
PHYSICAL REVIEW A 84, 022305 (2011)

Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying
programming framework

S. Machnes,1,2 U. Sander,3 S. J. Glaser,3 P. de Fouquières,4 A. Gruslys,4 S. Schirmer,4 and T. Schulte-Herbrüggen3,*

1Quantum Group, Department of Physics, Tel-Aviv University, Tel Aviv 69978, Israel
2Institute for Theoretical Physics, University of Ulm, D-89069 Ulm, Germany

3Department of Chemistry, Technical University of Munich (TUM), D-85747 Garching, Germany
4Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 0WA, United Kingdom

(Received 7 December 2010; published 3 August 2011)

For paving the way to novel applications in quantum simulation, computation, and technology, increasingly
large quantum systems have to be steered with high precision. It is a typical task amenable to numerical
optimal control to turn the time course of pulses, i.e., piecewise constant control amplitudes, iteratively into
an optimized shape. Here, we present a comparative study of optimal-control algorithms for a wide range of
finite-dimensional applications. We focus on the most commonly used algorithms: GRAPE methods which update
all controls concurrently, and Krotov-type methods which do so sequentially. Guidelines for their use are given
and open research questions are pointed out. Moreover, we introduce a unifying algorithmic framework, DYNAMO

(dynamic optimization platform), designed to provide the quantum-technology community with a convenient
MATLAB-based tool set for optimal control. In addition, it gives researchers in optimal-control techniques a
framework for benchmarking and comparing newly proposed algorithms with the state of the art. It allows a
mix-and-match approach with various types of gradients, update and step-size methods as well as subspace
choices. Open-source code including examples is made available at http://qlib.info.

DOI: 10.1103/PhysRevA.84.022305 PACS number(s): 03.67.Lx, 02.30.Yy, 02.60.Pn, 07.05.Dz

I. INTRODUCTION

For unlocking the inherent quantum treasures of future
quantum technology, it is essential to steer experimental
quantum dynamical systems in a fast, accurate, and robust way
[1,2]. While the accuracy demands in quantum computation
(the “error-correction threshold”) may seem daunting at the
moment, quantum simulation is far less sensitive.

In practice, using coherent superpositions as a resource
is often tantamount to protecting quantum systems against
relaxation without compromising accuracy. In order to tackle
these challenging quantum engineering tasks, optimal control
algorithms are establishing themselves as indispensable tools.
They have matured from principles [3] and early implementa-
tions [4–6] via spectroscopic applications [7–9] to advanced
numerical algorithms [10,11] for state-to-state transfer and
quantum-gate synthesis [12] alike.

In engineering high-end quantum experiments, progress
has been made in many areas including cold atoms in
optical lattice potentials [13,14], trapped ions [15–21], and
superconducting qubits [22,23] to name just a few. To
back these advances, optimal control among numerical tools
have become increasingly important, see, e.g., [24] for a
recent review. For instance, near time-optimal control may
take pioneering realizations of solid-state qubits which are
promising candidates for a computation platform [25], from
their fidelity limit to the decoherence limit [26]. More recently,
open systems governed by a Markovian master equation
have been addressed [27], and even smaller non-Markovian
subsystems can be tackled if they can be embedded into a
larger system that in turn interacts in a Markovian way with

*tosh@tum.de

its environment [28]. Taking the concept of decoherence-
free subspaces [29,30] to more realistic scenarios, avoiding
decoherence in encoded subspaces [31] complements recent
approaches of dynamic error correction [32,33]. Along these
lines, quantum control is anticipated to contribute significantly
to bridging the gap between quantum principles demon-
strated in pioneering experiments and high-end quantum
engineering [1,2].

A. Scope and focus

The schemes used to locate the optimal-control sequence
within the space of possible sequences are varied. The values
taken by the system controls over time may be parametrized by
piecewise constant control amplitudes in the time domain or in
frequency space [34], by splines or other methods. For specific
aspects of the toolbox of quantum control, see, e.g., [11,12,16,
26,28,31,35–45], while a recent review can be found in [46].
Here, we concentrate on piecewise constant controls in the time
domain. For this parametrization of the control space, there
are two well-established optimal-control approaches: Krotov-
type methods [36,37,47,48] which update all controls within
a single time slice once before proceeding on to the next time
slice (cycling back to the first slice when done), and GRAPE-
type methods [11] which update all controls in all time slices
concurrently. Here we refer to the former as sequential-update
schemes and to the latter as concurrent-update schemes.

Sequential methods have mainly been applied to provide
control fields in (infinite-dimensional) systems of atomic
and molecular optics characterized by energy potentials
[36,37,49,50], while concurrent methods have mostly been
applied to (finite-dimensional) qubit systems of spin nature
[11,12], or to Josephson elements [26,28], ion traps [51,52], or
two-dimensional-cavity grids in quantum electrodynamics

022305-11050-2947/2011/84(2)/022305(23) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.022305

S. MACHNES et al. PHYSICAL REVIEW A 84, 022305 (2011)

[53]. Here we compare sequential vs concurrent algorithms
in finite-dimensional systems.

Both methods require a mechanism to control the selection
of the next point to sample. For sequential-update methods,
which perform a single or a few iterations per parameter
subspace choice, first-order methods are most often used; yet
for algorithms repeatedly modifying the same wide segment of
parameter space at every iteration, second-order methods, such
as the well-established one by Broyden-Fletcher-Goldfarb-
Shanno (BFGS) [54], seem better suited. These choices,
however, are by no means the final word and are the subject of
on-going research.

Controlling quantum systems via algorithms on classical
computers naturally comes with unfavorable scaling. Thus it
is essential to optimize the code by minimizing the number of
operations on matrices which scale with the system size, and
by parallelizing computation on high-performance clusters.
While elements of the latter have been accomplished [55],
here we focus on the former.

To this end, we present a unifying programming framework,
the DYNAMO platform, allowing us to combine different
methods of subspace selection, gradient calculation, update
controls, step-size controls, etc. The framework allows us to
benchmark the various methods on a wide range of problems
in common usage, allowing future research to quickly compare
proposed methods to the current state of the art. It also makes
significant strides toward minimizing the number of matrix
operations required for serial, concurrent, and generalized
hybrid schemes. The full MATLAB code of the platform is
provided to the community at [56]. We benchmark Krotov-type
algorithms and GRAPE algorithms over a selection of scenarios,
giving the user of control techniques guidelines as to which
algorithm is appropriate for which problem.

The paper is organized as follows. In Sec. II we provide a
generalized algorithmic framework embracing the established
algorithms GRAPE and Krotov as limiting cases. Section III
shows how the formal treatment applies to concrete standard
settings of optimizing state transfer and gate synthesis in
closed and open quantum systems. In Sec. IV we compare
the computational performance of concurrent vs sequential
update algorithms for a number of typical test problems of syn-
thesizing gates or cluster states. Computational performance is
discussed in terms of costly multiplications and exponentials
of matrices.

Section V provides an outlook on emerging guidelines as
to which type of problem asks for which flavor of algorithm in
order not to waste computation time. Finally, we point at a list
of open research questions in the pursuit of which DYNAMO is
anticipated to prove useful.

II. ALGORITHMIC SETTINGS

Most of the quantum-control problems boil down to a single
general form, namely, steering a dynamic system following
an internal drift under additional external controls, so as to
maximize a given figure of merit. Because the underlying
equation of motion is taken to be linear both in the drift as

well as in the control terms, dynamic systems of this form are
known as bilinear control systems (�)

Ẋ(t) = −
⎛⎝A +

m∑
j=1

uj (t)Bj

⎞⎠X(t), (1)

with “state” X(t) ∈ CN , drift A ∈ MatNC, controls Bj ∈
MatNC, and control amplitudes uj (t) ∈ R. Defining the
Au(t) := A +∑m

j=1 uj (t)Bj as generators, the formal solution
reads

X(t) = T exp

{
−
∫ t

0
dτAu(τ)

}
X(0), (2)

where T denotes Dyson’s time ordering operator. In this work,
the pattern of a bilinear control system will turn out to serve
as a convenient unifying frame for applications in closed and
open quantum systems, which thus can be looked upon as a
variation of a theme.

A. Closed quantum systems

Throughout this work we study systems that are
fully controllable [57–63], i.e., those in which—neglecting
relaxation—every unitary gate can be realized. Finally, unless
specified otherwise, we allow for unbounded control ampli-
tudes.

Closed quantum systems are defined by the system Hamil-
tonian Hd as the only drift term, while the “switchable” control
Hamiltonians Hj express external manipulations in terms of
the quantum system itself, where each control Hamiltonian
can be steered in time by its (here piecewise constant) control
amplitudes uj (t). Thus one obtains a bilinear control system
in terms of the controlled Schrödinger equations

|ψ̇(t)〉 = −i

⎛⎝Hd +
m∑

j=1

uj (t)Hj

⎞⎠ |ψ(t)〉, (3)

U̇ (t) = −i

⎛⎝Hd +
m∑

j=1

uj (t)Hj

⎞⎠U (t), (4)

where the second identity can be envisaged as lifting the
first one to an operator equation. For brevity we henceforth
concatenate all Hamiltonian components and write

Hu(t) := Hd +
m∑

j=1

uj (t)Hj . (5)

Usually one wishes to absorb unobservable global phases
by taking density-operator representations of states ρ(t).
Their time evolution is brought about by unitary conjugation
Û (·) := U (·)U † ≡ AdU (·) generated by commutation with the
Hamiltonian Ĥu(·) := [Hu,(·)] ≡ adHu

(·). So in the projective
representation in Liouville space, Eqs. (3) and (4) take the
form

ρ̇(t) = −iĤuρ(t), (6)
d

dt
Û (t) = −iĤuÛ (t). (7)

It is now easy to accommodate dissipation to this setting.

022305-2

COMPARING, OPTIMIZING, AND BENCHMARKING . . . PHYSICAL REVIEW A 84, 022305 (2011)

B. Open quantum systems

Markovian relaxation can readily be introduced on the level
of the equation of motion by the operator �, which may,
e.g., take the standard form according to Gorini-Kossakowski-
Sudarshan known as GKS-Lindblad form. Then the respective
controlled master equations for state transfer and its lift for
gate synthesis read

ρ̇(t) = −(iĤu + �)ρ(t), (8)

Ḟ (t) = −(iĤu + �)F (t). (9)

Here F denotes a quantum map in the general linear group
GL(N2). It is a linear image over all basis states of the Liouville
space representing the open system, where henceforth N := 2n

for an n-qubit system. Note that only in the case of [Ĥu,�] = 0
does the map F (t) boil down to a mere contraction of the
unitary conjugation Û (t). In the generic case, it is the intricate
interplay of the respective coherent (iĤu) and incoherent (�)
part of the time evolution [64] that ultimately entails the need
for relaxation-optimized control based on the full knowledge
of the master equation (9).

These scenarios are also summarized in Table I.

C. Figures of merit

In this work, we treat quality functions only depending on
the final state X(T) of the system without taking into account
running costs, which, however, is no principal limitation.1

1Depending on the state of the system X(t) over a time interval
[0,T] and on the control amplitudes u(t), a general quality function
may be formulated to take the form
f := fT (X(T),T) + ∫ T

0 f0(X(t),t,u(t))dt,

where fT (X(T),T) is the component solely depending on the final
state of the system X(T) and independent of the control amplitudes,
while f0(X(t),t,u(t)) collects the running costs usually depending
on the amplitudes u(t). In optimal-control and variational calculus,
the general case (fT �= 0,f0 �= 0) is known as problem of Bolza,
while the special case of zero running costs (fT �= 0,f0 = 0) is
termed problem of Mayer, and (fT = 0,f0 �= 0) defines the problem
of Lagrange. Henceforth, we will not take into account any running
costs (thereby also allowing for unbounded control amplitudes). Thus
here all our problems take the form of Mayer. On the other hand, many
applications of Krotov-type algorithms have included explicit running
costs [36,37,49,50] to solve problems of the Bolza form, which are

TABLE I. Bilinear quantum-control systems.

Setting and task Drift Controls
Ẋ(t) = −(A +∑

j uj (t)Bj)X(t) A Bj

Closed systems:
Pure-state transfer X(t) = |ψ(t)〉 iH0 iHj

Gate synthesis I X(t) = U (t) iH0 iHj

State transfer X(t) = ρ(t) iĤ0 iĤj

Gate synthesis II X(t) = Û (t) iĤ0 iĤj

Open systems:
State transfer X(t) = ρ(t) iĤ0 + � iĤj

Map synthesis X(t) = F (t) iĤ0 + � iĤj

No matter whether the X(t) in Eq. (1) denote states or
gates, a common natural figure of merit is the projection onto
the target in terms of the overlap

g = 1

‖Xtarget‖2

tr{X†
targetX(T)}. (10)

Depending on the setting of interest, one may choose as the
actual figure of merit fSU := Reg or fPSU := |g|.

More precisely, observe there are two scenarios for realizing
quantum gates or modules U (T) ∈ SU(N) with maximum
trace fidelities: Let

g := 1

N
tr{U †

targetU (T)} (11)

define the normalized overlap of the generated gate U (T) with
the target. Then the quality function

fSU := 1

N
Re tr{U †

targetU (T)} = Reg (12)

covers the case where overall global phases are respected,
whereas if a global phase is immaterial [12], another quality
function fPSU applies, whose square reads

f 2
PSU := 1

N2
Re tr{Û †

targetÛ (T)} = |g|2. (13)

The latter identity is most easily seen [12] in the so-called
vec representation [67] of ρ, where Û = Ū ⊗ U ∈ PSU(N)
(with Ū as the complex conjugate) recalling that the projective
unitary group is PSU(N) = U(N)

U(1) = SU(N)
ZN

. Now observe that

tr{(Ū ⊗ U)(V̄ ⊗ V)} = tr{Ū V̄ ⊗ UV } = |tr{UV }|2.

D. Core of the numerical algorithms: Concurrent
and sequential

Since the equations of motion for closed and open quantum
systems as well as the natural overlap-based quality functions
are of common form, we adopt the unified frame for the
numerical algorithms to find optimal steerings {uj (t)}. To this
end, we describe first- and second-order methods to iteratively
update the set of control amplitudes in a unified way for bilinear
control problems.

1. Discretizing time evolution

For algorithmic purposes, one discretizes the time evo-
lution. To this end, the control terms Bj are switched by
piecewise constant control amplitudes uj (tk) ∈ U ⊆ R with
tk ∈ [0,T], where T is a fixed final time and U denotes
some subset of admissible control amplitudes. For simplicity,
we henceforth assume equal discretized time spacing �t :=
tk − tk−1 for all time slices k = 1,2, . . . ,M . So T = M�t .
Then the total generator (i.e., Hamiltonian or Lindbladian)

also amenable to GRAPE (as has been shown in [11]). Yet, though well
known, it should be pointed out again that a Bolza problem can always
be transformed into a Mayer problem, and ultimately all three types
of problems are equivalent [65], which can even be traced back to the
precontrol era in the calculus of variations [66]. The implications for
convergence of the respective algorithms are treated in detail in [72].

022305-3

S. MACHNES et al. PHYSICAL REVIEW A 84, 022305 (2011)

governing the evolution in the time interval (tk−1,tk] shall be
labeled by its final time tk as

Au(tk) := A +
∑

j

uj (tk)Bj , (14)

generating the propagator

Xk := e−�tAu(tk), (15)

which governs the controlled time evolution in the time slice
(tk−1,tk]. Next, we define as boundary conditions X(0) :=
X0 and XM+1 := Xtarget. They specify the problem and are
therefore discussed in more detail in Sec. III, Table II. A
typical problem is unitary gate synthesis, where X0 ≡ l and
Xtarget ≡ Utarget, whereas in a pure-state transfer X0 ≡ |ψ0〉 and
Xtarget ≡ |ψ〉target. In any case, the state of the system is given
by the discretized evolution

X(tk) = Xk:0 := XkXk−1 · · ·X1X0. (16)

Likewise, the state of the adjoint system also known as the co-
state �†(tk) results from the backward propagation of XM+1 ≡
Xtarget

�†(tk) := X
†
targetXMXM−1 · · · Xk+1

= X
†
M+1XMXM−1 · · ·Xk+1 =: XM+1:k+1, (17)

which is needed to evaluate the figure of merit here taken to
be

f := 1

N
|tr{�†(tk)X(tk)}| = |tr{X†

targetX(T)}| ∀k (18)

as the (normalized) projection of the final state under con-
trolled discretized time evolution up to time T onto the target
state.

