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Quantum arrival and dwell times via idealized clocks
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A number of approaches to the problem of defining arrival- and dwell-time probabilities in quantum theory
makes use of idealized models of clocks. An interesting question is the extent to which the probabilities obtained
in this way are related to standard semiclassical results. In this paper, we explore this question using a reasonably
general clock model, solved using path-integral methods. We find that, in the weak-coupling regime, where the
energy of the clock is much less than the energy of the particle it is measuring, the probability for the clock pointer
can be expressed in terms of the probability current in the case of arrival times, and the dwell-time operator in
the case of dwell times, the expected semiclassical results. In the regime of strong system-clock coupling, we
find that the arrival-time probability is proportional to the kinetic-energy density, consistent with an earlier model
involving a complex potential. We argue that, properly normalized, this may be the generically expected result
in this regime. We show that these conclusions are largely independent of the form of the clock Hamiltonian.
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I. INTRODUCTION

A. Opening remarks

Questions involving time in quantum theory have a rich
and controversial history, and there is still much debate about
their status [1–4]. While historically most attention has been
focused on tunneling times, because of their relevance to
atomic processes, more recently, there has been considerable
interest in the problem of defining arrival and dwell times for
free particles. This shift in focus reflects the gradual acceptance
that the study of time observables in quantum theory is as
much a foundational issue as a technical one [3]. Arrival and
dwell times for a free particle are in some ways the simplest
time observables one could hope to define, and studying these
quantities allows one to see the difficulties common to all time
observables with the minimum of extra technical complication.
There are many different approaches to defining arrival- and
dwell-time probability distributions. In this paper, we use a
clock model to define arrival and dwell times and to compare
the results with standard semiclassical expressions.

B. Arrival and dwell times

We begin by reviewing some of the standard, mainly semi-
classical, formulas for arrival and dwell times. We consider a
free particle described by an initial wave packet with entirely
negative momenta concentrated in x > 0. The arrival-time
probability is the probability �(t)dt that the particle crosses
the origin in a time interval [t,t + dt]. A widely discussed
candidate for the distribution �(t) is the current density [3,5,6],

�(t) = J (t) = (−1)

2m
〈ψt | [p̂δ(x̂) + δ(x̂)p̂] |ψt 〉

= i

2m

(
ψ∗(0,t)

∂ψ(0,t)

∂x
− ∂ψ∗(0,t)

∂x
ψ(0,t)

)
. (1.1)
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(We use units in which h̄ = 1 throughout.) The distribution
�(t) is normalized to 1 when integrated over all time, but it
is not necessarily positive. (This is the backflow effect [7].)
Nevertheless, Eq. (1.1) has the correct semiclassical limit [6].

For arrival-time probabilities defined by measurements
considered in this paper, one might expect a very different
result in the regime of strong measurements, since most of the
incoming wave packet will be reflected at x = 0. Essentially,
this is the Zeno effect [8]. In a complex potential model, it
was found that the arrival-time distribution in this regime is
the kinetic-energy density,

�(t) = C 〈ψt | p̂δ(x̂)p̂ |ψt 〉 , (1.2)

where C is a constant that depends strongly on the underlying
measurement model [9,10]. (See Ref. [11] for a discussion of
kinetic-energy density.) However, because the majority of the
incoming wave packet is reflected, it is natural to normalize
this distribution by dividing by the probability that the particle
is ever detected, that is,

�N (t) = �(t)∫ ∞
0 ds �(s)

= 1

m|〈p〉| 〈ψt |p̂δ(x̂)p̂|ψt 〉, (1.3)

where 〈p〉 is the average momentum of the initial state. This
normalized probability distribution does not depend on the
details of the detector. This suggests that the form, Eq. (1.3),
may be the generic result in this regime, although a general
argument for this is yet to be found.

