrees of freedom of
the actual physical environment of the open quantum system
which are essentially involved in the interaction and in the
resulting information exchange with the system (cf. the term
“faked continuum” in [15]). The fact that the number of
Gaussian environmental modes � entering the unitary dilation
(1) can be bounded from above by 2n may be viewed as
the continuous-variable counterpart of the upper bound on
the minimal dilation set by the Stinespring theorem [16] for
finite dimensional quantum channels: It indicates that any
quantum channel can be described by using an environment
which is no more than twice larger than the input system.
Therefore, the question of such a minimal environment for
a given channel arises quite naturally; correspondingly, for
BGC the natural question to ask is in regard to the minimal
Gaussian environment. Especially important is estimation of
the minimal value �(�) needed to represent a given BGC,
specifically the minimal value �(�)

pure in the case of Gaussian
Stinespring dilation. Along with the quantum capacity, this
quantity may be used as a basic characteristic of a BGC
since one can expect that the larger it is, the noisier and less
efficient in preserving the initial state will be the corresponding
channel. Furthermore, exact knowledge of such a number
would allow one to simplify the degradability analysis of
BGCs by minimizing the number of degrees of freedom of
the corresponding complementary channel.

The main result of this work is explicit computation of the
minimal value �(�)

pure and the construction of the corresponding
dilation. This is accomplished by first determining a lower
bound for �(�)

pure in terms of the minimum number q(�)
min of

ancillary modes needed to construct a Gaussian purification
of a (generalized) Choi-Jamiolkowski (CJ) state of �. This
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is motivated by the fact that any Gaussian Stinespring
representation (1) naturally induces a Gaussian purification
of the CJ states of the channel. Then we show that this lower
bound can be achieved by explicitly constructing a Gaussian
Stinespring dilation with q(�)

min modes.
Moreover, we address the case of unitary dilations (1) in

which the environmental Gaussian state ρ̂E is not necessarily
pure. These representations turn out to be useful since, in
some cases, they provide a mathematical description which
is closer to the physical intuition (for instance, they allow
for a natural description of channels induced by beam-splitter
transformations of the input state with a thermal environmental
state). In this context we provide a new estimate for the
minimal number of modes � required by the representation,
which improves the one presented in Ref. [13].

The paper is organized as follows: In Sec. II we recall some
basic definitions and formulate the results. The notion of a
generalized CJ state of a BGC and the lower bound q(�)

min for
�(�)

pure are presented in Sec. III. Then, in Sec. IV we give a recipe
to construct such minimal dilation, while technical results and
details of the construction are given in the appendices.

II. DEFINITIONS AND RESULTS

Consider a system A composed of n bosonic quantum
mechanical modes described by the canonical observables
R̂ := (Q̂1, . . . ,Q̂n; P̂1, . . . ,P̂n) and by the Weyl (or displace-
ment) operators

V̂ (z) := eiR̂z, (2)

with z := (x1, . . . ,xn,y1, . . . ,yn)T ∈ R2n being a column vec-
tor [17]. To simplify notation, we choose units in which h̄ = 1.
We denote 1n the n × n identity matrix and by

σ2n :=
[

0 1n

1n 0

]
(3)

the matrix of the symplectic form defining the canonical
commutation relations for n modes. We denote M(m,R) the
algebra of all m × m real matrices and Gl(m,R) the group of
m × m real invertible matrices.

A state ρ̂ is called Gaussian if its symmetrically ordered
characteristic function,

φ(ρ̂; z) := Tr[ ρ̂ V̂ (z) ], (4)

is a Gaussian exponent with the covariance matrix γ ∈
Gl(2n,R) satisfying the matrix uncertainty relation γ � iσ2n.
A BGC � is defined as the linear map which induces the
following transformation of states:

φ(ρ̂; z) �→ φ[�(ρ̂); z] := φ(ρ̂; Xz)e− 1
4 zT Yz+ivT z

.

Here v ∈ R2n is a real vector, X is a 2n × 2n real matrix,
and Y,X is a 2n × 2n real symmetric matrix satisfying the
inequality

Y � i�, with � := σ2n − XT σ2nX, (5)

which ensures complete positivity of the map �. A BGC �

maps Gaussian states into Gaussian states; in the case Y =
0, X ∈ Sp(2n,R) [the group of symplectic transformations
preserving the form (3)] we speak of Gaussian unitary channel.