2. Algorithmic steps

With the above stipulations, one may readily characterize
the core algorithm by the following steps, also illustrated in
Fig. 1 and the flowchart in Fig. 2.

(0) Set initial control amplitudes u
(0)
j (tk) ∈ U ⊆ R for all

times tk with k ∈ T (0) := {1,2, . . . ,M} then set counters
r = 0, q = 0, s = 1; fix slimit and f ′.

(1) Outer loop start, enumerated by q: Unless r = q = 0,
choose a selection of time slices, i.e., a subspace, T (q),
on which to perform the next stage of the search, which
will update only u

(r)
j (t (q)

k) for t
(q)
k∈{1···M (q)} ∈ T (q).

(2) Inner loop, enumerated by s: Take one or more gradient-
based steps within the subspace. Depending on
subspacechoice, number of matrix operations may be
reduced as compared to the naive implementation of the
algorithm.

(3) Exponentiate: X
(r)
k = e�tA

(r)
u (t (q)

k) for all k ∈ T (q) with
A(r)

u (t (q)
k) := A +∑

j u
(r)
j (t (q)

k)Bj .

(4) Compute goal function at some k = κ:
(5) Forward propagation: X

(r)
κ:0 := X

(r)
k X

(r)
k−1 · · · X(r)

1 X0

(6) Backward propagation: �
(r)†
M+1:κ+1 := X

†
targetX

(r)
M X

(r)
M−1

· · ·X(r)
k+1

(a) concurrent (GRAPE -type)

(b) sequential (Krotov-type)

(c) hybrid

FIG. 1. (Color online) Overview of the update schemes of
gradient-based optimal-control algorithms in terms of the set of time
slices T q = {k1q ,k

(q)
2 , . . . ,k

(q)
M(q) } for which the control amplitudes are

concurrently updated in each iteration. Subspacesare enumerated by
q, gradient-based steps within each subspaceby s, and r is the global
step counter. In GRAPE (a) all the M piecewise constant control
amplitudes are updated at every step, so T (1) = {1,2, . . . ,M} for the
single iteration q≡1. Sequential-update schemes (b) update a single
time slice once, in the degenerate inner-loop s≡1, before moving
to the subsequent time slice in the outer loop, q; therefore here
T (q) = {q mod M}. Hybrid versions (c) follow the same lines: for
instance, they are devised to update a (sparse or block) subset of p

different time slicesbefore moving to the next (disjoint) set of time
slices.

(7) Evaluate current fidelity: f (r) = 1
N

|tr{�(r)†
M+1:κ+1

X
(r)
κ:0 }| = 1

N
|tr{X†

tarX
(r)
M:0}| for some k.

(8) If f (r) � 1 − εthreshold, done: go to step 13.

(9) Else, calculate gradients ∂f (r)[X(r)(t (q)
k)]

∂uj (t (q)
k)

for all k ∈ T (q).

(10) Gradient-based update step: u
(r)
j (t (q)

k) �→ u
(r+1)
j (t (q)

k) for
all k ∈ T (q) by a method of choice (e.g., Newton, quasi-
Newton, BFGS or L-BFGS, conjugate gradient, etc.).

(11) If s < slimit and || ∂f
(r)
k

∂uj
|| < f ′

limit ∀k ∈ T (r)
k , then set and

s−→s + 1, r−→r + 1 and return to step 3.
(12) q−→q + 1. Choose a new subspace T (q) and return to

step 2.
(13) Output: Final control vectors {u(r)

j (tk)|k = 1,2, . . . ,M}
for all controls j , final quality f (r), final state X(r)(T),
and diagnostic output.

(14) Terminate.

022305-4

COMPARING, OPTIMIZING, AND BENCHMARKING . . . PHYSICAL REVIEW A 84, 022305 (2011)

(0) Initialisation

Set u
(0)
j (1. . .M) as initial amplitudes.

Set counters r = 0, q = 0, s = 1 .

(1) Outer loop init.

Select subspace T (q)

(2) Inner loop

(3. . .7). Calc. propagator and goals

(3) Exponentiate

X
(r)
k = eΔtA

(r)
u (t(q)

k
) for all k ∈ T (q)

(5) Propagate forward: X
(r)
κ:0

(6) Propagate backward: Λ
(r)†
M+1:κ+1

(7) Calculate quality function f(r)

(8) Decision

f(r) ≥ 1 − ε

(9, 10) Calc: Evaluate gradient

(9) Evaluate ∂
∂uj

f(r)[X(r)(t
(q)
k)]

(10) Update u
(r)
j (t

(q)
k) by some method

of choice

(11) Decision

||∂uj
f
(r)
k || > gmin

and s < slimit

Cont. inner loop

(12, 1)
s−→s + 1
r−→r + 1

Cont. outer loop

(12, 2)
q−→q + 1
r−→r + 1

(13) Output results; (14) Terminate

final control vectors u
(r)
j (tk) ∀ j = 1. . . m, k= 1. . .M,

final quality f(r), final state X(r)(T), and
diagnostic output.

yes

no

yes

no

Optimisation
goal achieved

Goto 13

FIG. 2. Flow diagram for the generalized DYNAMO optimal-
control search embracing standard GRAPE and Krotov methods as
limiting special cases.

Having set the frame, one may now readily compare the
Krotov and GRAPE approaches. In Krotov-type algorithms,
we make use of a sequential-update scheme, where T (q) =
{q mod M} and slimit = 1, implying the inner loop is degener-
ate, as only a single step is performed per subspace selection,
giving s≡1,r = s. With GRAPE, a concurrent-update scheme,
T (q) = {1· · ·M}, i.e., the entire parameter set is updated in
each step of the inner loop, implying q≡1, r = s and the outer
loop is degenerate. The above construction naturally invites
hybrids: algorithms where the subspace size is arbitrary in the
1· · ·M range and where the size of the subspace to be updated
in each step q as well as the number of steps within each
subspace, s, can vary dynamically with iteration, depending,
e.g., on the magnitude of the gradient and the distance from
the goal fidelity. This is a subject of ongoing research.

E. Overview of the DYNAMO package and its
programming modules

DYNAMO provides a flexible framework for optimal-control
algorithms with the purpose of allowing (i) quick and easy
optimization for a given problem using the existing set of
optimal-control search methods as well as (ii) flexible envi-
ronment for development of and research into new algorithms.

For the first use case, the design goal is to make optimal-
control techniques available to a broad audience, which is
eased as DYNAMO is implemented in MATLAB. Thus to generate
an optimized control sequence to a specific problem, one
only needs modify one of the provided examples, specifying
the drift and control Hamiltonians of interest, choose GRAPE,
Krotov, or one of the other hybrid algorithms provided, and
wait for the calculation to complete. Wall time, CPU time,
gradient-size, and iteration-number constraints may also be
imposed.

For the second use case—developing optimal-control
algorithms—DYNAMO provides a flexible framework allowing
researchers to focus on aspects of immediate interest, allowing
DYNAMO to handle all other issues, as well as providing
facilities for benchmarking and comparing performance of the
new algorithms to the current cadre of methods.

1. Why a modular programming framework?

The explorative findings underlying this work make a strong
case for setting up a programming framework in a modular
way. They can be summarized as follows:

(a) There is no universal single optimal-control algorithm
that serves all types of tasks at a time. For quantum computa-
tion, unitary gate synthesis, or state-to-state transfer of (non-)
pure states require accuracies beyond the error-correction
threshold, while for spectroscopy, improving the robustness
of controls for state-to-state transfer may well come at the
expense of lower maximal fidelities.

(b) Consequently, for a programming framework to be
universal, it has to have a modular structure allowing one
to switch between different update schemes (sequential,
concurrent, and hybrid) with task-adapted parameter settings.

(c) In particular, the different update schemes have to be
matched with the higher-order gradient module (conjugate gra-
dients, Newton, quasi-Newton). For instance, with increasing
dimension the inverse Hessian for a Newton-type algorithm

022305-5

S. MACHNES et al. PHYSICAL REVIEW A 84, 022305 (2011)

becomes computationally too costly to be still calculated
exactly as one may easily afford to do in low dimensions.
Rather, it is highly advantageous to approximate the inverse
Hessian and the gradient iteratively by making use of previous
runs within the same inner loop (see flow diagram to Fig. 1 in
Fig. 2). This captures the spirit of the well-established limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) ap-
proach [54,68,69]. The pros of L-BFGS, however, are rather
incompatible with restricting the number of inner loops to
smax = 1 as is often done in sequential approaches. Therefore
in turn, gradient modules scaling favorably with problem
dimension may ask for matched update schemes.

(d) It is a common misconception to extrapolate from
very few iterations needed for convergence in low dimensions
that the same algorithmic setting will also perform best in
high-dimensional problems. Actually, effective CPU time and
number of iterations needed for convergence are far from being
one-to-one. The same feature may be illustrated by recent
results in the entirely different field of tensor approximation,
where again in low dimensions, exact Newton methods
outperform any other by the number of iterations as well as
by CPU time, while in higher dimensions, exact Newton steps
cannot be calculated at all (see Figs. 11.2–11.4 in Ref. [70]).

It is for these reasons we discuss the key steps of the
algorithmic framework in terms of their constituent modules.

2. Gradient-based update modules

Here we describe the second-order and first-order control-
update modules used by the respective algorithms.

Second-order (quasi-) Newton methods. The array of
piecewise constant control amplitudes (in the rth iteration),
{u(r)

j (t (q)
k)|j = 1,2, . . . ,m and k = 1,2, . . . ,M (q)} are concate-

nated to a control vector written |u(r)〉 for convenience (in
slight abuse of notation). Thus the standard Newton update
takes the form

|u(r+1)〉 = |u(r)〉 + αrH−1
r |gradf (r)〉. (19)

Here αr is again a step size and H−1
r denotes the inverse

Hessian, where |gradf (r)〉 is the gradient vector. For brevity
we also introduce short-hand notation for the respective
differences of control vectors and gradient vectors:

|xr〉 := |u(r+1)〉 − |u(r)〉,
|yr〉 := |gradf (r+1)〉 − |gradf (r)〉.

Now, in the BFGS standard algorithmic scheme [54], the
inverse Hessian is conveniently approximated by making use
of previous iterations via

H−1
r+1 = V t

r H−1
r Vr + πr |xr〉〈xr |, (20)

with the definitions

πr := 〈yr |xr〉−1, Vr := l − πr |yr〉〈xr |.
By its recursive construction, BFGS (i) introduces time
nonlocal information into the optimization procedure as soon
as the inverse Hessian has off-diagonal components and
(ii) perfectly matches concurrent updates within the inner
loop: using second-order information makes up for its high
initialization costs by iterating over the same subspace of

controls throughout the optimization. Note that the MATLAB

routine fminunc uses the standard BFGS scheme, while the
routine fminconc uses the standard limited-memory variant L-
BFGS [54,68,69,71]. Another advantage of the BFGS scheme
is that the approximate Hessian is by construction positive
definite, allowing straightforward Newton updates.

In contrast, for sequential updates, BFGS is obviously
far from being the method of choice, because sequential
updates iterate over a changing subset of controls. In principle,
direct calculation of the Hessian is possible. However, this is
relatively expensive and the local Hessian is not guaranteed to
be positive definite, necessitating the need for more complex
trust-region Newton updates. A detailed analysis of optimal
strategies for sequential-update methods is necessary and is
presented in [72]. Preliminary numerical data (see Sec. IV D)
suggest that the gain from such higher-order methods for
sequential-update schemes is limited and not sufficient to offset
the increased computational costs per iteration in general. Thus
we shall restrict ourselves here to sequential updates based on
first-order gradient information.

First-order gradient ascent. The simplest case of a gradient-
based sequential-update algorithm amounts to steepest ascent
in the control vector, whose elements follow

u
(r+1)
j

(
t

(q)
k

) = u
(r)
j

(
t

(q)
k

)+ αr

∂f (r)

∂uj

(
t

(q)
k

) , (21)

where αr is an appropriate step size or search length. For
gate optimization problems of the type considered here it
can be shown that sequential gradient update with suitable
step-size control can match the performance of higher-order
methods such as sequential Newton updates while avoiding the
computational overhead of the latter [72]. Although choosing
a small constant αr ensures convergence (to a critical point
of the target function) this is usually a bad choice. We can
achieve much better performance with a simple heuristic based
on a quadratic model αr (2 − αr) of f along the gradient
direction in the step-size parameter αr . Our step-size control
is based on trying to ensure that the actual gain in the
fidelity �f = f (αr) − f (0) is at least 2/3 of the maximum
gain achievable based on the current quadratic model. Thus,
we start with an initial guess for αr , evaluate �f (αr) and use
the quadratic model to estimate the optimal step size α∗(r). If
the current αr is less than 2/3 of the optimum step size then
we increase αr by a small factor, e.g., 1.01; if αr is greater
than 4/3 of the estimated optimal α∗(r) then we decrease αr

by a small factor, e.g., 0.99. Instead of applying the change
in αr immediately, i.e., for the current time step, which would
require reevaluating the fidelity, we apply it only in the next
time step to give

αr+1 =

⎧⎪⎨⎪⎩
1.01αr for αr < 2

3α∗(r)

0.99αr for αr > 4
3α∗(r)

αr else

. (22)

For a sequential update with many time steps, avoiding the
computational overhead of multiple fidelity evaluations is
usually preferable to the small gain achieved by continually
adjusting the step size αr at the current time step. This
deferred application of the step-size change is justified in our
case as for unitary gate optimization problems of the type

022305-6

COMPARING, OPTIMIZING, AND BENCHMARKING . . . PHYSICAL REVIEW A 84, 022305 (2011)

considered here, as αr usually quickly converges to an optimal
(problem-specific) value and only varies very little after this
initial adjustment period, regardless of the initial αr [72].

As mentioned above, this step-size control scheme for
sequential update comes close to a direct implementation
of trust-region Newton (see Fig. 6 in Sec. IV D), a detailed
analysis of which is given in [72].

3. Gradient modules

Exact gradients. In the module used for most of the
subsequent comparisons, exact gradients to the exponential
maps of total Hamiltonians with piecewise constant control
amplitudes over the time interval �t are to be evaluated. Here
we use exact gradients as known from various applications
[31,73]. Their foundations were elaborated in [74,75], so here
we give a brief sketch along the lines of [73,74] (leaving more
involved scenarios beyond piecewise constant controls to be
dwelled upon elsewhere). For

X := exp{−i�tHu} = exp

{
− i�t(Hd +

∑
j

ujHj)

}
,

(23)

the derivative invokes the spectral theorem to take the form〈
λl

∣∣∣∣ ∂X

∂uj

λm

〉
=
{−i�t〈λl|Hj |λm〉e−i�tλl if λl = λm,

−i�t〈λl|Hj |λm〉 e−i�tλl −e−i�tλm

−i�t(λl−λm) if λl �= λm,

(24)

where in the second identity we have deliberately kept the fac-
tor −i�t for clarity. Thus the derivative is given elementwise
in the orthonormal eigenbasis {|λi〉} to the real eigenvalues
{λi} of the Hamiltonian Hu. Details are straightforward, yet
lengthy, and are thus relegated to Appendix A.

Approximate gradients. In Ref. [11] we took an approxi-
mation to be valid as long as the respective digitization time
slices were small enough in the sense �t � 1/||Hu||2 with Hu

as in Eq. (23)

∂X

∂uj

≈ −i�tHje
−i�tHu . (25)

This approximation can be envisaged as replacing the average
value brought about by the time integral over the duration
�t = tk − tk−1, which in the above eigenbasis takes the form〈

λl

∣∣∣∣ ∂X

∂uj

λm

〉
= −i

∫ tk

tk−1

dτe−iλl (tk−τ)〈λl|Hj |λm〉e−iλm(τ−tk−1),

≈ −i�t〈λl|Hj |λm〉e−iλm�t , (26)

by the value of the integrand at the right-hand side of the time
interval τ ∈ [tk−1,tk]. Clearly, this approximation ceases to be
exact as soon as the time evolution U (tk,tk−1) = e−i�tHu fails
to commute with Hj . Generically this is the case and the error
scales with |λl − λm|�t .