The dwell-time distribution is the probability �(t)dt that
the particle spends a time between [t,t + dt] in the interval
[−L,L]. One approach to defining this is to use the dwell-time
operator,

T̂D =
∫ ∞

−∞
dt χ (x̂t ), (1.4)

where χ (x) is the characteristic function of the region [−L,L]
[12]. Then, the distribution �(t) is

�(t) = 〈ψ0| δ(t − T̂D) |ψ0〉 . (1.5)
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In the limit |p|L � 1, where p is the momentum of the
incoming state, the dwell-time operator takes the approximate
form T̂D ≈ 2mL/|p̂| so that the expected semiclassical form
for the dwell-time distribution is

�(t) = 〈ψ0| δ
(

t − 2mL

|p̂|
)

|ψ0〉. (1.6)

In practice, it is found that measurement models for both
arrival and dwell times lead to distributions depending on both
the initial state of the particle and the details of the clock,
typically of the form

�C(t) =
∫ ∞

−∞
ds R(t,s)�(s), (1.7)

where �(t) is one of the ideal distributions discussed above
and the response function R(t,s) is some function of the
clock variables. (In some cases, this expression will be a
convolution.) However, it is of interest to coarse grain by
considering probabilities p(t1,t2) for arrival or dwell times
lying in some interval [t1,t2]. The resolution function R will
have some resolution time scale associated with it, and if the
interval t2-t1 is much larger than this time scale, we expect the
dependence on R to drop out so that

p(t1,t2) =
∫ t2

t1

dt �C(t) ≈
∫ t2

t1

dt �(t). (1.8)

This is the sense in which many different models are
in agreement with semiclassical formulas at coarse-grained
scales.

Formulas, such as Eqs. (1.1) and (1.6) and their coarse-
grained version Eq. (1.8) are not fundamental quantum
mechanical expressions but postulated semiclassical formulas.
However, they have the correct semiclassical limit, and any
approach to defining arrival and dwell times must reduce to
these forms in the appropriate regime.

C. Clock model

In this paper, we will derive arrival- and dwell-time
distributions by coupling the particle to a model clock. We
denote the particle variables by (x,p) and those of the clock
by (y,py). We denote the initial states of the particle and clock
by |ψ〉, |φ〉, respectively, and the total system state by |�〉.
We couple this clock to the particle via the interaction HI =
λχ (x̂)HC . Therefore, the total Hamiltonian of the system plus
clock is given by

H = H0 + λχ (x̂)HC, (1.9)

where H0 is the Hamiltonian of the particle. Here, χ is the
characteristic function of the region where we want our clock
to run so that χ (x) = θ (x) for the arrival-time problem and
χ (x) = θ (x + L)θ (L − x) for the dwell-time problem. The
operator,

Hc = Hc(ŷ,p̂y) (1.10)

describes the details of the dynamics of the clock, and we
assume that it is such that the clock position y is the measured
time. The physical situation is depicted in Fig. 1. For the

x

t

y

FIG. 1. The arrival-time problem defined using a model clock.
The clock runs while the particle is in x > 0.

moment, we will assume only that the clock Hamiltonian is
self-adjoint so that it may be written in the following form:

Hc =
∫

dε ε |ε〉 〈ε| , (1.11)

where the |ε〉 form an orthonormal basis for the Hilbert space
of the clock. Later on, we will restrict Hc further by considering
the accuracy of the clock. We will also quote some results for
the special choice of Hc = p̂y , whose action is to simply shift
the pointer position y of the clock in proportion to time. This
is the simplest and most frequently used choice for the clock
Hamiltonian. The physical relevance of this and other clock
models is discussed in Refs. [13,14].

Our aim, for both arrival and dwell times, is to first solve
for the evolution of the combined system of particle and clock.
We write this as

�(x,y,τ ) = 〈x,y| e−iHτ |�0〉
= 〈x,y| exp[−iH0τ − iλχ (x̂)Hcτ ] |ψ0〉 |φ0〉
=

∫
dε 〈y|ε〉 〈ε|φ0〉

× 〈x| exp[−iH0τ − iλχ (x̂)ετ ]|ψ0〉, (1.12)

and we then solve for the propagator in the integrand using
path-integral methods. We will take the total time τ to be
sufficiently large that the wave packet has left the region
defined by χ (x). We then compute the final distribution of
the pointer variable y, which is

�(y) =
∫ ∞

−∞
dx|�(x,y,τ )|2. (1.13)

Our main aim is to show that the predictions of the clock
model, Eq. (1.13), reduce, in certain limits, to the standard
forms described above.