By the Stone–von Neumann uniqueness theorem, it is given
by conjugation with a unitary operator U , which we also call
Gaussian unitary. Those are the operators implementing linear
Bogoliubov transformations through the unitary metaplectic
representation; any such unitary operator is a product of at most
two exponentials of quadratic polynomials in the canonical
variables [18].

In the construction of the Gaussian unitary dilation (1)
of �, the vector v plays a marginal role since it can be
eliminated via a unitary rotation acting on the output state
(see, e.g., Ref. [13]). In contrast, the matrices in Eq. (5) are of
fundamental importance; in particular, we see that the values
of �(�)

pure and of our estimate for �(�)
mix, depend upon the ranks of

Y , �, and Y − i�. It is thus worth anticipating some relevant
facts that concern these matrices. First of all, we notice that
the inequality (5) implies the following relations:

ker[�] ∩ ker[Y − i�] ⊆ ker[Y ] ⊆ ker[Y − i�], (6)

ker[Y ] ⊆ ker[�], (7)

where, throughout the paper, given a generic (possibly real)
d × d matrix M , we denote its kernel (null subspace) by
ker[M] := {w ∈ Cd : Mw = 0} [19]. The first inclusion in
Eq. (6) follows from the definition, the remaining one
and the inclusion of Eq. (7) are derived from the obser-
vation that w†Yw = 0 ⇒ w†(i�)w = 0 ⇒ w†(Y − i�)w =
0 ⇒ (Y − i�)w = 0 ⇒ �w = 0. Putting these identities to-
gether we also find that

ker[Y ] = ker[�] ∩ ker[Y − i�]. (8)

Other useful properties are the identities

2 rank[Y − i�] = rank[Y ] + rank[Y − �Y	1 �T ] (9)

and the inequalities

rank[Y ] � rank[�] � rank[Y ] − rank[Y − �Y	1 �T ] � 0,

(10)

where rank[M] stands for the rank of the matrix M (i.e., the
dimension over the complex field of the complement to Cd

of the matrix ker[M]), and Y	1 is the Moore-Penrose (MP)
inverse of Y [20]. The explicit proof of these relations is rather
technical and thus we postpone it to Appendix A. Here we point
out that the first inequality of Eq. (10) is a consequence of the
fact that ker[Y ] is included in ker[�], while the last inequality
is an immediate consequence of the fact that �Y	1 �T is
positive semidefinite.

In Ref. [13], an upper bound for �(�)
pure was set by showing

that one can construct a Gaussian Stinespring dilation of �

that involves � = 2n − r ′/2 environmental modes with

r ′ := rank[Y ] − rank[Y − �Y	1�T ]. (11)

In this paper we strengthen this result by showing that the
minimum number of modes necessary to build a Gaussian
Stinespring dilation for � is given by

�(�)
pure = rank[Y − i�] = rank[Y ] − r ′/2, (12)

where we used Eq. (9) when formulating the second identity.
Since Y is a 2n × 2n matrix, we have 2n − rank[Y ] � 0, and
so the optimal bound we prove here leads to an improvement
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compared to the results of Ref. [13]. In particular, for Gaussian
unitary channels the optimal bound (12) yields �(�)

pure = 0—
no environment is required to construct the dilation—while
Ref. [13] had this value equal to 2n. To prove Eq. (12) we shall
first show that the quantity rank[Y − i�] provides a lower
bound for �(�)

pure (see Sec. III) and then construct an explicit
Stinespring dilation (1) for �, which attains such bound (see
Sec. IV).

In Ref. [13] it was also shown that for arbitrary (not
necessarily Stinespring) dilations one can reduce the number
of environmental modes from 2n − r ′/2 to 2n − rank[�]/2
[this is smaller than the former because of Eq. (10)]. In the
present paper we improve such estimate, showing that one
needs at most

�(�)
mix = rank[Y ] − rank[�]/2, (13)

environmental modes [which is less than the quantity in (12),
again due to inequality Eq. (10)]. This bound is derived in the
last part of Appendix C. A reasonable conjecture is that such
a bound is also optimal, but CJ argument used in Sec. III to
derive a lower bound in the pure dilation case no longer works
for the mixed case.