Finite differences. These provide another standard alter-
native, which may be favorable particularly in the case of
pure-state transfer, see [76].

4. Exponentiation module

Matrix exponentials are a notorious problem in computer
science [77,78]. Generically, the standard MATLAB module
takes the matrix exponential via the Padé approximation, while
in special cases (like the Hermitian one pursued throughout this
paper) the eigendecomposition is used.2

From evaluating exact gradients (see above) the eigende-
composition of the Hamiltonian is already available. Though
in itself the eigendecomposition typically comes at slightly
higher computational overhead than the Padé matrix expo-
nential, this additional computational cost is outweighed by
the advantage that evaluating the matrix exponential now
becomes trivial by exponentiation of the eigenvalues and a
matrix multiplication.

Thus as long as the eigendecompositions are available,
the matrix exponentials essentially come for free. Since in
the sequential-update algorithm, the gradient needed for the
exponential in time slice k requires an update in time slice
k − 1, the exponential occurs in the inner loop of the algorithm,
while obviously the concurrent-update algorithm takes its
exponentials only in the outer loops. The total number of
exponentials required by the two algorithms are basically the
same.

5. Reducing the number of matrix operations

As described above, the search for an optimal-control
sequence proceeds on two levels: an outer loop choosing
the time slices to be updated (a decision which may imply
choice of gradient-based step method, as well as other control
parameters), and an inner loop which computes gradients and
advances the search point. With DYNAMO, significant effort has
been made to optimize the overall number of matrix operations.

For a general hybrid scheme, where T (q) is a subset of
time slices {t (q)

1 . . .t
(q)
M (q)}, the approach is as follows. Given

time slices X1, . . . ,XM , of which in hybrid update schemes
we select for updating any general set Xt1 , . . . ,Xtp , we can
collapse multiple consecutive nonupdating X into a single
effective Y . For example, consider X1, . . . ,X10 of which we
update X2, X5, and X6. Before proceeding with the inner
loop, we generate concatenated products Y1, . . . ,Y4 such that
Y1 = X1, Y2 = X4X3, and Y3 = X10X9X8X7. Now the heart
of the expression to optimize for is Y3X6X5Y2X2Y1.

As a result, computation of forward and backward prop-
agators can be done with the minimal number of matrix
multiplications. Matrix exponentiation is also minimized
by way of caching and making use of the fact that for
some gradient computation schemes, eigen decomposition is
required, thus allowing for light-weight exponentiation.

Moreover, the DYNAMO platform isolates the problem of
minimizing matrix operations to a specific module, which
is aware of which Hu, X, and � are needed for the next
step, compares these with the time slices which have been
updated, and attempts to provide the needed data with the
minimal number of operations. And while for some hybrid

2In view of future optimization, however, note that our parallelized
C++ version of GRAPE already uses faster methods based on
Chebychev polynomials as described in [79,80].

022305-7

S. MACHNES et al. PHYSICAL REVIEW A 84, 022305 (2011)

update schemes the current number of operations performed
in the outer loop is not strictly optimal in all cases, optimality
is reached for Krotov, GRAPE, and schemes which update
consecutive blocks of time slices.

6. Modularization approach in DYNAMO

To allow flexibility in the design and implementation of
new optimal-control techniques, the framework is modularized
by way of function pointers, allowing, e.g., the second-order
search method to receive a pointer to a function which
calculates the gradient, which in turn may receive a pointer
to a function which calculates the exponential. The crossover
algorithm described in Fig. 4, e.g., is implemented by a
search method receiving as input two search-method modules
and a crossover condition, which is used as a termination
condition for the first search method. The first-order hybrids
described in Fig. 8 are similarly implemented by a blockwise
subspace selection function (generalization of the sequential vs
concurrent selection schemes) receiving a pointer to the search
function to be used within each block. DYNAMO is provided
with many such examples.

If one is exploring, e.g., second-order search methods
appropriate for serial update schemes, one only needs to
write the update-rule function. DYNAMO will provide both
the high-level subspace-selection logic and the low-level
bookkeeping that is entrusted with tracking which controls
have been updated. When given a demand for gradients,
propagators, or the value function, it performs the needed cal-
culations while minimizing the number of matrix operations.
Moreover, once a new algorithm is found, DYNAMO makes
it easy both to compare its performance to that of the many
schemes already provided as examples and to do so for a
wide set of problems described in this paper. Thus DYNAMO

serves as a valuable benchmarking tool for current and
future algorithms.

III. STANDARD SCENARIOS FOR
QUANTUM APPLICATIONS

We have discussed the versatile features of the framework
embracing all standard scenarios of bilinear quantum control
problems listed in Table I. Here we give the (few!) necessary
adaptations for applying our algorithms to such a broad variety
of paradigmatic applications, while our test suite is confined to
unitary gate synthesis and cluster-state preparation in closed
quantum systems.

A. Closed quantum systems

The most frequent standard tasks for optimal control of
closed systems comprise different ways of gate synthesis as
well as state transfer of pure or nonpure quantum states. More
precisely, sorted for convenient development from the general
case, they amount to the following tasks:

Task 1. unitary gate synthesis up to a global phase
Task 2. unitary gate synthesis with fixed global phase
Task 3. state transfer among pure-state vectors
Task 4. state transfer among density operators.

TABLE II. Boundary conditions for standard scenarios. State
of the system: evolution of initial state as (X(tk)) = Xk:0 :=

XkXk−1 · · · X1X0, with propagators Xν = e
�t

(
A+∑j uj (tν)Bj

)
for

ν = 1,. . .,k and with A,Bj as defined in Table I .

Initial Final
Conditions X0 XM+1

Closed systems:
Pure-state transfer |ψ0〉 |ψ〉target

Gate synthesis I lN Utarget

State transfer ρ0 ρtarget

Gate synthesis II lN2 Ûtarget

Open systems:
State transfer ρ0 ρtarget

Map synthesis lN2 Ftarget

As will be shown, all of them can be treated by common
propagators that are of the form

Xk = exp{−i�tHu(tk)},

= exp

⎧⎨⎩−i�t

⎛⎝Hd +
∑

j

uj (tk)Hj

⎞⎠⎫⎬⎭ . (27)

Algorithmically, this is very convenient, because then the
specifics of the problem just enter via the boundary conditions
as given in Table II; clearly, the data type of the state evolving
in time via the propagators Xk is induced by the initial state
being a vector or a matrix represented in Hilbert space or
(formally) in Liouville space.

Indeed, for seeing interrelations, it is helpful to formally
consider some problems in Liouville space, before breaking
them down to a Hilbert-space representation for all practical
purposes, which is obviously feasible in any closed system.

Task 1. Projective phase-independent gate synthesis. In
Table II the target projective gate Ûtarget can be taken in the
phase-independent superoperator representation X̂ := X̄ ⊗ X

to transform the quality function

f 2
PSU = 1

N2
Re tr{Û †

targetX̂(T)}

= 1

N2
Re tr

{(
Ut

targetX̄T

)⊗ (U †
targetXT)

}
= 1

N2
|tr{U †

tarXT }|2, so (28)

fPSU = 1

N
|tr{U †

tarXT }| = 1

N
|tr{�†

M+1:k+1Xk:0}|,

where the last identity recalls the forward and backward
propagations X(tk) := XkXk−1 · · · X2X1X0 and �†(tk) :=
U

†
targetXMXM−1 · · · Xk+2Xk+1.

So with the overlap g := 1
N

tr{�†
M+1:k+1Uk:0} of Eq. (11),

the derivative of the squared fidelity with respect to the control
amplitude uj (tk) becomes

∂f 2
PSU(X(tk))

∂uj

= 2

N
Re tr

{
g∗�†

M+1:k+1

(
∂Xk

∂uj

)
Xk−1:0

}
, (29)

022305-8

COMPARING, OPTIMIZING, AND BENCHMARKING . . . PHYSICAL REVIEW A 84, 022305 (2011)

where ∂Xk

∂uj
is given by Eq. (24). The term g∗ arises via

f 2(u) = |g(u)|2, so that by ∂f 2

∂u
= 2|g(u)|[∂

∂u
|g(u)|] one gets

[for |g(u)| �= 0] ∂f

∂u
= ∂

∂u
|g(u)| = 1

2|g(u)|
∂f 2

∂u
to arrive at

∂fPSU(X(tk))
∂uj

= 1

N
Re tr

{
e−iφg�

†
M+1:k+1

(
∂Xk

∂uj

)
Xk−1:0

}
,

(30)

where e−iφg := g∗/|g| uses the polar form g = |g|e+iφg for a
numerically favorable formulation.

Thus, in closed systems, the superoperator representation
is never used in the algorithm explicitly, yet it is instructive to
apply upon derivation, because task 2 now follows immedi-
ately.

Task 2. Phase-dependent gate synthesis. In Table II the
target gate Utarget now directly enters the quality function

fSU = 1

N
Re tr{U †

tarXT } = 1

N
Re tr{�†

M+1:k+1Xk:0}. (31)

So the derivative of the fidelity with respect to the control
amplitude uj (tk) with reference to ∂Xk

∂uj
of Eq. (24) reads

∂fSU(X(tk))
∂uj

= 1

N
Re tr

{
�

†
M+1:k+1

(
∂Xk

∂uj

)
Xk−1:0

}
. (32)

It is in entirely analogous to Eq. (30).
Actually, this problem can be envisaged as the lifted

operator version of the pure-state transfer in the subsequent
task 3, which again thus follows immediately as a special
case.

Task 3. Transfer between pure-state vectors. Target state
and propagated initial state from Table II, |ψ〉target, X(T)|ψ0〉
form the scalar product in the quality function

f = 1

N
Re〈ψtarget|XT 〉 = 1

N
Re[tr]{�†

M+1:k+1Xk:0}, (33)

where the latter identity treats the propagated column
vector Xk:1|X0〉 as N × 1 matrix Xk:0 and likewise the
back-propagated final state 〈ψtar|(XM:k+1)† as 1 × N matrix
�

†
M+1:k+1 so the trace can be ommited. Hence the derivative of

the fidelity with respect to the control amplitude uj (tk) remains

∂fSU (X(tk))
∂uj

= 1

N
Re [tr]

{
�

†
M+1:k+1

(
∂Xk

∂uj

)
Xk−1:0

}
, (34)

with ∂Xk

∂uj
of Eq. (24).

Task 4. State transfer between density operators. The
quality function normalized with respect to the (squared) norm
of the target state c := ||ρtar||22 reads

f = 1

c
Re tr{X†

M+1AdXT
(X0)}

≡ 1

c
Re tr{X†

M+1XT X0X
†
T }

= 1

c
Re tr{X†

M+1XMXM−1 · · · Xk · · · X2X1X0

×X
†
1X

†
2 · · · X†

k · · ·X†
M−1X

†
M}. (35)

Hence the derivative of the quality function with respect to the
control amplitude uj (tk) takes the somewhat lengthy form

∂f (X(tk))
∂uj

= 1

c
Re

{
tr

[
X

†
M+1XM · · ·

(
∂Xk

∂uj

)
· · · X2X1X0

×X
†
1X

†
2 · · · X†

k · · ·X†
M

]
+ tr

[
X

†
M+1XM · · · Xk · · ·X2X1X0

×X
†
1X

†
2 · · ·

(
∂X

†
k

∂uj

)
· · · X†

M

]}
, (36)

where the exact gradient ∂Xk

∂uj
again follows Eq. (24).

Notice that task 1 can be envisaged as the lifted operator
analog to task 4 if phase-independent projective representa-
tions |ψν〉〈ψν | of pure states |ψν〉 are to be transferred.

B. Open quantum systems

Task 5. Quantum map synthesis in Markovian systems. The
superoperator Ĥu(tk) to the Hamiltonian above can readily be
augmented by the relaxation operator �. Thus one obtains the
generator to the quantum map

Xk = exp{−�t[iĤu(tk) + �(tk)]}, (37)

following the Markovian equation of motion

Ẋ(t) = −(iĤu + �)X(t). (38)

By the (super)operators X(tk) := XkXk−1 · · ·X1X0 and
�†(tk) := F

†
targetXM × XM−1 · · · Xk+2Xk+1, the derivative of

the trace fidelity at fixed final time T

f = 1

N2
Re tr{F †

targetX(T)} = 1

N2
Re tr{�†(tk)X(tk)}

with respect to the control amplitude uj (tk) formally reads

∂f

∂uj (tk)
= 1

N2
Re tr

{
�†(tk)

(
∂Xk

∂uj (tk)

)
X(tk−1)

}
. (39)

Since in general � and iĤu do not commute, the semigroup
generator (iĤu + �) is not normal, so taking the exact gradient
as in Eq. (24) via the spectral decomposition has to be replaced
by other methods. There are two convenient alternatives,
(i) approximating the gradient for sufficiently small �t �
1/||iĤu + �||2 by

∂Xk

∂uj (tk)
≈ −�t

(
iĤuj

+ ∂�(uj (tk))
∂uj (tk)

)
Xk (40)

or (ii) via finite differences.
This standard task devised for Markovian systems [27] can

readily be adapted to address also non-Markovian systems,
provided the latter can be embedded into a (numerically
manageable) larger system that in turn interacts with its
environment in a Markovian way [28].

Task 6. State transfer in open Markovian systems. This
problem can readily be solved as a special case of task 5 when
envisaged as the vector version of it. To this end it is convenient
to resort to the so-called vec notation [81] of a matrix M

as the column vector vec(M) collecting all columns of M .

022305-9

S. MACHNES et al. PHYSICAL REVIEW A 84, 022305 (2011)

Now, identifying X0 := vec(ρ0) and X
†
target := vect (ρ†

target) one
obtains the propagated initial state X(tk) := XkXk−1 · · · X1X0

and �†(tk) := X
†
targetXMXM−1 · · ·Xk+2Xk+1 as the back-

propagated target state. In analogy to task 3, they take the
form of N2 × 1 and 1 × N2 vectors, respectively. Thus the
derivative of the trace fidelity at fixed final time T

f = 1

N
Re[tr]{X†

targetX(T)} = 1

N
Re[tr]{�†(tk)X(tk)}

with respect to the control amplitude uj (tk) reads

∂f

∂uj (tk)
= 1

N
Re [tr]

{
�†(tk)

(
∂Xk

∂uj (tk)

)
X(tk−1)

}
, (41)

where for ∂Xk

∂uj (tk) the same gradient approximations apply as in
task 5.

For the sake of completeness, Appendix B gives all the key
steps of the standard tasks 1–6 in a nutshell.

IV. RESULTS ON UPDATE SCHEMES: CONCURRENT
AND SEQUENTIAL

A. Specification of test problems

We studied the 23 systems listed in Table III as test problems
for our optimization algorithms. This test suite includes spin
chains, a cluster state system whose effective Hamiltonian
represents a C4 graph, a nitrogen-vacancy (N-V) center system
and two driven spin-j systems with j = 3,6. Attempting to

cover many systems of practical importance (spin chains,
cluster-state preparation, N-V centers) with a range of coupling
topologies and control schemes, the study includes large sets
of parameters like system size, final time, number of time
slices, and target gates. We therefore anticipate that our suite
of test problems will provide good guidelines for choosing an
appropriate algorithm in many practical cases.

1. Spin chains with individual local controls

Explorative problems 1–12 are Ising-ZZ spin chains of
various length in which the spins are addressable by individual
x and y controls. The Hamiltonians for these systems take the
following form:

Hd = J

2

n−1∑
k=1

σ z
k σ z

k+1, (42)

H
x,y

j = 1

2
σ

x,y

j , (43)

where J = 1, n = 1, . . . ,5, and j = 1, . . . ,n.
In example 1 we also consider linear cross-talk (e.g., via

off-resonant excitation), leading to the control Hamiltonians

H1,2 = α1,2σ
x
1 + α2,1σ

x
2 , (44)

H3,4 = β2,1σ
y

1 + β1,2σ
y

2 , (45)

TABLE III. Specification of test problems. The notation ABC means the spin chain consists of three spins that are addressable each by an
individual set of x and y controls. We write A0 for a locally controllable spin A which is coupled to a neighbor 0 not accessible by any control field.