D. Connections to earlier work

Clock models of the type, Eq. (1.9), for arrival and dwell
times have been studied by numerous authors, including Peres
[13], Aharanov et al. [15], Hartle [16], and Mayato et al.
[14]. These studies are largely focused on the characteristics
of clocks. References [13,15] are the works perhaps most
closely related to the present paper. They concentrate on the
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case of a clock Hamiltonian linear in momentum with some
elaborations on this basic model in the case of Ref. [15]. Here,
we focus on a different issue not addressed by these works,
namely, the dependence of the distribution, Eq. (1.13), on
the initial state of the particle, for reasonably general clock
Hamiltonians. In particular, we determine the extent to which
the standard semiclassical forms derived above are obtained for
general initial states of the particle. We also use path-integral
methods to perform the calculations, in contrast to the scatter-
ing methods used in most of the previous works. Path-integral
methods similar to those employed here have previously been
used in Refs. [17,18] to explore the time taken to tunnel under
a potential barrier, although these authors sought to define
the tunneling time in terms of subsets of paths in the path
integral, rather than by considering the behavior of a physical
clock.

E. This paper

The rest of this paper is arranged as follows. In Sec. II,
we review some path-integral techniques and, in particular,
the path decomposition expansion (PDX), which we use to
compute Eq. (1.12). We also introduce a useful semiclassical
approximation. In Sec. III, we compute Eqs. (1.12) and (1.13)
for the arrival-time problem and similarly, in Sec. IV, for the
dwell-time problem. We conclude in Sec. V.

II. THE PDX AND THE SEMICLASSICAL
APPROXIMATION

In this section, we discuss the PDX, which we make use of
in the rest of this paper to calculate Eqs. (1.12) and (1.13).
We also introduce a useful semiclassical approximation,
which significantly reduces the complexity of the calculations.
Throughout this section, we will focus on the arrival-time case
so that χ (x) = θ (x).

To evaluate Eq. (1.12), we need to evaluate a propagator of
the form

g(x1,τ |x0,0) = 〈x1| exp{−i[H0 + V θ (x̂)]τ }|x0〉, (2.1)

for x1 < 0 and x0 > 0 (more general situations are considered
in Ref. [6]). Here, V is some real number. This may be
calculated using a sum over paths,

g(x1,τ |x0,0) =
∫

Dx exp(iS), (2.2)

where

S =
∫ τ

0
dt

(
1

2
mẋ2 − V θ (x)

)
, (2.3)

and the sum is over all paths x(t) from x(0) = x0 to x(τ ) = x1.
We can simplify the analysis by splitting off the sections of

the paths lying entirely in x > 0 or x < 0. The way to do this
is to use the PDX [19,20]. Every path from x0 > 0 to x1 < 0
will typically cross x = 0 many times, but all paths have a first
crossing, at time t , say. As a consequence of this, it is possible

t

x
x0

x1

t

A

B

FIG. 2. The first crossing PDX: Paths from x0 > 0 to x1 < 0
consist of a restricted section of propagation to x = 0 (A), followed
by unrestricted propagation along x = 0 and to x1 < 0 (B).

to derive the formula,

g(x1,τ |x0,0) = i

2m

∫ τ

0
dt g(x1,τ |0,t)

∂gr

∂x
(x,t |x0,0)

∣∣∣∣
x=0

.

(2.4)

Here, gr (x,t |x0,0) is the restricted propagator obtained by a
path integral of the form, Eq. (2.2), summed over paths lying
entirely in x > 0. Its derivative at x = 0 is given by a sum over
all paths in x > 0, which end on x = 0 [20]. Similar formulas
may also be derived involving the last crossing time and both
the first and last crossings times [19,20]. The PDX is depicted
in Fig. 2.

Each element of these expressions can be calculated for
a potential of the form V θ (x). The restricted propagator in
x > 0 is given by the method of images expression,

gr (y,τ |x,0) = θ (y)θ (x)[gf (y,τ |x,0) − gf (−y,τ |x,0)]eiV τ ,

(2.5)

where gf denotes the free-particle propagator,

gf (y,τ |x,0) =
(

m

2πiτ

)1/2

exp

(
im(y − x)2

2τ

)
. (2.6)

Note that this means that

∂gr

∂x

∣∣∣∣
x=0

= 2
∂gf

∂x

∣∣∣∣
x=0

, (2.7)

and, thus, Eq. (2.4) can be written as

〈x1| exp{−i[H0 + V θ (x̂)]τ }|x0〉
= 1

m

∫ τ

0
dt 〈x1| exp{−i[H0 + V θ (x̂)](τ − t)}

× δ(x̂)p̂e−i(H0+V )t |x0〉, (2.8)

where δ(x̂) = |0〉 〈0| and |0〉 denote a position eigenstate |x〉
at x = 0.