III. LOWER BOUND ON �
(�)
pure VIA GENERALIZED CJ

STATES OF BGCS

In this section we review the notion of generalized Choi-
Jamiolkowski (CJ) state for a multimode BGC (see Ref. [22])
and use it to show that the term on the right-hand side of
Eq. (12) provides a lower bound for �(�)

pure. Consider a state
vector |	
̂〉A,B providing a purification of a quantum state

̂ = ∑∞

j=1 λj (|j 〉〈j |)A of the system labeled A which has full
rank (e.g., a Gibbs state of n modes),

|	
̂〉A,B =
∞∑

j=0

√
λj |j 〉A ⊗ |j 〉B

= (
̂1/2 ⊗ 1)
∞∑

j=0

|j 〉A ⊗ |j 〉B,

with A indicating the input space of the channel �, B being
an ancillary system isomorphic to A, and {|j 〉 : j = 0,1, . . .}
denoting an orthonormal basis. A generalized CJ state of the
channel � is now obtained as

ρ̂A,B(�) = (� ⊗ I)(|	
̂〉〈	
̂|)A,B, (14)

with I being the identity map. The state ρ̂A,B(�) provides a
complete description of the channel via the inversion formula,

�(ρ̂) = TrB
[(
1A ⊗ 
̂

−1/2
B ρ̂T

B 
̂
−1/2
B

)
ρ̂A,B(�)

]
, (15)

where ρ̂B and 
̂B are copies of the states ρ̂ and 
̂ on B,
respectively, while ρ̂T

B is its transpose with respect to the
orthonormal basis introduced above.

For a finite-dimensional system ρ̂A,B(�) provides a stan-
dard CJ state representation when 
̂ is taken to be the
maximally mixed state. In the infinite-dimensional case such
a limit in general is well defined only in the context of
positive forms (see Ref. [22]). However, Eq. (15) shows that
we do not need to approach such a limit in order to build a
proper representation of the channel: It is defined for any state

diagonal in the distinguished basis of full rank. Furthermore,
it is easy to verify that it is always possible to work with
CJ states ρ̂A,B(�) which are Gaussian: To do so, simply
take (|	
̂〉〈	
̂|)A,B to be Gaussian and use the fact that the
Gaussian map � ⊗ I maps Gaussian states into Gaussian
states. In the following we choose to take such Gaussian
reference states. In particular, we assume (|	
̂〉〈	
̂|)A,B to
be a Gaussian purification of a multimode Gibbs (thermal)
state of quantum mechanical oscillators.

An important observation concerning the generalized CJ
representation is that, given a Stinespring representation of
� involving an environmental system E, one can construct a
purification of ρ̂A,B(�) that uses E as an ancillary system.
Indeed, assuming that ÛA,E and (|0〉〈0|)E give rise to a
Stinespring representation for �, we have that the pure state

|χ〉A,B,E = ÛA,E|	
̂〉A,B ⊗ |0〉E (16)

is a purification of ρ̂A,B(�). Furthermore, if ρ̂A,B(�) is
Gaussian and E represents a collection of � environmental
bosonic modes with |0〉E being a Gaussian state vector and
ÛA,E being a Gaussian unitary, it follows that also |χ〉A,B,E

will define a Gaussian purification of ρ̂A,B(�). Putting these
facts together it follows that a lower bound for the minimal
number �(�)

pure of environmental modes that are needed to build
a Gaussian Stinespring representation of � is provided by the
minimal number q(�)

min of Gaussian ancillary modes that are
required to purify a generalized Gaussian CJ state ρ̂A,B(�) of
�, that is,

�(�)
pure � q(�)

min. (17)

To compute q(�)
min we first make a specific choice for |	
̂〉A,B .

In particular, since A is composed of n bosonic modes, we can
take |	
̂〉A,B to be a product of n identical two-mode state
vectors of the form [23]

|	
̂〉A,B =
n⊗

i=1

|ψ〉Ai,Bi
, (18)

where |ψ〉AiBi
denotes a purification of a Gibbs state of the

ith mode Ai of A built by coupling it with the corresponding
ancillary system Bi : This is nothing but what is usually referred
to as a two-mode squeezed state [24]. The resulting state is
Gaussian and it is fully characterized by its covariance matrix.
To express it in a compact form note that the kernel of the
natural symplectic form for the 2n modes of A,B is given by

σA,B :=
[
σ2n 0

0 σ2n

]
, (19)

where the upper-left and lower-right block matrices represent
the symplectic forms of the n modes of A and B, respectively,
defined as in Eq. (3).