Matrix No. of Target
Problem Quantum system dimensions time slices Final time gate

1 AB Ising-ZZ chain 4 30 2 CNOT

2 AB Ising-ZZ chain 4 40 2 CNOT

3 AB Ising-ZZ chain 4 128 3 CNOT

4 AB Ising-ZZ chain 4 64 4 CNOT

5 ABC Ising-ZZ chain 8 120 6 QFT
6 ABC Ising-ZZ chain 8 140 7 QFT

7 ABCD Ising-ZZ chain 16 128 10 QFT
8 ABCD Ising-ZZ chain 16 128 12 QFT
9 ABCD Ising-ZZ chain 16 64 20 QFT

10 ABCDE Ising-ZZ chain 32 300 15 QFT
11 ABCDE Ising-ZZ chain 32 300 20 QFT
12 ABCDE Ising-ZZ chain 32 64 25 QFT

13 C4 Graph-ZZ 16 128 7 UCS

14 C4 Graph-ZZ 16 128 12 UCS

15 NV center 4 40 2 CNOT

16 NV center 4 64 5 CNOT

17 AAAAA Ising-ZZ chain 32 1000 125 QFT
18 AAAAA Ising-ZZ chain 32 1000 150 QFT

19 AAAAA Heisenberg-XXX chain 32 300 30 QFT

20 A00 Heisenberg-XXX chain 8 64 15 rand U

21 AB00 Heisenberg-XXX chain 16 128 40 rand U

22 Driven spin-6 system 13 100 15 rand U

23 Driven spin-3 system 7 50 5 rand U

022305-10

COMPARING, OPTIMIZING, AND BENCHMARKING . . . PHYSICAL REVIEW A 84, 022305 (2011)

where uk are independent control fields and αk and βk

are crosstalk coefficients. We chose α1 = β2 = 1 and α2 =
β1 = 0.1.

2. Cluster state preparation in completely coupled
spin networks

The effective Hamiltonian of test problems 13 and 14,

HCS = J

2

(
σ z

1 σ z
2 + σ z

2 σ z
3 + σ z

3 σ z
4 + σ z

4 σ z
1

)
, (46)

represents a C4 graph of Ising-ZZ coupled qubits which can
be used for cluster state preparation according to [82]. The
underlying physical system is a completely Ising-coupled set
of four ions that each represents a locally addressable qubit:

Hd = J

2

3∑
k=1

4∑
l=k+1

σ z
k σ z

l , (47)

H
x,y

j = 1

2
σ

x,y

j (j = 1, . . . ,4). (48)

Again, the coupling constant J was set to 1. The following
unitary was chosen as a target gate, which applied to the state
|ψ1〉 = [(|0〉 + |1〉)/√2]⊗4 generates a cluster state

UG = exp

(
− i

π

2
HCS

)
. (49)

3. NV center in isotopically engineered diamond

In test problems 15 and 16 we optimized for a controlled-
NOT (CNOT) gate on two strongly coupled nuclear spins at a
NV center in diamond as described in [83]. In the eigenbasis
of the coupled system, after a transformation into the rotating
frame, the Hamiltonians are of the form

Hd = diag(E1,E2,E3,E4) + ωcdiag(1,0,0, − 1), (50)

H1 = 1
2

(
μ12σ

x
12 + μ13σ

x
13 + μ24σ

x
24 + μ34σ

x
3,4

)
, (51)

H2 = 1
2

(
μ12σ

y

12 + μ13σ
y

13 + μ24σ
y

24 + μ34σ
y

34

)
. (52)

Here E1, . . . ,E4 are the energy levels, ωc is the carrier
frequency of the driving field, and μα,β is the relative dipole
moment of the transition between levels α and β. We chose
the following values for our optimizations: {E1,E2,E3,E4} =
2π{−134.825,−4.725,4.275,135.275} MHz, ωc = 2π × 135
MHz, {μ12,μ13,μ24,μ34} = {1,1/3.5,1/1.4,1/1.8} in
accordance with [83].

4. Special applications of spin chains

Test problems 17 and 18 are modified five-qubit Ising chains
extended by a local Stark-shift term being added in the drift
Hamiltonian Hd resembling a gradient. The control consists
of simultaneous x and y rotations on all spins

Hd = J

2

4∑
i=1

σ z
i σ z

i+1 − (i + 2)σ z
i (53)

H1 = 1

2

5∑
i=1

σx
i , H2 = 1

2

5∑
i=1

σ
y

i . (54)

Problem 19 is a Heisenberg-XXX coupled chain of five spins
extended by global permanent fields inducing simultaneous x

rotations on all spins:

Hd = J

2

4∑
i=1

σx
i σ x

i+1 + σ
y

i σ
y

i+1 + σ z
i σ z

i+1 − 10σx
i . (55)

Control is exerted by switchable local Stark-shift terms,

Hi = σ z
i (i = 1, . . . ,5). (56)

Spin chains may be put to good use as quantum wires
[43,84–87]. The idea is to control just the input end of the chain
using the remainder to passively transfer this input to the other
end of the chain. To embrace such applications, in problems 20
and 21, the spins are coupled by an isotropic Heisenberg-XXX

interaction and the chains are subject to x and y controls only
at one end (at one or two spins, respectively):

Hd = J

2

n−1∑
i=1

σx
i σ x

i+1 + σ
y

i σ
y

i+1 + σ z
i σ z

i+1, (57)

H1,2 = 1
2σ

x,y

1 , H3,4 = 1
2σ

x,y

2 . (58)

Here J = 1 and n = 3,4. Restricting the controls in this way
makes the systems harder to steer and thus raises the bar for
numerical optimization.

5. Spin-3 and spin-6 systems

As an example beyond spin-1/2 systems, in test problems
22 and 23 we consider a Hamiltonian of the following form
[88]

Hu = J 2
z + u1Jz + u2Jx, (59)

where the Ji are angular momentum operators in spin-j
representation. The J 2

z term represents the drift Hamiltonian
and the other two terms function as controls. We chose j = 6
for problem 22 and j = 3 for problem 23.

B. Test details

As shown in Table III, we optimized each test system
for one of four quantum gates: a CNOT, a quantum Fourier
transformation (QFT), a random unitary, or a unitary for
cluster state preparation according to Sec. IV A 2. Random
unitary gates generated according to the Haar measure [89]
are meant to be numerically more demanding than the other
gates. The final times T were always chosen sufficiently
long to ensure the respective problem is solvable with
full fidelity (hence the times should not be mistaken as
underlying time-optimal solutions). All results were averaged
over 20 runs with different initial pulse sequences (control
vectors), i.e. randomly generated vectors with a mean value of
mean(uini) = 0 and a standard deviation of std(uini) = 1 in
units of 1/J unless specified otherwise [as in Table V, where
std(uini) = 10 to study the influence of the initial conditions].
The maximum number of loops was set to 3000 for the
concurrent-update scheme and to 300 000 for the sequential
update. All systems were optimized with a target fidelity
of ftarget = 1–10−4. As an additional stopping criterion the
change of the function value from one iteration to the next
(concurrent update) or between the last iteration and the

022305-11

S. MACHNES et al. PHYSICAL REVIEW A 84, 022305 (2011)

TABLE IV. Test results obtained from 20 unconstrained optimizations (fminunc in MATLAB) for each problem of Table III using the
sequential- or concurrent-update algorithm. Small initial pulse amplitudes were used [mean(uini) = 0, std(uini) = 1].

Final fidelity Wall time (min) No. eigendecs/1000 No. matrix mults/1000
Problem Algorithm (mean | min | max) (mean | min | max) (mean | min | max) (mean | min | max)

1 Conc. 0.9999 | 0.9999 | 1.0000 0.02 | 0.01 | 0.03 2.02 | 1.35 | 2.94 38 | 25 | 56
seq. 0.9999 | 0.9999 | 0.9999 0.19 | 0.13 | 0.34 6.29 | 4.36 | 11.68 88 | 61 | 163

2 Conc. 0.9999 | 0.9999 | 1.0000 0.05 | 0.03 | 0.08 2.68 | 1.76 | 4.44 50 | 33 | 84
seq. 0.9999 | 0.9999 | 0.9999 0.16 | 0.11 | 0.27 5.43 | 3.80 | 9.04 76 | 53 | 126

3 Conc. 0.9999 | 0.9999 | 1.0000 0.05 | 0.04 | 0.08 4.61 | 3.46 | 7.04 85 | 63 | 132
seq. 0.9999 | 0.9999 | 0.9999 0.07 | 0.05 | 0.12 2.29 | 1.56 | 4.12 32 | 22 | 57

4 Conc. 0.9999 | 0.9999 | 1.0000 0.02 | 0.01 | 0.02 1.70 | 1.28 | 2.43 31 | 23 | 45
seq. 0.9999 | 0.9999 | 0.9999 0.05 | 0.03 | 0.11 1.72 | 1.08 | 3.84 24 | 15 | 54

5 Conc. 0.9978 | 0.9973 | 0.9990 7.19 | 5.84 | 7.86 362 | 310 | 367 9774 | 8364 | 9917
seq. 0.9973 | 0.9918 | 0.9986 34 | 22 | 58 1976 | 1320 | 3292 35542 | 23729 | 59209

6 Conc. 0.9999 | 0.9999 | 0.9999 0.85 | 0.34 | 2.21 35 | 17 | 76 954 | 450 | 2050
seq. 0.9999 | 0.9999 | 0.9999 5.14 | 1.14 | 18.72 310 | 68 | 1143 5574 | 1216 | 20554

7 Conc. 0.9970 | 0.9886 | 0.9999 9.42 | 2.32 | 18.48 229 | 63 | 391 8028 | 2210 | 13679
seq. 0.9945 | 0.9825 | 0.9999 242 | 50 | 491 3975 | 1242 | 7753 87385 | 27313 | 170455

8 Conc. 0.9999 | 0.9999 | 0.9999 2.90 | 0.83 | 10.39 72 | 21 | 275 2530 | 735 | 9627
seq. 0.9999 | 0.9999 | 0.9999 16.11 | 2.36 | 65.72 500 | 89 | 2223 11002 | 1953 | 48876

9 Conc. 0.9999 | 0.9999 | 0.9999 0.61 | 0.33 | 0.92 20 | 11 | 30 685 | 381 | 1052
seq. 0.9999 | 0.9999 | 0.9999 4.83 | 1.91 | 7.81 161 | 63 | 259 3536 | 1375 | 5696

10 Conc. 0.9982 | 0.9740 | 0.9999 376 | 12 | 918 435 | 82 | 917 18694 | 3510 | 39442
seq. 0.9959 | 0.9661 | 0.9999 2591 | 244 | 8458 13123 | 1312 | 40136 341107 | 34116 | 1043279

11 Conc. 0.9999 | 0.9991 | 0.9999 148 | 11 | 1236 189 | 71 | 919 8114 | 3045 | 39519
seq. 0.9998 | 0.9988 | 0.9999 786 | 72 | 4817 4041 | 427 | 17767 105031 | 11097 | 461821

12 Conc. 0.9996 | 0.9974 | 0.9999 62.22 | 4.48 | 286.60 89 | 22 | 192 3818 | 942 | 8276
seq. 0.9994 | 0.9956 | 0.9999 284 | 56 | 1842 987 | 245 | 4563 25637 | 6360 | 118491

13 Conc. 0.9989 | 0.9936 | 0.9999 5.20 | 1.52 | 14.89 138 | 41 | 390 4833 | 1434 | 13634
seq. 0.9759 | 0.9373 | 0.9999 129.00 | 6.39 | 439.92 4174 | 215 | 15103 91773 | 4719 | 332029

14 Conc. 0.9999 | 0.9999 | 0.9999 1.45 | 0.70 | 2.62 35 | 19 | 60 1235 | 677 | 2089
seq. 0.9999 | 0.9999 | 0.9999 6.47 | 1.76 | 16.06 219 | 59 | 547 4813 | 1292 | 12033

15 Conc. 0.9999 | 0.9999 | 1.0000 0.01 | 0.00 | 0.01 0.90 | 0.64 | 1.24 9.57 | 6.67 | 13.30
seq. 0.9999 | 0.9999 | 1.0000 0.02 | 0.01 | 0.04 1.76 | 0.72 | 3.28 17.53 | 7.16 | 32.64

16 Conc. 0.9999 | 0.9999 | 1.0000 0.01 | 0.00 | 0.01 0.80 | 0.70 | 1.28 8.19 | 7.13 | 13.48
seq. 0.9999 | 0.9999 | 1.0000 0.01 | 0.01 | 0.02 0.67 | 0.51 | 1.54 6.64 | 5.10 | 15.31

17 Conc. 0.9999 | 0.9999 | 0.9999 160 | 27 | 357 684 | 616 | 773 7516 | 6767 | 8495
seq. 0.9999 | 0.9999 | 0.9999 2582 | 1411 | 4638 16577 | 11490 | 27082 165733 | 114877 | 270766

18 Conc. 0.9999 | 0.9999 | 0.9999 88 | 13 | 220 394 | 286 | 620 4330 | 3137 | 6811
seq. 0.9999 | 0.9999 | 0.9999 492 | 247 | 1520 2954 | 2434 | 3985 29535 | 24335 | 39842

19 Conc. 0.9999 | 0.9999 | 0.9999 45.85 | 8.49 | 213.95 170 | 103 | 264 3896 | 2354 | 6060
seq. 0.9999 | 0.9999 | 0.9999 128 | 76 | 217 1124 | 809 | 1490 17978 | 12945 | 23822

20 Conc. 0.9999 | 0.9999 | 0.9999 0.06 | 0.04 | 0.08 6.92 | 4.80 | 9.47 76 | 52 | 104
seq. 0.9999 | 0.9999 | 0.9999 0.45 | 0.21 | 1.02 26 | 15 | 43 258 | 148 | 431

21 Conc. 0.9999 | 0.9999 | 0.9999 0.18 | 0.16 | 0.20 8.56 | 7.81 | 9.60 161 | 146 | 180
seq. 0.9999 | 0.9999 | 0.9999 1.26 | 0.82 | 2.76 39 | 29 | 57 551 | 410 | 804

22 Conc. 0.9999 | 0.9999 | 0.9999 0.96 | 0.47 | 2.02 68 | 42 | 105 750 | 459 | 1154
seq.a 0.9998 | 0.9994 | 0.9999 407 | 112 | 732 21692 | 6473 | 30000 216483 | 64599 | 299399

23 Conc. 0.9999 | 0.9999 | 0.9999 0.60 | 0.24 | 1.64 53 | 25 | 141 588 | 279 | 1559
seq. 0.9951 | 0.9797 | 0.9995 39.03 | 9.39 | 111.74 2992 | 744 | 7163 29796 | 7408 | 71343

aHere the stopping conditions were changed for Fig. 3, so the data are no longer comparable to Tables V and VI.

022305-12

COMPARING, OPTIMIZING, AND BENCHMARKING . . . PHYSICAL REVIEW A 84, 022305 (2011)

TABLE V. Same as Table IV, but with higher initial pulse amplitudes: mean (uini) = 0, std (uini) = 10.