The propagator from x = 0 to x1 > 0 is more difficult
to calculate because it generally involves many recrossings
of the origin. This propagator may be calculated exactly by
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using the last crossing version of the PDX [6], but it may also
be approximated using a semiclassical expression, which we
now describe.

The exact propagator from the origin to a point x1 < 0
consists of propagation along the edge of the potential
followed by restricted propagation from x = 0 to x1. However,
for sufficiently small V , we expect from the path-integral
representation of the propagator that the dominant contribution
will come from paths in the neighborhood of the straight line
path from x = 0 to x1 < 0. These paths lie almost entirely in
x < 0, so we expect that the propagator may be approximated
semiclassically by

〈x1| exp{−i[H0 + V θ (x̂)]t} |0〉 ≈ 〈x1| e−iH0t |0〉, (2.9)

and, thus, Eq. (2.8) can be written as

〈x1| exp{−i[H0 + V θ (x̂)]τ } |x0〉
≈ 1

m

∫ τ

0
dt 〈x1| e−iH0(τ−t)δ(x̂)p̂e−i(H0+V )t |x0〉. (2.10)

In Ref. [6], it was shown that this semiclassical approximation
holds for E � V , where E is the kinetic energy of the particle.

III. ARRIVAL-TIME DISTRIBUTION
FROM AN IDEALIZED CLOCK

We now turn to the calculation of the arrival-time distribu-
tion, Eq. (1.13), recorded by our model clock. Using the PDX
in the form, Eq. (2.8), the state of the system, Eq. (1.12), can
be written as

�(x,y,τ ) = 〈x,y| exp{−i[H0 + λθ (x̂)Hc]τ } |�0〉
= 1

m

∫
dε 〈y|ε〉 〈ε|φ0〉

×
∫ τ

0
dt 〈x| exp{−i[H0 + λεθ (x̂)](τ − t)}

× δ(x̂)p̂ exp[−i(H0 + λε)t]|ψ0〉. (3.1)

We can simplify this expression in two different regimes, the
weak-coupling regime of E � λε and the strong-coupling
regime of E � λε.

A. Weak-coupling regime

In the limit E � λε, we can make use of the semiclassical
approximation to the PDX formula, Eq. (2.10). This yields

�(x,y,τ ) = 1

m

∫
dε 〈y|ε〉 〈ε|φ0〉

×
∫ τ

0
dt 〈x| exp[−iH0(τ − t)]δ(x̂)p̂

× exp[−i(H0 + λε)t]|ψ0〉. (3.2)

This means that the arrival-time distribution is

�(y) = 1

m2

∫
dε dε′〈φ0|ε′〉〈ε′|y〉〈y|ε〉〈ε|φ0〉

×
∫ τ

0
dt dt ′ 〈ψ0| exp[i(H0 + λε′)t ′]p̂δ(x̂)

× exp[−iH0(t ′ − t)]δ(x̂)p̂ exp[−i(H0 + λε)t]|ψ0〉.
(3.3)

[Recall that we are assuming τ is sufficiently large so that
all the wave packet is in x < 0 at the final time, see the
discussion below Eq. (1.12).] To proceed, we first note that,
for any operator Â, we have

δ(x̂)Âδ(x̂) = δ(x̂) 〈0| Â|0〉. (3.4)

Using this in Eq. (3.3) gives

�(y) = 1

m2

∫
dε dε′〈φ0|ε′〉〈ε′|y〉〈y|ε〉〈ε|φ0〉

×
∫ τ

0
dt dt ′ 〈ψ0| exp[i(H0 + λε′)t ′]p̂δ(x̂)p̂

× exp[−i(H0 + λε)t] |ψ0〉 〈0| exp[−iH0(t ′ − t)]|0〉.
(3.5)

Here, we see the appearance of the combination p̂δ(x̂)p̂, and
the main challenge is to show how this turns into the current
operator δ(x̂)p̂ + p̂δ(x̂).