With this choice the covariance matrix γ of (|	
̂〉〈	
̂|)A,B

is given by the following M(4n,R) matrix:

γ =
[
α δ

δT β

]
, (20)
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where α, β ∈ M(2n,R) are the covariance matrices of the A

and B modes, respectively, with δ, δT ∈ M(2n,R) being the
cross-correlation terms. Explicitly, they are given by

α =
[
θ1n 0

0 θ1n

]
= β, δ =

[
0 f (θ )1n

f (θ )1n 0

]
= δT ,

with θ > 1 and

f (θ ) := −(θ2 − 1)1/2. (21)

The parameter θ determines the temperature of the Gibbs states
we used to build the vector |	
̂〉A,B , or equivalently, the two-
mode squeezing parameter of the purification. In particular,
the case θ = 1 corresponds to the limit in which all the modes
of A and B are prepared in the vacuum state: In this case the
state 
̂ no longer has maximum support and thus does not
provide a proper starting point to build a CJ state. For θ →
∞, in contrast, the state |	
̂〉A,B approaches a purification
of a maximally mixed state for the modes (for details, see
Ref. [22]). Equivalently, it corresponds to the limit of large
squeezing in the two-mode squeezed state of the purification.
Notice also that by construction, for all values of θ � 1, γ

satisfies the condition γ � iσA,B , as it indeed represents a
physical pure state.

The generalized CJ state ρ̂A,B(�) for a Gaussian channel
characterized by matrices Y and X as in Eq. (5) is now
computed as in Eq. (14). The resulting state is still Gaussian
and has the covariance matrix γ ′ ∈ M(4n,R) given by

γ ′ =
[
XT αX + Y XT δ

δT X β

]
=

[
θXT X + Y f (θ )XT σx

f (θ )σxX θ12n

]
,

where

σx :=
[

0 1n

1n 0

]
. (22)

In general, it will be a mixed state and we are interested in the
minimum number q(�)

min of ancillary modes q that is needed
to construct a Gaussian purification of it. As discussed in
Appendix B, this is given by the quantity

q(�)
min = rank[γ ′ − iσA,B ] − 2n

= 2n − dim ker[γ ′ − iσA,B] (23)

[note that in this case γ ′,σA,B ∈ Gl(4n × 4n,R)]. In what
follows we will compute this quantity, showing that it coincides
with the right-hand side of Eq. (12). To do so, we first notice
that the dimension of the kernel of γ ′ − iσA,B can be expressed
as

dim ker[γ ′ − iσA,B]

= dim ker

[
θXT X + Y − iσ2n f (θ )XT

f (θ )X θ12n + iσ2n

]
, (24)

where the equality was obtained by rotating γ ′ − iσA,B with
the transformation

T :=
[
12n 0

0 σx

]
. (25)

As for any positive semidefinite matrix M , the kernel in
Eq. (24) can be computed as the set of vectors w ∈ Cd which

satisfy the condition w†Mw = 0 [19]. Writing w = (wA,wB),
we arrive at the condition

θ (w∗
AXT XwA − w∗

AXT wB − w∗
BXwA + w∗

BwB)

+w∗
A(Y − iσ )wA + w∗

BiσwB

+O(1/θ )(w∗
AXT wB + w∗

BXwA) = 0, (26)

where in the first line we have collected all terms which are
linear in θ . For θ sufficiently large this implies the following
conditions:

w∗
AXT XwA − w∗

AXT wB − w∗
BXwA + w∗

BwB = 0, (27)

w∗
A(Y − iσ )wA + w∗

BiσwB = 0. (28)

The first equation means XwA = wB, whereas the second
reads w∗

A(Y − iσ )wA + w∗
AiXT σXwA = 0; that is,

w∗
A[Y − i�]wA = 0. (29)

There is one-to-one correspondence between solutions wA of
Eq. (29) and w = (wA,XwA) of Eq. (26); hence,

dim ker[γ ′ − iσA,B] = dim ker[Y − i�].