Final fidelity Wall time (min) No. eigendecs/1000 No. matrix mults/1000
Problem Algorithm (mean | min | max) (mean | min | max) (mean | min | max) (mean | min | max)

1 Conc. 0.9999 | 0.9999 | 0.9999 0.04 | 0.02 | 0.06 4.25 | 2.61 | 6.60 80 | 49 | 125
Seq. 0.9999 | 0.9998 | 0.9999 1.54 | 0.43 | 3.78 118 | 33 | 289 1645 | 459 | 4023

2 Conc. 0.9999 | 0.9999 | 0.9999 0.05 | 0.02 | 0.08 5.39 | 2.76 | 8.56 102 | 52 | 162
Seq. 0.9999 | 0.9999 | 0.9999 1.38 | 0.42 | 3.28 109 | 33 | 261 1520 | 464 | 3635

3 Conc. 0.9999 | 0.9999 | 1.0000 0.07 | 0.05 | 0.10 6.06 | 4.35 | 8.45 113 | 80 | 158
Seq. 0.9999 | 0.9999 | 0.9999 0.22 | 0.12 | 0.49 17.29 | 9.73 | 38.53 242 | 136 | 539

4 Conc. 0.9999 | 0.9999 | 1.0000 0.02 | 0.01 | 0.03 2.50 | 1.60 | 3.39 46 | 29 | 63
Seq. 0.9999 | 0.9999 | 0.9999 0.18 | 0.05 | 0.54 13.79 | 4.22 | 42.18 193 | 59 | 589

5 Conc. 0.9976 | 0.9959 | 0.9986 6.97 | 6.24 | 7.32 364 | 362 | 370 9839 | 9784 | 9995
Seq. 0.9969 | 0.9952 | 0.9983 73 | 51 | 105 4246 | 2954 | 6021 76349 | 53121 | 108271

6 Conc. 0.9999 | 0.9999 | 0.9999 2.23 | 1.36 | 3.82 105 | 60 | 180 2842 | 1623 | 4860
Seq. 0.9999 | 0.9999 | 0.9999 16 | 11 | 32 935 | 614 | 1866 16823 | 11049 | 33567

7 Conc. 0.9893 | 0.9366 | 0.9999 15 | 14 | 16 386 | 385 | 387 13499 | 13469 | 13563
Seq. 0.9928 | 0.9444 | 0.9993 325 | 129 | 730 8053 | 4190 | 16630 177047 | 92125 | 365595

8 Conc. 0.9998 | 0.9984 | 0.9999 9.86 | 4.27 | 15.02 257 | 110 | 386 9000 | 3832 | 13495
Seq. 0.9990 | 0.9851 | 0.9999 158 | 43 | 645 3511 | 1400 | 13269 77189 | 30788 | 291716

9 Conc. 0.9999 | 0.9999 | 0.9999 2.81 | 1.80 | 4.62 87 | 57 | 142 3056 | 2007 | 4982
Seq. 0.9996 | 0.9995 | 0.9998 41 | 22 | 104 1057 | 693 | 2033 23223 | 15223 | 44653

10 Conc. 0.9978 | 0.9834 | 0.9999 638 | 91 | 1566 798 | 402 | 944 34315 | 17276 | 40590
Seq. 0.9995 | 0.9974 | 0.9999 3213 | 529 | 8282 16045 | 6914 | 33844 417076 | 179721 | 879708

11 Conc. 0.9999 | 0.9998 | 0.9999 449 | 37 | 1165 613 | 335 | 906 26342 | 14386 | 38939
Seq. 0.9999 | 0.9998 | 0.9999 1557 | 863 | 2935 8408 | 4895 | 14865 218564 | 127232 | 386383

12 Conc. 0.9984 | 0.9948 | 0.9999 197 | 16 | 416 196 | 192 | 202 8426 | 8273 | 8678
Seq. 0.9974 | 0.9911 | 0.9990 883 | 255 | 2060 4320 | 1994 | 9522 112192 | 51780 | 247266

13 Conc. 0.9999 | 0.9999 | 0.9999 2.65 | 1.74 | 4.43 64 | 47 | 107 2247 | 1636 | 3729
Seq. 0.9999 | 0.9999 | 0.9999 16.31 | 9.63 | 31.65 520 | 310 | 1040 11427 | 6804 | 22872

14 Conc. 0.9999 | 0.9999 | 0.9999 1.48 | 1.09 | 1.94 40 | 33 | 48 1405 | 1152 | 1676
Seq. 0.9999 | 0.9999 | 0.9999 5.25 | 3.90 | 6.50 166 | 126 | 207 3654 | 2772 | 4550

15 Conc. 0.9999 | 0.9999 | 1.0000 0.00 | 0.00 | 0.01 0.55 | 0.40 | 0.76 5.70 | 4.02 | 8.00
Seq. 0.9999 | 0.9999 | 1.0000 0.01 | 0.01 | 0.02 0.75 | 0.52 | 1.60 7.44 | 5.17 | 15.92

16 Conc. 0.9999 | 0.9999 | 1.0000 0.00 | 0.00 | 0.01 0.76 | 0.58 | 1.22 7.73 | 5.71 | 12.77
Seq. 0.9999 | 0.9999 | 1.0000 0.01 | 0.01 | 0.02 0.58 | 0.45 | 1.15 5.77 | 4.47 | 11.48

17 Conc. 0.9999 | 0.9999 | 0.9999 162 | 28 | 320 616 | 536 | 750 6768 | 5887 | 8242
Seq. 0.9999 | 0.9999 | 0.9999 1346 | 763 | 2603 9238 | 7502 | 13230 92361 | 75005 | 132274

18 Conc. 0.9999 | 0.9999 | 0.9999 118 | 24 | 309 522 | 400 | 652 5736 | 4391 | 7163
Seq. 0.9999 | 0.9999 | 0.9999 897 | 428 | 1152 6788 | 5799 | 8207 67863 | 57978 | 82054

19 Conc. 0.9999 | 0.9999 | 0.9999 41.77 | 5.48 | 120.52 65 | 58 | 71 1481 | 1332 | 1636
Seq. 0.9999 | 0.9999 | 0.9999 59 | 32 | 89 460 | 398 | 547 7354 | 6362 | 8747

20 Conc. 0.9998 | 0.9991 | 0.9999 1.91 | 0.51 | 6.98 139 | 47 | 202 1529 | 517 | 2225
Seq. 0.9980 | 0.9879 | 0.9996 64 | 29 | 103 3508 | 2098 | 6647 34972 | 20910 | 66265

21 Conc. 0.9999 | 0.9999 | 0.9999 1.50 | 1.18 | 2.07 70 | 53 | 96 1328 | 1005 | 1818
Seq. 0.9998 | 0.9998 | 0.9999 118 | 84 | 164 4269 | 2860 | 5791 59697 | 39992 | 80980

22 Conc. 0.9999 | 0.9999 | 0.9999 0.58 | 0.32 | 0.90 51 | 29 | 74 563 | 317 | 820
Seq. 0.9995 | 0.9982 | 0.9998 81 | 35 | 137 4128 | 1981 | 6114 41194 | 19771 | 61017

23 Conc. 0.9999 | 0.9999 | 0.9999 0.06 | 0.05 | 0.07 7.58 | 6.20 | 9.85 83 | 68 | 108
Seq. 0.9999 | 0.9999 | 0.9999 1.20 | 0.59 | 2.24 93 | 46 | 171 925 | 458 | 1702

022305-13

S. MACHNES et al. PHYSICAL REVIEW A 84, 022305 (2011)

TABLE VI. Test results obtained from 20 constrained optimizations (fmincon in MATLAB) for each problem of Table III using the sequential-
or the concurrent-update algorithm. Small initial pulse amplitudes were used: mean(uini) = 0, std(uini) = 1.

Final fidelity Wall time (min) No. eigendecs/1000 No. matrix mults/1000
Problem Algorithm (mean | min | max) (mean | min | max) (mean | min | max) (mean | min | max)

1 Conc. 0.9999 | 0.9999 | 1.0000 0.11 | 0.02 | 0.26 1.43 | 1.23 | 1.68 27 | 23 | 31
Seq. 0.9999 | 0.9999 | 0.9999 0.10 | 0.04 | 0.22 6.17 | 2.70 | 10.92 86 | 38 | 152

2 Conc. 0.9999 | 0.9999 | 0.9999 0.05 | 0.03 | 0.10 2.10 | 1.64 | 2.52 39 | 31 | 47
Seq. 0.9999 | 0.9999 | 0.9999 0.08 | 0.05 | 0.09 5.74 | 4.04 | 6.96 80 | 56 | 97

3 Conc. 0.9999 | 0.9999 | 1.0000 0.09 | 0.08 | 0.13 4.49 | 3.71 | 5.50 83 | 68 | 102

Seq. 0.9999 | 0.9999 | 0.9999 0.08 | 0.03 | 0.15 5.13 | 2.05 | 8.06 72 | 29 | 113

4 Conc. 0.9999 | 0.9999 | 1.0000 0.03 | 0.02 | 0.04 1.60 | 1.34 | 1.98 29 | 24 | 37
Seq. 0.9999 | 0.9999 | 0.9999 0.03 | 0.01 | 0.04 1.89 | 1.02 | 2.75 26 | 14 | 38

5 Conc. 0.9877 | 0.9322 | 0.9990 44 | 24 | 67 364 | 361 | 368 9828 | 9759 | 9947
Seq. 0.9973 | 0.9918 | 0.9986 34 | 22 | 61 1976 | 1320 | 3292 35542 | 23729 | 59209

6 Conc. 0.9999 | 0.9999 | 0.9999 1.87 | 0.73 | 3.61 24 | 18 | 40 650 | 473 | 1074
Seq. 0.9999 | 0.9999 | 0.9999 5.34 | 1.15 | 19.60 310 | 68 | 1143 5574 | 1216 | 20554

7 Conc. 0.9958 | 0.9808 | 0.9999 29.82 | 5.74 | 69.99 244 | 69 | 390 8552 | 2411 | 13634
Seq. 0.9945 | 0.9825 | 0.9999 123 | 39 | 244 3978 | 1242 | 7749 87443 | 27313 | 170360

8 Conc. 0.9999 | 0.9999 | 0.9999 5.39 | 2.08 | 20.83 49 | 29 | 198 1697 | 995 | 6925
Seq. 0.9999 | 0.9999 | 0.9999 15.19 | 2.66 | 67.58 500 | 89 | 2223 11002 | 1953 | 48876

9 Conc. 0.9999 | 0.9999 | 0.9999 1.21 | 0.69 | 1.68 14.94 | 8.19 | 21.06 521 | 285 | 735
Seq. 0.9999 | 0.9999 | 0.9999 4.90 | 1.91 | 7.99 161 | 63 | 259 3536 | 1375 | 5696

10 Conc. 0.9998 | 0.9985 | 0.9999 281 | 21 | 1753 355 | 94 | 904 15251 | 4052 | 38874
Seq. 0.9991 | 0.9864 | 0.9999 1942 | 122 | 12208 11549 | 988 | 84232 300198 | 25679 | 2189468

11 Conc. 0.9999 | 0.9999 | 0.9999 153.76 | 7.80 | 1104.29 144 | 68 | 566 6182 | 2890 | 24346
Seq. 0.9998 | 0.9988 | 0.9999 1141 | 86 | 9848 6990 | 427 | 74922 181706 | 11097 | 1947465

12 Conc. 0.9999 | 0.9992 | 0.9999 76.27 | 5.76 | 948.99 70 | 22 | 194 3017 | 936 | 8331
Seq. 0.9997 | 0.9970 | 0.9999 1108 | 39 | 5566 5054 | 245 | 19200 131246 | 6360 | 498598

13 Conc. 0.9844 | 0.9102 | 0.9999 13.91 | 2.49 | 75.62 120 | 27 | 398 4189 | 950 | 13926
Seq. 0.9759 | 0.9373 | 0.9999 128.25 | 6.64 | 454.86 4174 | 215 | 15103 91773 | 4719 | 332029

14 Conc. 0.9973 | 0.9867 | 0.9999 7.47 | 2.06 | 14.20 49 | 29 | 80 1720 | 1000 | 2801
Seq. 0.9999 | 0.9999 | 0.9999 6.58 | 1.77 | 16.61 219 | 59 | 547 4813 | 1292 | 12033

15 Conc. 0.9999 | 0.9999 | 1.0000 0.05 | 0.02 | 0.10 0.71 | 0.52 | 0.92 7.49 | 5.35 | 9.77
Seq. 0.9999 | 0.9999 | 1.0000 0.02 | 0.01 | 0.04 1.76 | 0.72 | 3.28 17.53 | 7.16 | 32.64

16 Conc. 0.9999 | 0.9999 | 1.0000 0.04 | 0.01 | 0.07 0.96 | 0.77 | 1.34 9.99 | 7.83 | 14.19
Seq. 0.9999 | 0.9999 | 1.0000 0.01 | 0.01 | 0.02 0.67 | 0.51 | 1.54 6.64 | 5.10 | 15.31

17 Conc. 0.9999 | 0.9999 | 0.9999 531 | 58 | 1443 1224 | 1032 | 1551 13454 | 11344 | 17054
Seq. 0.9999 | 0.9999 | 0.9999 2284 | 1054 | 3898 16774 | 11490 | 27294 167710 | 114877 | 272885

18 Conc. 0.9999 | 0.9999 | 0.9999 157 | 26 | 754 574 | 530 | 655 6300 | 5821 | 7196
Seq. 0.9999 | 0.9999 | 0.9999 386 | 175 | 690 2953 | 2434 | 3985 29524 | 24335 | 39842

19 Conc. 0.9999 | 0.9999 | 0.9999 105 | 16 | 335 166 | 141 | 186 3807 | 3244 | 4273
Seq. 0.9999 | 0.9999 | 0.9999 143 | 64 | 328 1130 | 996 | 1465 18064 | 15925 | 23433

20 Conc. 0.9999 | 0.9999 | 0.9999 0.53 | 0.12 | 1.14 5.15 | 4.16 | 6.91 56 | 45 | 76
Seq. 0.9999 | 0.9999 | 0.9999 0.45 | 0.23 | 0.77 30 | 16 | 51 302 | 160 | 511

21 Conc. 0.9999 | 0.9999 | 0.9999 0.49 | 0.36 | 0.89 9.53 | 9.09 | 10.37 179 | 171 | 195
Seq. 0.9999 | 0.9999 | 0.9999 1.39 | 0.79 | 3.80 39 | 29 | 57 551 | 410 | 804

22 Conc. 0.9999 | 0.9999 | 0.9999 5.34 | 2.39 | 8.03 131 | 93 | 193 1444 | 1026 | 2128
Seq. 0.9991 | 0.9983 | 0.9995 108 | 59 | 386 4702 | 3317 | 6780 46924 | 33106 | 67669

23 Conc. 0.9999 | 0.9999 | 0.9999 2.26 | 0.42 | 9.57 38 | 13 | 83 420 | 148 | 913
Seq. 0.9951 | 0.9797 | 0.9995 37.38 | 9.40 | 97.52 2991 | 744 | 7163 29786 | 7408 | 71343

022305-14

COMPARING, OPTIMIZING, AND BENCHMARKING . . . PHYSICAL REVIEW A 84, 022305 (2011)

0.01 0.1 1 10 100 1000
10

−4

10
−3

10
−2

10
−1

10
0

wall time [min]

1−
fid

el
ity

Problem 12 (ABCDE Ising chain, T=25, M=64)

seq. update
conc. update

0 1 2 3
0.1

0.2

0.3

0.5

1

0.01 0.1 1 10
10

−4

10
−3

10
−2

10
−1

10
0

Problem 14 (C
4
 Graph−ZZ, T=12, M=128)

wall time [min]

1−
fid

el
ity

0 0.1 0.2
0.1

0.2

0.3

0.5

1

0.01 0.1 1 10 100 1000 10000
10

−4

10
−3

10
−2

10
−1

10
0

Problem 17 (AAAAA Ising chain, T=125, M=1000)

wall time [min]

1−
fid

el
ity

0 5 10
0.1

0.2

0.3

0.5

1

0.01 0.1 1 10 100 1000
10

−4

10
−3

10
−2

10
−1

10
0

Problem 22 (Spin−6 system, T=15, M=100)

wall time [min]

1−
fid

el
ity 0 0.1 0.2 0.3

0.1

0.2

0.3

0.5

1

FIG. 3. (Color) Optimization results for problems 12, 14, 17, and 22 shown in doubly logarithmic plots; each optimization is run with 20
random initial conditions; the trace of mean values is given in boldface. The blue (concurrent) and red (sequential) lines depict the deviation
of the quality from the maximum of 1 as a function of the wall time. Each line represents one optimization. The insets show the initial
behaviors and crossing points in a log-linear scale. For the sequential-update algorithm in problem 22 (last panel), the thresholds for the
change in the control and function values have to be lowered [to 10−10 instead of the standard 10−8 (see test conditions)] for reaching qualities
comparable to the ones the concurrent scheme arrives at under standard conditions. (Note the altered thresholds apply as well to the data listed in
Table IV).

average of the previous M iterations (sequential update) was
introduced. The threshold value in this case was set to 10−8.
For the concurrent-update algorithm, the optimization stopped
when the smallest change in the control vector was below
10−8. We measured the wall times of our optimizations to give
a measure for the actual running time from start to completion
(including, e.g., memory loads and communication processes)
instead of only measuring the time spent on the CPU. The
optimizations were carried out under MATLAB R2009b (64-bit,
single-thread mode) on an AMD Opteron dual-core CPU at
2.6 GHz with 8 GB of random access memory (RAM). (The
DYNAMO hybrids ran later with an extension to 32 GB of
RAM under features of MATLAB R2010b). The wall time
was measured using the tic and toc commands in MATLAB.
Pure Krotov vs GRAPE comparisons (Tables IV–VI) were
carried out on separate optimized MATLAB implementations
thus avoiding any overhead (e.g., loops and checks) required
for more flexibility in DYNAMO, where the hybrids (Figs. 8 and
9) were run.

C. Test results and discussion

From the full set of data presented in Table IV, Fig. 3
selects a number of representatives for further illustration.
Note the following results First, in most of the problems,
sequential- and concurrent-update algorithms reach similar
final fidelities, the target set to 1–10−4 being in the order
of a conservative estimate for the error-correction threshold
[90]. Out of the total of 23 test problems, this target is
met within the limits of iterations specified above except in
problems 5, 7, 10, 12, and 13. Only in problem 23 does
the sequential-update algorithm yield average residual errors
(1-fidelity) up to two orders of magnitude higher than in
the concurrent optimization. Remarkably enough, the average
running times differ substantially in most of the test problems,
with the concurrent-update algorithm being faster. Only in
problems 3, 4, 15, and 16 are the final wall times similar. Note
that in all but the very easy problems 3, 4, and 16, the sequential
algorithm needs a larger total number of matrix multiplications
and eigendecompositions. In particular, due to the slower

022305-15

S. MACHNES et al. PHYSICAL REVIEW A 84, 022305 (2011)

0.01 0.1 1
10

−4

10
−3

10
−2

10
−1

10
0

Problem 21

wall time [min]

1−
fid

el
ity

conc. update
seq. update
handover

FIG. 4. (Color) Example of a handover (green) from a sequential-
(red) to a concurrent-update (blue) scheme. The sequential algorithm
is run up to a handover quality of 0.93, where the resulting pulse
sequence is then used as input to the concurrent algorithm for
optimization up to the target quality. This type of handover is
supported by the modular structure of DYNAMO.

convergence near the critical points, the sequential-update
scheme requires more iterations in order to reach the target
fidelity of 1–10−4 thus resulting in a greater number of matrix
multiplications and eigendecompositions.

In many problems (3, 5, 6, 8, 9, 11, 12, 14, 18, 19,
21, and 22), we observe a crossing point in time course
of the fidelity of the two algorithms. The sequential-update
algorithm is overtaken by the concurrent-update scheme
between a quality of 0.9 and 0.99 (see, e.g., problem 21
in Fig. 3). Therefore, exploiting the modular framework of
the programming package to dynamically change from a
sequential- to a concurrent-update scheme at a medium fidelity
can be advantageous. This is exemplified in the (constrained)
optimization shown in Fig. 4. Here the sequential method is
typically faster at the beginning of the optimization, whereas
the concurrent method overtakes at higher fidelities near the
end of the optimization. Moreover with regard to dispersion
of the final wall times required to achieve the target fidelity,
in problems 5, 7, 10, 11, 12, 13, and 23 the sequential-update
algorithm shows a larger standard deviation, thus indicating
higher sensitivity to the initial controls.

Also on a more general scale, we emphasize that the
run times may strongly depend on the choice of initial
conditions. Results for larger initial pulse amplitudes with a
higher standard deviation can be found in Table V. Increasing
mean value and standard deviation of the initial random
control-amplitude vectors typically translates into longer run
times. This effect is more pronounced for sequential- than for
concurrent-update algorithms. Consequently, the performance
differences between the two algorithms may increase and
crossing or handover points may change as well.

Finally, as shown in Fig. 5, the performance of the
concurrent-update scheme also differs between constrained
and unconstrained optimization, i.e., between the standard
MATLAB subroutines fmincon and fminunc (see MATLAB

documentation). In contrast, the sequential-update algorithm
uses the same set of routines for both types of optimization,

0.01 0.1 1 10 100
10

−4

10
−3

10
−2

10
−1

10
0

wall time [min]

1−
fid

el
ity

Problem 22 (j = 6, T = 15, M = 100)

seq. update, unc
conc. update, unc
seq. update, con
conc. update, con

FIG. 5. (Color) Comparison of unconstrained and (loosely)
constrained optimizations. The concurrent-update algorithm uses the
standard MATLAB-toolbox functions fminunc and fmincon, with the
latter being slower than the former, because it may switch between
different internal routines. The sequential-update algorithm uses a
very basic cutoff method for respecting the constraints, which shows
little effect on the performance.

where a basic cutoff method for respecting the constraints has
almost no effect, as also illustrated by Fig. 5.

D. Preliminaries on trust-region Newton methods for
sequential-update algorithms

Figure 6 shows that the sequential-update method with
first-order gradient information used in this work already
achieves a quality gain per iteration that comes closest to
the one obtained by a direct implementation of a trust-region
Newton method. However, as is analyzed in detail on a larger
scale in [72], the small initial advantage per iteration of the
latter against the former is outweighed CPU-timewise by more
costly calculations, which is why we have used the first-order
gradients for comparison.

0 50 100 150 200

10
−2

10
−1

10
0

iteration

1
−

 fi
de

lit
y

Problem 19

0 5 10 15 20

10
−1

10
0

 trust−region, rad1

 seq. grd

FIG. 6. (Color) Comparison of sequential-update methods with
first-order gradient information (red solid track) and with a direct
implementation of a trust-region Newton method (blue dotted track)
showing that per iteration the gains are similar, in particular in the
long run. The curves represent averages over 100 trajectories with
random initial conditions.

022305-16

COMPARING, OPTIMIZING, AND BENCHMARKING . . . PHYSICAL REVIEW A 84, 022305 (2011)

0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

10
0

wall time [min]

1−
fid

el
ity

Problem 6 (3 spins, T = 7, M = 140)

standard approximation
diagonalisation
finite differences
Hausdorff series

FIG. 7. (Color) Comparison of four different methods for com-
puting gradients in 20 unitary optimizations of problem 6. Apart from
the standard approximation, all methods compute exact gradients. By
making use of the spectral decomposition, diagonalization the total
Hamiltonian to give exact parameter derivatives [73–75] is the fastest
among these methods, because by the eigendecomposition the matrix
exponential can be settled as well (i.e., in the same go). In the case
of optimizing controls for (pure) state-to-state transfer, the standard
approximation can be shown to be competitive.

E. Comparing gradient methods

We compare the performance of four different methods to
compute gradients for the concurrent algorithm: in addition to
the standard approximation and the exact procedure described
in Sec. II E 2, we follow Ref. [91] and study a Taylor series to
compute the exponential and a Hausdorff series to compute the
gradient, while the fourth method is standard finite differences.
Note that Hausdorff series and finite differences can be
taken to a numerical precision exceeding that of the standard
approximation.

An example of the performance results found for these four
methods is given in Fig. 7, where we optimize controls for a
QFT on the four-spin system of problem 6. Unitary optimiza-
tions on other systems yield similar results, with the diagonal-
ization being the fastest methods in all cases. For state-to-state
transfer (pure states), however, the standard approximation
performs well enough as to be competitive with exact gradients
by diagonalization. Note that for unitary gate synthesis of
generic gates, one cannot use sparse-matrix techniques, for
which the Hausdorff series is expected to work much faster as
demonstrated in the software package SPINACH [92].

F. Hybrid schemes

Using DYNAMO, we have just begun to explore the multitude
of possible hybrid schemes. Here we present first-order (Fig. 8)
as well as second-order (Fig. 9) schemes, where the hybrids
are taken with respect to sequential vs concurrent subspace
selection. More precisely, this amounts to an outer-loop
subspace-selection scheme which picks consecutive blocks of
n time slices to be updated in the inner loop using either
a first-order or a second-order method update scheme, each
allowing us to take at most slimit steps within each block. The
results of these explorations, as applied to the two-spin case
of problems 2 and 21 (see Table III and Sec. IV A 1 with the

(a)

12345678910
11

33
100

333
1000

1 2 3 4 5 6 8 9 11 13 16 19 23 28 33 40

0

10

20

30

40

50

block size

steps per block

w
al

l
tim

e
 [

s]

(b)

12345678910
11

33100
333

1000

1 2 3 4 5 7 9 11 14 18 23 30 38 49 62 79 100128

0

50

100

150

200

250

300

block size

w
al

l t
im

e
 [s

]

steps per block

FIG. 8. (Color) Performance of generalizing the first-order-
gradient sequential scheme to updating blocks of joint time slicesand
allowing for multiple iteration steps within each block (slimit > 1), as
applied to test problem (a) 2 and (b) 21 (see Table III and Sec. IV A 1).
Original Krotov modifies one time slicein a single iteration (s = 1)
before moving to the subsequent time sliceto be updated: this special
case is shown in the lower corner of the plot, while the upper right
is the first-order variant of GRAPE (in a suboptimal setting, since the
step-size handling is taken over from the one optimized for Krotov).
Wall times represent the average over 42 runs with random initial
control vectors [again with mean (uini) = 0 and std (uini) = 1 in units
of 1/J]; times are cut off at 60 (300) s. Note that in problem 2 the
hybrid first-order versions are not faster than the original Krotov,
while in problem 21 it pays to concurrently update four or five time
slots by a single step before moving on to the next set of time slots.
Note that in other cases also the first-order concurrent update can be
fastest, see Fig. 10.

same initial conditions as in Table IV), are depicted in Fig. 8
for first-order gradient update and in Fig. 9 for second-order
BFGS update. They provide illuminating guidelines for further
investigation, as the Krotov method taking a single time slice
(n = 1) sequentially after the other for a single update step
(slimit = 1) may not always be the best performing use of the
first-order update scheme.

022305-17

S. MACHNES et al. PHYSICAL REVIEW A 84, 022305 (2011)

FIG. 9. (Color) Performance of generalizing the second-order
(BFGS) concurrent scheme to updating blocks of joint time slicesand
allowing fewer iteration steps within each block (slimit), as applied to
problems (a) 2 and (b) 21 (see Table III and Sec. IV A 1). Original
GRAPE modifies all time slices in each iteration: this special case
is shown in the lower right corner of the plot, while the upper left
corner is the crude second-order variant of Krotov (for the sake of
comparison here in the unrecommended setting of BFGS). It is part
of the obvious no-go area of single iterations (s = 1) on a single
time slice (n = 1), or just few, shown for completeness. Wall times
represent the average over 42 runs with random initial control vectors
again with mean (uini) = 0 and std (uini) = 1 in units of 1/J ; times
are cut off at 35 (300) s.

On the other hand, in second-order BFGS methods the
GRAPE scheme with totally concurrent update cannot be
accelerated by allowing for smaller blocks of concurrent
update in the sense of a “compromise toward Krotov”; rather it
is an optimum within a broader array of similarly performing
schemes. This is remarkable, while the incompatibility of
BFGS with sequential-update rules is to be expected on the
grounds of the discussion above.

Further explorative numerical results on first-order hybrids
between sequential and concurrent update as compared to
the second-order concurrent update can be found in Fig. 10.
They show that in simpler problems the first-order sequential
update (as in Krotov) is faster than the (highly suboptimal)
first-order variants of hybrid or concurrent update, while in
more complicated problems already the first-order variant of
concurrent update is slightly faster. In any case, all first-order
methods are finally outperformed by second-order concurrent
update (as in GRAPE-BFGS).

Clearly, these explorative results are by no means the last
word on the subject. Rather they are meant to invite further
studies over a wider selection of problems. But even at this
early stage we can state that there are hints that hybrid methods
hold a yet untapped potential, and follow-up work is warranted.

V. CONCLUSIONS AND OUTLOOK

We have provided a unifying modular programming frame-
work, DYNAMO, for numerically addressing bilinear quantum-
control systems. It allows benchmarking, comparing, and
optimizing numerical algorithms that constructively approx-
imate optimal quantum controls. Drawing from the modular
structure, we have compared the performance of gradient-
based algorithms with sequential update of the time slices
in the control vector (Krotov-type) versus algorithms with
concurrent update (GRAPE-type) with focus on synthesizing
unitary quantum gates with high fidelity. For computing
gradients, exact methods using the eigendecomposition have
on average proven superior to gradient approximations by
finite differences, series expansions, or time averages.

When it comes to implementing second-order schemes,
the different construction of sequential update and concurrent
update translates into different performance: in contrast to the
former, recursive concurrent updates match particularly well
with quasi-Newton methods and their iterative approximation
of the (inverse) Hessian as in standard BFGS implementations.
Currently, however, there seems to be no standard Newton-type
second-order routine that would match with sequential update
in a computationally fast and efficient way such as to signifi-
cantly outperform our implementation of first-order methods.
Finding such a routine is rather an open research problem.
At this stage, we have employed efficient implementations,
i.e., first-order gradient ascent for sequential update and a
second-order concurrent update (GRAPE-BFGS). As expected
from second-order vs first-order methods, at higher fidelities
(here typically 90–99%), GRAPE-BFGS overtakes Krotov.
For reaching a fidelity in unitary gate synthesis of 1–10−4,
GRAPE-BFGS is faster, in a number of instances even by more
than one order of magnitude on average. Yet at lower qualities
the computational speeds are not that different and sequential
update typically has a (small) advantage.

By its flexibility, the DYNAMO framework answers a range
of needs, reaching from quantum-information processing
to coherent spectroscopy. For the primary focus of this
study, namely, gate synthesis with high fidelities beyond
the error-correction threshold of some 10−4 [90], fidelity
requirements significantly differ from pulse engineering for
state transfer, where often for the sake of robustness over
a broad range of experimental parameters, some fidelity

022305-18

COMPARING, OPTIMIZING, AND BENCHMARKING . . . PHYSICAL REVIEW A 84, 022305 (2011)

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

1. AB Ising−ZZ chain, (T=2, M=40)

1
−

 f
id

el
it

y

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

3. AB Ising−ZZ chain, (T=4, M=64)

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

4. AB Ising−ZZ chain, (T=2, M=30)

1
−

 f
id

el
it

y

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

15. NV centre, (T=2, M=40)

10
−3

10
−2

10
−4

10
−3

10
−2

10
−1

10
0

16. NV centre, (T=5, M=64)

wall time [min]

1
−

 f
id

el
it

y

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0
20. A00 Heisenberg−XXX chain, (T=15, M=64)

wall time [min]

Krotov

1st order hybrid

1st order concurrent
L−BFGS

FIG. 10. (Color) Performance of a broader variety of first-order schemes compared to the L-BFGS concurrent update. The red traces show
the plain Krotov sequential first-order update, while the first-order concurrent update is given in magenta and a first-order hybrid (with block
size of 5) is given in green. For comparison, the second-order L-BFGS concurrent update is shown in blue. The test examples are again taken
as before (see Tab. III and Sec. IV A 1) with mean (uini) = 0 and std (uini) = 1 in units of 1/J . Note that in the (simpler) problems 1, 3, and
4, the original Krotov performs fastest among all the first-order methods, while in problems 15, 16, and 20 the variance within each method
comes much closer to the variance among the methods so that in problem 16 the first-order concurrent scheme outperforms the sequential one.

022305-19

S. MACHNES et al. PHYSICAL REVIEW A 84, 022305 (2011)

(say 5%) may readily be sacrificed. Thus for optimizing robust-
ness, sequential-update schemes are potentially advantageous,
while for gate synthesis sequential methods can be a good
start, but for reaching high fidelities, we recommend changing
to concurrent-update schemes. More precisely, since DYNAMO

allows the efficient handover from one scheme to the other, this
is our state-of-the-art recommendation. Ongoing and future
comparisons are expected to profit from this framework,
e.g., when trying update modules with nonlinear conjugate
gradients [93,94].