Substituting this into Eq. (23) we finally get

q(�)
min = 2n − dim ker[Y − i�] = rank[Y − i�], (30)

which, thanks to Eq. (17), yields the bound

�(�)
pure � rank[Y − i�]. (31)

IV. OPTIMALITY OF THE BOUND

In this section we describe how to construct a Gaussian uni-
tary dilation with q(�)

min = rank[Y − i�] environmental modes.
In this way, we demonstrate that the lower bound derived in the
previous section is tight, concluding the derivation of Eq. (12).
To do so, let us assume that the number of modes which define
the state ρ̂E in Eq. (1) is q(�)

min. Without loss of generality, we
write the form corresponding to the commutation relations of
our n + q(�)

min modes in the block structure

σ := σ2n ⊕ σE

2q
(�)
min

=
[
σ2n 0

0 σE

2q
(�)
min

]
, (32)

where σ2n and σE

2q
(�)
min

are 2n × 2n and 2q(�)
min × 2q(�)

min matrices

associated with the system and environment, respectively.
While σ2n is defined as in Eq. (5), for σE

2q
(�)
min

we do not make

any assumption at this point, leaving open the possibility
of defining it later on. Accordingly, the Gaussian unitary
ÛA,E of Eq. (1) will be determined by a symplectic matrix
S ∈ Sp[2(n + q(�)

min),R] of block form

S :=
[
s1 s2

s3 s4

]
, (33)

satisfying the condition SσST = σ . In the above expressions,
s1 and s4 are 2n × 2n and 2q(�)

min × 2q(�)
min real square matrices,

while s2 and sT
3 are 2n × 2q(�)

min real rectangular matrices. As
noticed in Ref. [13], the possibility of realizing the unitary
dilation (1) can now be proven by simply taking

s1 = XT , (34)
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and finding s2 and a q(�)
min-mode covariance matrix γE � iσE

2q
(�)
min

satisfying the conditions

s2 σE

2q
(�)
min

sT
2 = �, s2 γE sT

2 = Y, (35)

with γE being the covariance matrix of the Gaussian state ρ̂E

of Eq. (1). The explicit construction of the matrices s2,γE is
given in Appendix C.

V. CONCLUSIONS

We have analytically derived the minimum number of
environmental modes necessary for a Gaussian unitary dilation
of a general multimode BGC. Moreover, we have also
explicitly demonstrated how to construct such a dilation
in terms of the covariance matrix of the Gaussian noisy
environment and the symplectic transformation associated
to the unitary system-environment interaction. These results
allow one to compare BGCs in terms of the corresponding
noise, by using the minimum number of environmental modes
to represent such channels. Moreover, constructing a dilation
with a minimal number of auxiliary modes may be used to
reduce the size of the corresponding complementary channel
and hence to simplify the degradability analysis, which is
extremely helpful in the calculation of the quantum capacity
of these continuous-variable quantum maps.
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APPENDIX A: A MATRIX IDENTITY

In this Appendix, we prove the important identity (9) and
the inequality (10), by the following more general lemma.

Lemma 1. Let A,B be m × m real matrices with A

symmetric, B skew-symmetric, which satisfy the inequality

A � iB. (A1)

Then given A	1 the MP inverse [20] of A, the following
identity holds:

2 rank[A − iB] = rank[A] + rank[A − BA	1 BT ]. (A2)

Furthermore, the following inequality applies:

rank[B] � rank[A] − rank[A − BA	1 BT ]. (A3)

Proof. Let us start by reviewing some general properties of
A and B. Because of Eq. (A1) the matrix A must be positive
semidefinite, and its support must contain the support of B.
Consequently, indicating with a = rank[A] and b = rank[B]
the ranks of the two matrices, we must have a � b with b even.
Furthermore, defining � ∈ M(m,R) to be the projector on the

support of A, it will commute with A and B and hence satisfy
the following identity:

� A = A � = A, � B = B � = B. (A4)

Consider then the invertible matrix

Ā := A + (1m − �) (A5)

The MP inverse [21] of A is defined by

A	1 := �Ā−1�. (A6)

To prove the validity of Eq. (A2) we note that it is possible to
identify a congruent transformation A �→ A′ = CACT , B �→
B ′ = CBCT , with C ∈ Gl(m,R) such that

(A7)

and

(A8)

with μ = diag(μ1,μ2, . . . ,μb/2) being the b/2 × b/2 diagonal
matrix formed by the strictly positive eigenvalues of |B ′| (by
construction, they satisfy 1 � μj � 0). The matrix C can
be explicitly constructed as follows. First we identify the
orthogonal matrix O ∈ Gl(m,R) which diagonalizes A and
� puts them in the following block forms:

(A9)

(A10)

with A′′ ∈ Gl(a,R) being a a × a positive definite diagonal
matrix. Then we construct the invertible matrix K ∈ Gl(m,R)
defined as

(A11)

(notice that the matrix A′′−1/2 ∈ Gl(a,R) is well defined since
A′′ is invertible). Finally, we take O ′ ∈ Gl(a,R) to be an
orthogonal a × a matrix and define C as follows:

(A12)

By construction we have that for all the choices of O ′
the resulting matrix is invertible and Eq. (A7) is satisfied. Vice
versa, Eq. (A8) can be satisfied by noticing that, since the
support of B is included into the support of A, we must have

(A13)
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with B ′′ ∈ Gl(a,R) skew symmetric. By using a theorem from
linear algebra one can then find an orthhogonal O ′ ∈ Gl(a,R)
such that

(A14)

with μ being a positive diagonal matrix of dimension equal to
the rank of B ′′ (the elements ±iμj are its not null eigenvalues).
Using such an O ′ in order to build C as in Eq. (A12) we can
then satisfy Eq. (A8).

Now we notice that, since any congruent transformation
preserves the rank of a matrix, the following identity holds:

where #1(μ) counts the number of eigenvalues of the matrix μ

which are equal to 1. The last identity follows from counting
the nonzero eigenvalue of the matrix on the left-hand side of
the second line. This can be easily done by observing that its
spectrum contains m − a explicit zeros (these are the terms
in the zero block diagonal term), a − b ones (these are the
ones on the diagonals of the first block), and 1 ± μj with μj ∈
[1,0] being the eigenvalues of μ. Consequently, the nonzero
eigenvalues are obtained by subtracting from k (rank of the
first block) the number #1(μ) of eigenvalues of μ which are
equal to 1. To compute the latter quantity we note that

(A15)

which yields

rank[1m − B ′B ′T ] = m − 2 #1(μ). (A16)

Using the fact that C is invertible, one has

rank[1m − B ′B ′T ] = rank[1m − CBCT CBT CT ]

= rank[C−1C−T − BCT CBT ].

Since O ′ and O are orthogonal, we notice that C−1C−T

is composed of two terms that span orthogonal supports.
Specifically, we can rewrite it as

where Eqs. (A9) and (A11) have been used. Similarly,
BCT CBT is only supported on the support of A. Indeed, we
have

BCT CBT = (� B �) [C−1C−T ]−1 (� BT �)

= (� B �) Ā−1 (� BT �)

= (� B �2) Ā−1 (�2 BT �) (A17)

= (� B �)(� Ā−1 �)(� BT �)

= (� B �)A	1 (� BT �) = B A	1 BT .

Using these identities, we can then rewrite Eq. ((A17)) as

rank[1m − B ′B ′T ] = rank[Ā − BA	1 BT ]

= rank[1m − �] + rank[A − BA	1 BT ]

= m − a + rank[A − BA	1 BT ]. (A18)

Thanks to Eq. (A16), the above identity finally yields

#1(μ) = rank[A] − rank[A − BA	1 BT ]

2
, (A19)

which gives Eq. (A2) when inserted into Eq. (A16). The
inequality (A3) can finally be proven by noticing that because
of the invertibility of C, one has rank[B] = rank[B ′] = b

which, by construction, is larger than 2#1(μ). The result then
follows simply by applying Eq. (A19).

APPENDIX B: MINIMAL GAUSSIAN PURIFICATIONS OF
GAUSSIAN STATES

Here we consider the minimal number of ancillary modes
which are necessary to construct a Gaussian purification
of a generic multimode Gaussian state ρ̂. Of course, the
requirement of Gaussianity of the purification is fundamental
for our purposes: Without it, any finite number of modes
can always be embedded into a single one due to infinite
dimensionality of the underlying Hilbert spaces.