1. Research Perspectives

We have presented a first step toward establishing a useful
tool set for quantum optimal control. It is meant to provide the
platform for future improvements and follow-up studies, e.g.,
along the following lines:

Further types of applications. We have focused on the
synthesis of high-fidelity unitary quantum gates in closed
systems. Yet, follow-up comparisons should extend to open
systems or to spectroscopic state transfer, where it is to
be anticipated that different demand of fidelity may lead to
different algorithmic recommendations.

Initial conditions. Currently there is no systematic way how
to choose good initial control vectors in a problem-adapted
way. Scaling of initial conditions has been shown to translate
into computational speeds differing significantly (i.e., up to an
order of magnitude). Yet, good guidelines for selecting initial
controls are still sought for.

Second-order methods for sequential update. As has been
mentioned, we have indications that sequential-update meth-
ods are most efficient when matched to first-order gradient
procedures. This issue is the subject of follow-up work.

Hybrid algorithms. We have focused on the two extremes
of the update scheme spectrum: the sequential and the fully
concurrent. Hybrid schemes which intelligently select the
subset of time slicesto update at each iteration and dynamically
decide on the number of steps and appropriate gradient-
based stepping methodology for the inner loop may even
achieve better results than the established two extremes. The
success, however, depends on developing alternatives to BFGS
matching with sequential-update schemes.

Control parametrization methods. We have looked exclu-
sively at piecewise-constant discretization of the control func-
tion in the time domain. Although frequency-domain methods
also exist (e.g., [34]), there is both ample space to develop
further methods and the need for comparative benchmarking.

Algorithms for superexpensive goal functions. For many-
body quantum systems, ascertaining the time-evolved state of
the system requires extremely costly computational resources.
The algorithms described in this manuscript all require some
method of ascertaining the gradient, by finite differences if
no other approach is available. Such requirements, however,
are badly adapted to super-expensive goal functions. Further
research to discover new search algorithms excelling in such
cases is required.

ACKNOWLEDGMENTS

We wish to acknowledge useful discussions at the Kavli
Institute; in particular, we are indebted to exchange within the

informal optimal-control comparison group hosted and sup-
ported by Tommaso Calarco through the EU project ACUTE.
We thank Seth Merkel and Frank Wilhelm for suggesting
that we test higher spin-j systems and Ilya Kuprov for
helpful discussions. This work was supported by the Bavarian
Ph.D. Programme of Excellence QCCC, by the EU projects
QAP, Q-ESSENCE, exchange with COQUIT, by Deutsche
Forschungsgemeinschaft, DFG, in SFB 631. S.S. gratefully
acknowledges the EPSRC ARF grant EP/DO7192X/1. P.d.F.
is supported by EPSRC and Hitachi (CASE/CNA/07/47). S.M.
wishes to thank the EU project CORNER and the Humboldt
Foundation. The calculations were carried out mostly on
the Linux cluster of Leibniz Rechenzentrum of the Bavarian
Academy of Sciences.

APPENDIX A: EXACT GRADIENTS [Eq. (24)]

For deriving the gradient expression in Eq. (24), we follow
[73,74]. Note that by

∂X

∂uj

= ∂

∂u
exp

{
− i�t

[
Hd + (uj +u)Hj +

∑
ν �=j

uνHν

]}∣∣∣∣
u=0

= ∂

∂u
exp{−i�t(Hu + uHj)}

∣∣∣
u=0

(A1)

one may invoke the spectral theorem in a standard way and
calculate matrix functions via the eigendecomposition. For
an arbitrary pair of Hermitian (noncommuting) matrices A,B

and x ∈ R, take {|λν〉} as the orthonormal eigenvectors to the
eigenvalues {λν} of A to obtain the following straightforward
yet lengthy series of identities:

D = 〈λl| ∂

∂x
eA+xB |λm〉

∣∣∣
x=0

= 〈λl| ∂

∂x

∞∑
n=0

1

n!
(A + xB)n |λm〉

∣∣∣
x=0

= 〈λl|
∞∑

n=0

1

n!

n∑
q=1

(A + xB)q−1 B (A + xB)n−q |λm〉
∣∣∣
x=0

= 〈λl|
∞∑

n=0

1

n!

n∑
q=1

Aq−1BAn−q |λm〉

=
∞∑

n=0

1

n!

n∑
q=1

λ
q−1
l 〈λl|B|λm〉λn−q

m

= 〈λl|B|λm〉
∞∑

n=0

1

n!

n∑
q=1

λ
q−1
l λn−q

m (A2)

already explaining the case λl = λm, while for λl �= λm we
have

D = 〈λl|B|λm〉
∞∑

n=0

1

n!
λn−1

m

n∑
q=1

(
λl

λm

)q−1

= 〈λl|B|λm〉
∞∑

n=0

1

n!
λn−1

m

(λl/λm)n − 1

(λl/λm) − 1

022305-20

COMPARING, OPTIMIZING, AND BENCHMARKING . . . PHYSICAL REVIEW A 84, 022305 (2011)

= 〈λl|B|λm〉
∞∑

n=0

1

n!

λn
l − λn

m

λl − λm

= 〈λl|B|λm〉e
λl − eλm

λl − λm

. (A3)

An analogous result holds for skew-Hermitian iA,iB. So
substituting A �→ −i�tHu and xB �→ −i�tuHj as well as
λν �→ −i�tλν for ν = l,m while keeping the eigenvectors
|λν〉 readily recovers Eq. (24). Note that we have explicitly
made use of the orthogonality of eigenvectors to different
eigenvalues in Hermitian (or more generally normal) matrices
A,B. Hence in generic open quantum systems with a non-
normal Lindbladian, there is no such simple extension for
calculating exact gradients.

APPENDIX B: STANDARD SETTINGS IN
A NUTSHELL

For convenience, here we give the details for six standard
tasks of optimizing state transfer or gate synthesis. The
individual steps give the key elements of the core algorithm in
Sec. II D and its representation as a flow chart.

Task 1. Approximate unitary target gate up to global
phase in closed systems. Define boundary conditions X0 := l,
XM+1 := Utarget; fix final time T and digitization M so that
T = M�t .

(a) Set initial control amplitudes u
(0)
j (tk) ∈ U ⊆ R for all

times tk with k ∈ T (0) := {1,2, . . . ,M}.
(b) Exponentiate Uk = e−i�tH (tk) for all k ∈ T (r) with

Hk := Hd +∑
j uj (tk)Hj .

(c) Calculate forward propagation
Uk:0 := UkUk−1 · · · U1U0.

(d) Calculate back propagation
�

†
M+1:k+1 := U

†
tarUMUM−1 · · ·Uk+1.

(e) Evaluate fidelity f = |g|, where
g := 1

N
tr{�†

M+1:k+1Uk:0} = 1
N

tr{U †
tarUM:0}

and stop if f � 1 − εthreshold or iteration r > rlimit.
(f) Evaluate gradients for all k ∈ T (r)

∂f (U (tk))
uj

= 1
N

Re tr{e−iφg�
†
M+1:k+1(∂Uk

∂uj
)Uk−1:0}

with ∂Uk

∂uj
of Eq. (24) and e−iφg := g∗/|g|.

(g) Update amplitudes for all k ∈ T (r) by quasi-Newton
u

(r+1)
j (tk) = u

(r)
j (tk) + αkH−1

k
∂f (X(tk))

∂uj
or other methods

(as in the text).
(h) While ∂fk

∂uj
> f ′

limit for some k ∈ T (r) reiterate;

else reiterate with new set T (r+1).
Comments. Algorithmic scheme for synthesizing a uni-

tary gate U (T) such as to optimize the gate fidelity f :=
| 1
N

tr{U †
targetU (T)}|. This setting automatically absorbs global

phase factors as immaterial: tracking for minimal times T∗ to
realize Utarget up to an undetermined phase automatically gives
a eiφ∗Utarget ∈ SU(N) of fastest realization.

Task 2. Approximate unitary target gate sensitive to global
phase in closed systems. Fix boundary conditions X0 := l,
XM+1 := eiφUtarget by choosing global phase to ensure
det(eiφUtarget) = +1 so that eiφUtarget ∈ SU(N); there are N

such choices [12]; fix final time T and digitization M so
T = M�t .

(a) through (d) as in task 1.
(e) Evaluate fidelity

f = 1
N

Re tr{�†
M+1:k+1Uk:0} = 1

N
Re tr{e−iφU

†
tarUM:0}

and stop if f � 1 − εthreshold or iteration r > rlimit.
(f) Evaluate gradients for all k ∈ T (r)

∂f (U (tk))
uj

= 1
N

Re tr{�†
M+1:k+1(∂Uk

∂uj
)Uk−1:0}

with ∂Uk

∂uj
of Eq. (24).

(g) and (h) as in task 1.
Comments. Algorithmic scheme for synthesizing a unitary

gate U (T) in closed quantum systems such as to optimize
the gate fidelity f := 1

N
Re tr{e−iφU

†
targetU (T)}. This setting

is sensitive to global phases φ that have to be specified in
advance. Warning: whenever drift and control Hamiltonians
operate on different time scales, the minimal time T∗ required
to realize eiφUtarget ∈ SU(N) will typically and significantly
depend on φ as demonstrated in [12], a problem eliminated
by task 1.

Task 3. Optimize state transfer between pure-state vectors.
Define boundary conditions X0 := |ψ0〉, XM+1 := |ψ〉target; fix
final time T and digitization M so that T = M�t .

(a) Set initial control amplitudes u
(0)
j (tk) ∈ U ⊆ R.

(b) Exponentiate Uk = e−i�tH (tk) for all k ∈ T (r) with
Hk := Hd +∑

j uj (tk)Hj .
(c) Calculate forward propagation

|ψ0(tk)〉 := UkUk−1 · · · U1|ψ0〉.
(d) Calculate back propagation

〈ψtar(tk)| := 〈ψtar|UMUM−1 · · ·Uk+1.
(e) Evaluate fidelity f , where

f := Re〈ψtar(tk)|ψ0(tk)〉
= Re〈ψtar|(UM · · · Uk · · · U1|ψ0〉)

and stop if f � 1 − εthreshold or iteration r > rlimit.
(f) Evaluate gradients for all k ∈ T (r) ∂f (U (tk))

uj
=

Re〈ψtar|(UM · · ·Uk+1(∂Uk

∂uj
)Uk−1 · · · U1|ψ0〉) again with

∂Uk

∂uj
of Eq. (24);

(g) Update amplitudes for all k ∈ T (r) by quasi-Newton
u

(r+1)
j (tk) = u

(r)
j (tk) + αkH−1

k
∂f (X(tk))

∂uj
or other methods

(as in the text).
(h) While ∂fk

∂uj
> f ′

limit for some k ∈ T (r) reiterate;

else reiterate with new set T (r+1).
Comments. Algorithmic scheme for optimizing (pure) state-

to-state transfer in closed quantum systems. This setting is
sensitive to global phases φ in eiφ|ψ〉 that have to be specified
in advance.

Task 4. Optimize state transfer between density operators
in closed systems. Define boundary conditions X0 := ρ0,
XM+1 := ρtarget; fix final time T and digitization M so that
T = M�t .

(a) and (b) as in tasks 1–3.
(c) Calculate forward propagation

ρ0(tk) := UkUk−1 · · · U1ρ0U
†
1 · · ·U †

k−1U
†
k .

(d) Calculate back propagation
ρ
†
tar(tk) := U

†
k+1 · · · U †

M−1U
†
Mρ

†
tarUMUM−1 · · ·Uk+1.

(e) Evaluate fidelity f with normalization c := ||ρtar||22
f := 1

c
Re tr{ρ†

tar(tk)ρ0(tk)}
and stop if f � 1 − εthreshold or iteration r > rlimit.

022305-21

S. MACHNES et al. PHYSICAL REVIEW A 84, 022305 (2011)

(f) Evaluate gradients for all k ∈ T (r)

∂f (U (tk))
uj

= 1
c
Re{tr[ρ†

tar(tk)(∂Uk

∂uj
)ρ0(tk−1)U †

k] +
tr [ρ†

tar(tk)Ukρ0(tk−1)(∂U
†
k

∂uj
)]}

with ∂Uk

∂uj
of Eq. (24).

(g) and (h) as in tasks 1–3.
Comments. Algorithmic scheme for optimizing state-to-

state transfer of density operators in closed quantum systems.

Task 5. Approximate unitary target gate by quantum map in
open Markovian systems. Define boundary conditions X0 := l,
XM+1 := Ûtarget; fix final time T and digitization M so that
T = M�t .

(a) Set initial control amplitudes u
(0)
j (tk) ∈ U ⊆ R for all

times tk with k ∈ T (0) := {1,2, . . . ,M}.
(b) Exponentiate Xk = e−i�tĤ (tk)+� for all k ∈ T (r) with

Ĥk := Ĥ0 +∑
j uj (tk)Ĥj .

(c) Calculate forward propagation
Xk:0 := XkXk−1 · · · X1(X0 = l).

(d) Calculate back propagation
�

†
M+1:k+1 := Û

†
tarXMXM−1 · · · Xk+1,

(e) Evaluate fidelity
f = 1

N2 Re tr{�†
M+1:k+1Xk:0} = 1

N2 Re tr{Û †
tarXM:0}

and stop if f � 1 − εthreshold or iteration r > rlimit.
∂f (X(tk))

∂uj
≈ −�t

N2 Re tr{�†
M+1:k+1(iĤuj

+ ∂�
∂uj

)Xk:0}.
(f) Update amplitudes for all k ∈ T (r) by quasi-Newton

u
(r+1)
j (tk) = u

(r)
j (tk) + αkH−1

k
∂f (X(tk))

∂uj
or other methods

(as in the text).

(g) While || ∂fk

∂uj
|| > f ′

limit for some k ∈ T (r) reiterate;

else reiterate with new set T (r+1).
Comments. General algorithmic scheme for synthesizing

quantum maps X(T) at fixed time T with optimized gate fi-
delity f := 1

N2 Re tr{ÛtargetX(T)} in open dissipative quantum
systems. X(t) denotes Markovian quantum maps generated in
step 1.

Task 6. Optimize state transfer between density operators
in open systems. Define boundary conditions by vectors in
Liouville space X0 := vec(ρ0) and X

†
tar := vect (ρ†

target); fix
final time T and digitization M so that T = M�t .

(a) and (b) as in task 5.
(c) Calculate forward propagation

Xk:0 := XkXk−1 · · · X1vec(ρ0).
(d) Calculate back propagation

�
†
M+1:k+1 := vect (ρ†

tar)XMXM−1 · · · Xk+1.
(e) Evaluate fidelity

f = 1
N

Re[tr]{�†
M+1:k+1Xk:0} = 1

N
Re[tr]{X̂†

tarXM:0}
and stop if f � 1 − εthreshold or iteration r > rlimit.

(f) Approximate gradients for all k ∈ T (r)

∂f (X(tk))
∂uj

≈ −�t
N

Re tr{�†
M+1:k+1(iĤuj

+ ∂�
∂uj

)Xk:0}.
(g) and (h) as in task 5.
Comments. Algorithmic scheme for optimizing state trans-

fer between density operators in open Markovian quantum
systems, where the representation in Liouville space is
required. So task 6 can be seen as the rank-1 version of
task 5.

[1] J. P. Dowling and G. Milburn, Philos. Trans. R. Soc. London A
361, 1655 (2003).

[2] H. M. Wiseman and G. J. Milburn, Quantum Measurement
and Control (Cambridge University Press, Cambridge, England,
2009).

[3] A. G. Butkovskiy and Y. I. Samoilenko, Control of Quantum-
Mechanical Processes and Systems (Kluwer, Dordrecht, 1990),
see also the translations from Russian originals: Autom. Remote
Control (USSR) 40, 485 (1979), 40, 629 (1979), as well as Dokl.
Akad. Nauk. USSR 250, 22 (1980).

[4] D. J. Tannor and S. A. Rice, J. Chem. Phys. 83, 5013 (1985).
[5] A. Peirce, M. Dahleh, and H. Rabitz, Phys. Rev. A 37, 4950

(1988).
[6] M. Dahleh, A. P. Peirce, and H. Rabitz, Phys. Rev. A 42, 1065

(1990).
[7] N. Khaneja, B. Luy, and S. J. Glaser, Proc. Natl. Acad. Sci. USA

100, 13162 (2003).
[8] R. Xu, Y. J. Yan, Y. Ohtsuki, Y. Fujimura, and H. Rabitz,

J. Chem. Phys. 120, 6600 (2004).
[9] H. Jirari and W. Pötz, Phys. Rev. A 74, 022306 (2006).

[10] V. F. Krotov, Global Methods in Optimal Control (Marcel
Dekker, New York, 1996).

[11] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and
S. J. Glaser, J. Magn. Reson. 172, 296 (2005).

[12] T. Schulte-Herbrüggen, A. K. Spörl, N. Khaneja, and S. J. Glaser,
Phys. Rev. A 72, 042331 (2005).

[13] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch,
Nature (London) 415, 39 (2002).

[14] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[15] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod.
Phys. 75, 281 (2003).

[16] J. J. Garcı́a-Ripoll, P. Zoller, and J. I. Cirac, Phys. Rev. Lett. 91,
157901 (2003).

[17] J. J. Garcı́a-Ripoll, P. Zoller, and J. I. Cirac, Phys. Rev. A 71,
062309 (2005).

[18] U. Dorner, T. Calarco, P. Zoller, A. Browaeys, and P. Grangier,
J. Opt. B 7, S341 (2005).

[19] R. Blatt and D. Wineland, Nature (London) 453, 1008
(2008).

[20] M. Johanning, A. F. Varón, and C. Wunderlich, J. Phys. B 42,
154009 (2009).

[21] C. Wunderlich, Nature 463, 37 (2010).
[22] M. Hofheinz et al., Nature (London) 459, 546 (2009).
[23] L. DiCarlo et al., Nature (London) 460, 240 (2009).
[24] K. Singer, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel,

T. Calarco, and F. Schmidt-Kaler, Rev. Mod. Phys. 82, 2609
(2010).

[25] J. Clarke and F. Wilhelm, Nature (London) 453, 1031 (2008).
[26] A. K. Spörl, T. Schulte-Herbrüggen, S. J. Glaser, V. Bergholm,

M. J. Storcz, J. Ferber, and F. K. Wilhelm, Phys. Rev. A 75,
012302 (2007).

[27] T. Schulte-Herbrüggen, A. Spörl, N. Khaneja, and S. J. Glaser,
J. Phys. B 44, 154013 (2011).

[28] P. Rebentrost, I. Serban, T. Schulte-Herbrüggen, and F. K.
Wilhelm, Phys. Rev. Lett. 102, 090401 (2009).

022305-22

http://dx.doi.org/10.1098/rsta.2003.1227
http://dx.doi.org/10.1098/rsta.2003.1227
http://dx.doi.org/10.1063/1.449767
http://dx.doi.org/10.1103/PhysRevA.37.4950
http://dx.doi.org/10.1103/PhysRevA.37.4950
http://dx.doi.org/10.1103/PhysRevA.42.1065
http://dx.doi.org/10.1103/PhysRevA.42.1065
http://dx.doi.org/10.1073/pnas.2134111100
http://dx.doi.org/10.1073/pnas.2134111100
http://dx.doi.org/10.1063/1.1665486
http://dx.doi.org/10.1103/PhysRevA.74.022306
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1103/PhysRevA.72.042331
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1103/PhysRevLett.91.157901
http://dx.doi.org/10.1103/PhysRevLett.91.157901
http://dx.doi.org/10.1103/PhysRevA.71.062309
http://dx.doi.org/10.1103/PhysRevA.71.062309
http://dx.doi.org/10.1088/1464-4266/7/10/020
http://dx.doi.org/10.1038/nature07125
http://dx.doi.org/10.1038/nature07125
http://dx.doi.org/10.1088/0953-4075/42/15/154009
http://dx.doi.org/10.1088/0953-4075/42/15/154009
http://dx.doi.org/10.1038/463037a
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1103/RevModPhys.82.2609
http://dx.doi.org/10.1103/RevModPhys.82.2609
http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1103/PhysRevA.75.012302
http://dx.doi.org/10.1103/PhysRevA.75.012302
http://dx.doi.org/10.1088/0953-4075/44/15/154013
http://dx.doi.org/10.1103/PhysRevLett.102.090401

COMPARING, OPTIMIZING, AND BENCHMARKING . . . PHYSICAL REVIEW A 84, 022305 (2011)

[29] P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997).
[30] J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, Phys. Rev.

A 63, 042307 (2001).
[31] R. Nigmatullin and S. G. Schirmer, New J. Phys. 11, 105032

(2009), [http://dx.doi.org/10.1088/1367-2630/11/10/105032].
[32] K. Khodjasteh and L. Viola, Phys. Rev. Lett. 102, 080501 (2009).
[33] K. Khodjasteh and L. Viola, Phys. Rev. A 80, 032314 (2009).
[34] P. Doria, T. Calarco, and S. Montangero, Phys. Rev. Lett. 106,

190501 (2011).
[35] S. Lloyd, Phys. Rev. A 62, 022108 (2000).
[36] J. P. Palao and R. Kosloff, Phys. Rev. Lett. 89, 188301 (2002).
[37] J. P. Palao and R. Kosloff, Phys. Rev. A 68, 062308 (2003).
[38] Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509

(2004).
[39] N. Ganesan and T.-J. Tarn, in Proceedings of the 44th IEEE

CDC-ECC, 2005, p. 427.
[40] S. E. Sklarz and D. J. Tannor, Chem. Phys. 322, 87 (2006).
[41] M. Möttönen, R. de Sousa, J. Zhang, and K. B. Whaley, Phys.

Rev. A 73, 022332 (2006).
[42] M. Grace, C. Brif, H. Rabitz, I. Walmsley, R. Kosut, and

D. Lidar, J. Phys. B 40, S103 (2007).
[43] S. G. Schirmer and P. J. Pemberton-Ross, Phys. Rev. A 80,

030301 (2009).
[44] S. G. Schirmer, J. Mod. Opt. 56, 831 (2009).
[45] F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm,

Phys. Rev. Lett. 103, 110501 (2009).
[46] D. D’Alessandro, Introduction to Quantum Control and Dynam-

ics (Chapman & Hall/CRC, Boca Raton, 2008).
[47] V. F. Krotov and I. N. Feldman, Eng. Cybern. 21, 123 (1983)

[Izv. Akad. Nauk. SSSR Tekh. Kibern. 1983(2), 162 (1983)].
[48] A. I. Konnov and V. F. Krotov, Autom. Remote Control 60, 1427

(1999) [Avtom. Telemekh. 1999(10) 77 (1999)].
[49] C. Koch and R. Kosloff, Phys. Rev. A 81, 063426 (2010).
[50] M. Ndong and C. P. Koch, Phys. Rev. A 82, 043437 (2010).
[51] N. Timoney, V. Elman, S. J. Glaser, C. Weiss, M. Johanning,

W. Neuhauser, and C. Wunderlich, Phys. Rev. A 77, 052334
(2008).

[52] V. Nebendahl, H. Häffner, and C. F. Roos, Phys. Rev. A 79,
012312 (2009).

[53] R. Fisher, F. Helmer, S. J. Glaser, F. Marquardt, and T. Schulte-
Herbrüggen, Phys. Rev. B 81, 085328 (2010).

[54] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed.
(Springer, New York, 2006).

[55] T. Gradl, A. K. Spörl, T. Huckle, S. J. Glaser, and T. Schulte-
Herbrüggen, Lect. Notes Comput. Sci. 4128, 751 (2006)

[56] [http://qlib.info].
[57] H. Sussmann and V. Jurdjevic, J. Diff. Equat. 12, 95 (1972).
[58] V. Ramakrishna and H. Rabitz, Phys. Rev. A 54, 1715 (1996).
[59] S. Lloyd, Science 273, 1073 (1996).
[60] T. Schulte-Herbrüggen, Ph.D. thesis, Diss-ETH 12752, Zürich,

1998.
[61] S. G. Schirmer, H. Fu, and A. I. Solomon, Phys. Rev. A 63,

063410 (2001).
[62] S. G. Schirmer, I. H. C. Pullen, and A. I. Solomon, J. Phys. A.

35, 2327 (2002).

[63] F. Albertini and D. D’Alessandro, IEEE Trans. Automat. Control
48, 1399 (2003).

[64] G. Dirr, U. Helmke, I. Kurniawan, and T. Schulte-Herbrüggen,
Rep. Math. Phys. 64, 93 (2009).

[65] L. D. Berkovitz, Am. Math. Mon. 83, 225 (1976).
[66] E. B. Bliss, Lectures on the Calculus of Variations (University

of Chicago, Chicago, 1946).
[67] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis

(Cambridge University Press, Cambridge, England, 1991).
[68] J. Nocedal, Math. Comput. 35, 773 (1980).
[69] R. H. Byrd, P. Lu, and R. B. Schnabel, Math. Program. 63, 129

(1994).
[70] B. Savas and L. H. Lim, SIAM J. Sci. Comput. 32, 3352

(2010).
[71] R. H. Byrd, P. Lu, and J. Nocedal, SIAM J. Sci. Comput. 16,

1190 (1995).
[72] S. G. Schirmer and P. de Fouquières, New J. Phys. 13, 073029

(2011), [http://dx.doi.org/10.1088/1367-2630/13/7/073029].
[73] T. Levante, T. Bremi, and R. R. Ernst, J. Magn. Reson. Ser. A

121, 167 (1996).
[74] K. Aizu, J. Math. Phys. 4, 762 (1963).
[75] R. M. Wilcox, J. Math. Phys. 8, 962 (1967).
[76] U. Sander, Ph.D. Thesis, Technical University of Munich, 2010.
[77] C. Moler and C. van Loan, SIAM Rev. 20, 801

(1978).
[78] C. Moler and C. van Loan, SIAM Rev. 45, 3 (2003).
[79] K. Waldherr, Diploma thesis, Technical University of Munich,

2007.
[80] T. Schulte-Herbrüggen, A. K. Spörl, K. Waldherr, T. Gradl,

S. J. Glaser, and T. Huckle, in High-Performance Computing
in Science and Engineering, Garching 2007 (Springer, Berlin,
2008), p. 517.

[81] R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge
University Press, Cambridge, England, 1987).

[82] H. Wunderlich, C. Wunderlich, K. Singer, and F. Schmidt-Kaler,
Phys. Rev. A 79, 052324 (2009).

[83] P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer,
H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko,
and J. Wrachtrup, Science 320, 1326 (2008).

[84] S. Bose, Phys. Rev. Lett. 91, 207901 (2003).
[85] D. Burgarth and S. Bose, New J. Phys. 7, 135 (2005).
[86] S. Bose, Contemp. Phys. 48, 13 (2007).
[87] A. Kay, Int. J. Quant. Inf. 8, 641 (2010).
[88] I. H. Deutsch and P. S. Jessen, Opt. Commun. 283, 681

(2010).
[89] F. Mezzadri, Notices Amer. Math. Soc. 54, 592 (2007),

[http://www.ams.org/notices/200705/fea-mezzadri-web.pdf].
[90] E. Knill, Nature (London) 434, 39 (2005).
[91] I. Kuprov and C. T. Rodgers, J. Chem. Phys. 131, 234108

(2009).
[92] I. Kuprov, J. Magn. Reson. 89, 241 (2007).
[93] W. W. Hager and H. Zhang, SIAM J. Optim. 16, 170

(2005).
[94] W. W. Hager and H. Zhang, Pac. J. Optim. 2, 35 (2006),

[http://www.ybook.co.jp/online/pjoe/vol2/v2nlp35.html].

022305-23

http://dx.doi.org/10.1103/PhysRevLett.79.3306
http://dx.doi.org/10.1103/PhysRevA.63.042307
http://dx.doi.org/10.1103/PhysRevA.63.042307
http://dx.doi.org/10.1088/1367-2630/11/10/105032
http://dx.doi.org/10.1088/1367-2630/11/10/105032
http://dx.doi.org/10.1088/1367-2630/11/10/105032
http://dx.doi.org/10.1103/PhysRevLett.102.080501
http://dx.doi.org/10.1103/PhysRevA.80.032314
http://dx.doi.org/10.1103/PhysRevLett.106.190501
http://dx.doi.org/10.1103/PhysRevLett.106.190501
http://dx.doi.org/10.1103/PhysRevA.62.022108
http://dx.doi.org/10.1103/PhysRevLett.89.188301
http://dx.doi.org/10.1103/PhysRevA.68.062308
http://dx.doi.org/10.1063/1.1650297
http://dx.doi.org/10.1063/1.1650297
http://dx.doi.org/10.1016/j.chemphys.2005.08.015
http://dx.doi.org/10.1103/PhysRevA.73.022332
http://dx.doi.org/10.1103/PhysRevA.73.022332
http://dx.doi.org/10.1088/0953-4075/40/9/S06
http://dx.doi.org/10.1103/PhysRevA.80.030301
http://dx.doi.org/10.1103/PhysRevA.80.030301
http://dx.doi.org/10.1080/09500340802344933
http://dx.doi.org/10.1103/PhysRevLett.103.110501
http://dx.doi.org/10.1103/PhysRevA.81.063426
http://dx.doi.org/10.1103/PhysRevA.82.043437
http://dx.doi.org/10.1103/PhysRevA.77.052334
http://dx.doi.org/10.1103/PhysRevA.77.052334
http://dx.doi.org/10.1103/PhysRevA.79.012312
http://dx.doi.org/10.1103/PhysRevA.79.012312
http://dx.doi.org/10.1103/PhysRevB.81.085328
http://dx.doi.org/10.1007/11823285_78
http://qlib.info
http://dx.doi.org/10.1016/0022-0396(72)90007-1
http://dx.doi.org/10.1103/PhysRevA.54.1715
http://dx.doi.org/10.1126/science.273.5278.1073
http://dx.doi.org/10.1103/PhysRevA.63.063410
http://dx.doi.org/10.1103/PhysRevA.63.063410
http://dx.doi.org/10.1088/0305-4470/35/9/319
http://dx.doi.org/10.1088/0305-4470/35/9/319
http://dx.doi.org/10.1109/TAC.2003.815027
http://dx.doi.org/10.1109/TAC.2003.815027
http://dx.doi.org/10.1016/S0034-4877(09)90022-2
http://dx.doi.org/10.2307/2318209
http://dx.doi.org/10.1090/S0025-5718-1980-0572855-7
http://dx.doi.org/10.1007/BF01582063
http://dx.doi.org/10.1007/BF01582063
http://dx.doi.org/10.1137/090763172
http://dx.doi.org/10.1137/090763172
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1088/1367-2630/13/7/073029
http://dx.doi.org/10.1088/1367-2630/13/7/073029
http://dx.doi.org/10.1088/1367-2630/13/7/073029
http://dx.doi.org/10.1006/jmra.1996.0157
http://dx.doi.org/10.1006/jmra.1996.0157
http://dx.doi.org/10.1063/1.1724318
http://dx.doi.org/10.1063/1.1705306
http://dx.doi.org/10.1137/1020098
http://dx.doi.org/10.1137/1020098
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1103/PhysRevA.79.052324
http://dx.doi.org/10.1126/science.1157233
http://dx.doi.org/10.1103/PhysRevLett.91.207901
http://dx.doi.org/10.1088/1367-2630/7/1/135
http://dx.doi.org/10.1080/00107510701342313
http://dx.doi.org/10.1142/S0219749910006514
http://dx.doi.org/10.1016/j.optcom.2009.10.059
http://dx.doi.org/10.1016/j.optcom.2009.10.059
http://www.ams.org/notices/200705/fea-mezzadri-web.pdf
http://dx.doi.org/10.1038/nature03350
http://dx.doi.org/10.1063/1.3267086
http://dx.doi.org/10.1063/1.3267086
http://dx.doi.org/10.1016/j.jmr.2007.09.014
http://dx.doi.org/10.1137/030601880
http://dx.doi.org/10.1137/030601880
http://www.ybook.co.jp/online/pjoe/vol2/v2nlp35.html