Let γ ∈ Gl(2n,R) be the covariance matrix of a Gaussian
state ρ̂ of a system A formed by n bosonic modes. We know
that it must satisfy the following inequality:

γ � iσ2n, (B1)

with σ2n being the skew-symmetric matrix in Eq. (3) represent-
ing the symplectic form of the modes. Due to the Williamson’s
theorem [25] there exists a symplectic transformation S ∈
Sp(2n,R) which allows us to diagonalize γ in the following
form:

(B2)

with D ∈ Gl(n,R) being the diagonal matrix formed by the
symplectic eigenvalues Dj of γ which satisfy the condition
Dj � 1 as follows from Eq. (B1). The values {Dj } are the
symplectic eigenvalues of γ [17,24], equal to the positive
square roots of the eigenvalues of the matrix −σ2nγ σ2nγ ∈
Gl(2n,R). The transformation γ �→ Sγ ST corresponds to
applying a Gaussian unitary to the state which transforms
it into a product state of the n modes, in fact, a product of
Gibbs states of unit harmonic oscillators. Hence, without loss
of generality, we can assume that γ is of the form of the
right-hand side of Eq. (B2).

Let � be the covariance matrix of the minimum purification
of γ , viewed as being defined on a bipartite system labeled
A—the original system—and B. Since the spectrum of the
reduced state with respect to B is identical to the spectrum of
the reduced state of A, also the symplectic spectra of the two
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reductions are the same. Hence, it does not restrict generality
to take � of the form

(B3)

with suitable C ∈ M(2n,R) such that the symplectic spectrum
of � consists of units only, with respect to the symplectic form
(19). Now, by taking

(B4)

with η = diag[f (D1), . . . ,f (Dn)], one clearly arrives at the
covariance matrix of required purification. This purification
essentially involves as many modes as there are symplectic
eigenvalues different from 1; those modes associated with
unit symplectic eigenvalues correspond to pure Gaussian states
already. Denoting the number of unit values in D by #1(D),
this purification hence involves n − #1(D) modes. Invoking
the definition of the symplectic spectrum, one finds that

#1(D) = n − rank
[
γ − σ2nγ

−1σT
2n

]
/2. (B5)

It is also easy to see that no purification can involve fewer
modes than that. Consequently,

qmin = n − #1(D). (B6)

The covariance matrix of the reduced Gaussian state of the
purification with respect to B is necessarily given by the right-
hand side of Eq. (B2), up to local symplectic transformations
S ∈ Sp(2n,R). Hence, any Gaussian purification must involve
at least n − #1(D) modes, as so many symplectic eigenvalues
are different from 1. Needless to say, only Gaussian states
are uniquely defined by their second moments (the covariance
matrix) and the first moments (of no relevance here): If one
does not require a Gaussian purification, one can always embed
the purification into a single mode if the state is mixed, and
with no additional mode if the state is already pure.

APPENDIX C: EXPLICIT CONSTRUCTION OF THE BGC
UNITARY DILATION

A. Pure environment case

First, let us consider the case in which rank[Y ] is an even
number. To identify valid s2 and γE which solve Eq. (35), it
is useful to transform Y and � as in Eqs. (A7) and (A8) of
Appendix A (take A = Y , B = �, m = 2n, a = k, and b =
r = rank[�]). Actually, applying an extra orthogonal matrix,
Y ′ is still like in (A7), while �′ can be written as

(C1)

where C ∈ Gl(2n,R) and μ = diag(μ1, . . . ,μr/2) is the r/2 ×
r/2 diagonal matrix formed by the strictly positive eigenvalues
of |�′| (satisfying 1r/2 � μ as in Appendix A). In the

transformed frame the parameter r ′ of Eq. (11) acquires a
clear meaning: It provides the number of eigenvalues having
modulus 1 of the matrix �′, that is,

r ′ = 2n − rank[12n − �′(�′)T ], (C2)

as can be easily shown by using Eq. (A18) with A = Y and B =
� (accordingly, r ′/2 counts also the number of the eigenvalues
of μ which are equal to 1). Furthermore, introducing s ′

2 := C s2

the conditions of Eqs. (35) can be equivalently written as

s ′
2 σE

2q
(�)
min

(s ′
2)T = �′, s ′

2 γE (s ′
2)T = Y ′. (C3)

The explicit expressions for γE and s ′
2 satisfying the identity

(C3) are obtained in the following way. We assume the
environmental symplectic form to be

σE

2q
(�)
min

= σk ⊕ σk−r ′ , (C4)

where we have set k := rank[Y ] and used the identities (9) and
(30) to write q(�)

min = k − r ′/2. Then we can take the 2n × 2q(�)
min

rectangular matrix s ′
2 as

(C5)

with K̃ being the k × k symmetric matrix defined by

(C6)

and A being a rectangular matrix k × (k − r ′) of the form

(C7)

By direct substitution one can easily verify that the first
condition of Eq. (C3) is indeed satisfied. Vice versa, the
q(�)

min × q(�)
min covariance matrix γE can be defined as follows.

First we notice that writing it in the block form

(C8)

the second condition of Eq. (C3) rewrites as

α + AδT + δ AT + Aβ AT = K̃2 (C9)

(in these expressions α, β, and δ are, respectively, k × k, (k −
r ′) × (k − r ′), and k × (k − r ′) real matrices). A solution can
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now be derived, for instance, by organizing the matrix elements
of μ in decreasing order and then taking

with f (θ ) being defined as in Eq. (21) and with μo

being the (r − r ′)/2 × (r − r ′)/2 diagonal matrix formed
by the elements of μ which are strictly smaller than
1 (again, the eigenvalues being organized in decreasing
order).

With the choice we made on σE

2q
(�)
min

, the matrix α defined

above is a k × k covariance matrix for a set of independent
k/2 bosonic modes, the matrix β is a (k − r ′) × (k − r ′)
covariance matrix for a set of independent (k − r ′)/2 modes,
and the matrices δ and δT represent cross-correlation terms
among such sets. Furthermore, for all diagonal matrices μ

compatible with the constraint 1r/2 � μ, the γE defined in
Eq. (C8) satisfies the uncertainty relation

γE � iσE

2q
(�)
min

(C10)

(i.e., it is a proper covariance matrix of q(�)
min modes). Finally,

since it has Det[γE] = 1, it describes a minimal uncertainty
state, that is, a pure Gaussian state of q(�)

min modes [17]. By
a close inspection one realizes also that γE is composed of
three independent pieces. The first one describes a collection
of r ′/2 vacuum states. The second one, in turn, describes
(r − r ′)/2 thermal states characterized by the matrices μ−1

o

which have been purified by adding further (r − r ′)/2 modes.
The third one, finally, reflects a collection of k − r modes
prepared in a pure state formed by k/2 − r/2 independent
pairs of modes which are entangled. Let us point out
again that this covariance matrix is indeed formed by q(�)

min
modes.

The derivation can finally be extended for k = rank[Y ] odd.
In this case the solutions are provided by those defined above
by replacing k with k − 1 everywhere, while adding an extra
mode initialized into the vacuum state into the definition of γE

(i.e., replacing it with γE ⊕ 12) and substituting s ′
2 of Eq. (C5)

with

(C11)

It is also worth stressing that for the special case in which k = 1
one has r = rank[�] = 0 (this is a consequence of the fact that
we have r � k with r even, the latter being the rank of a skew-
symmetric matrix). Therefore, � = 0 and q(�)

min = rank[Y ] =
1. In this case the above construction gives us γE = 12, with
s ′

2 being a 2n × 2 rectangular matrix with all null entries but
the one in position 1,1, which is set equal to 1.

B. Mixed environment case

For the sake of simplicity, again we will treat explicitly only
the case of k = rank[Y ] even (the analysis, however, can be
easily extended to the odd case). Because of the structure of A

given in Eq. (C7), the (k − r) environmental modes prepared
in a pure state enter explicitly in the identity in Eq. (C9):
Consequently, if we wish to satisfy such relation, we cannot
remove any of these modes without changing A. Vice versa, we
can drop some of the auxiliary modes which were introduced
only for purifying the environmental state. Since they are (r −
r ′)/2, we can reduce the number of modes from �(�)

pure to

�(�)
mix = �(�)

pure − (r − r ′)/2 = k − r/2. (C12)

To see this explicitly, take

σE

2�
(�)
mix

= σk ⊕ σk−r . (C13)

The matrix s ′
2 can be still expressed as above but with A being

a rectangular matrix k × (k − r) of the form

(C14)

Similarly, β and δ entering in the definition of γE become,
respectively, the following (k − r) × (k − r) and k × (k − r)
real matrices:

(C15)

and

(C16)

This covariance matrix now consists of two independent parts:
The first one describes a collection of r/2 thermal states
described by the matrices μ−1. The second one reflects a
collection of k − r modes prepared in a pure state formed by
k/2 − r/2 independent couples of modes which are entangled.
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