Next, we rewrite the integrals using∫ τ

0
dt dt ′ =

∫ τ

0
dt

∫ τ

t

dt ′ +
∫ τ

0
dt ′

∫ τ

t ′
dt. (3.6)

In the first term, we set u = t, v = t ′ − t , and in the second,
we set u = t ′, v = t − t ′ to obtain

�(y) = 1

m2

∫
dε dε′〈φ0|ε′〉〈ε′|y〉〈y|ε〉〈ε|φ0〉

∫ τ

0
du

×
∫ τ−u

0
dv{〈ψ0| exp[i(H0 + λε′)u]p̂δ(x̂)p̂

× exp[−i(H0 + λε)(u + v)]|ψ0〉〈0| exp(iH0v)|0〉
+ 〈ψ0| exp[i(H0 + λε′)(u + v)]p̂δ(x̂)p̂

× exp[−i(H0 + λε)u]|ψ0〉〈0| exp(−iH0v)|0〉}.
(3.7)

Since we take the time τ to be large, we can extend the upper
limits of the integrals to infinity. The integral over v can then
be carried out to give

�(y) =
∫

dε dε′〈φ0|ε′〉〈ε′|y〉〈y|ε〉〈h|φ0〉 (−1)

2m

×
∫ ∞

0
du〈ψu|eiλε′u[p̂δ(x̂) + δ(x̂)p̂]e−iλεu|ψu〉,

�(y) = (−1)

2m

∫ ∞

0
du|�(y,u)|2〈ψu|[p̂δ(x̂) + δ(x̂)p̂]|ψu〉

=
∫ ∞

0
dt |�(y,t)|2J (t), (3.8)

where

�(y,t) =
∫

dε〈y|ε〉〈ε|φ0〉e−iλεt = 〈y|e−iλHct |φ0〉 (3.9)

is the wave function of the clock and J (t) is the current,
Eq. (1.1).

This form shows that, in the weak-coupling limit, our
arrival-time probability distribution yields the current but
smeared with a function depending on the clock state. We,
thus, get agreement with the expected result, Eq. (1.7). Note
that the physical quantity measured, the current, is not affected
by the form of the clock Hamiltonian.
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Although the form, Eq. (3.8), holds for a wide class of clock
Hamiltonians, not all choices make for equally good clocks.
To further restrict the coupling Hc, we require that different
arrival times may be distinguished up to some accuracy δt . For
this to be the case, we require that the clock wave functions,
corresponding to different arrival times, are approximately
orthogonal so that∫

dy �∗(y,t ′)�(y,t) ≈
{

1, if t ≈ t ′,
0, otherwise. (3.10)

We easily see that,∫
dy �∗(y,t ′)�(y,t)

=
∫

dε dε′dy〈φ0|ε′〉〈ε′|y〉〈y|ε〉〈ε|φ0〉eiλ(t ′ε′−tε)

=
∫

dε|φ0(ε)|2e−iλε δt , (3.11)

where δt = t − t ′. Clearly this expression is equal to 1 if
δt = 0. Suppose now that |φ0(ε)|2 is peaked around some value
ε0 with width σε . This integral will approximately vanish if

λσεδt � 1, (3.12)

and so the resolution of the clock is given by 1/λσε . The
relationship between t and the pointer variable y will depend
on the specific model. It is easily seen that a clock with good
characteristics may be obtained using, for example, a free
particle with a Gaussian initial state. But clocks with more
general Hamiltonians can also be useful if they evolve an initial
Gaussian along an approximately classical path (as many
Hamiltonians do). See Refs. [13–16] for further discussion
of clock characteristics.

For the special case Hc = p̂y, |ε〉 = |py〉, the expression
for the arrival-time distribution simplifies, since

�(y,t) =
∫

dpy√
2π

eipy (y−λt)φ̃0(py) = φ0(y − λt). (3.13)

The time is related to y by t = y/λ and the expected form,
Eq. (1.7), then becomes a simple convolution.

B. Strong-coupling regime

1. Special case: Hc = p̂y

We now turn to the limit of strong coupling between the
particle and the clock. The analysis of the case of general
clock Hamiltonian is rather subtle, so before we tackle this,
we first examine the special case where the clock Hamiltonian
is linear in the momentum. That is, we have,

Hc = p̂y =
∫

dpypy |py〉〈py |. (3.14)

We start from Eq. (3.1) and insert a complete set of momentum
states for the particle p to obtain

�(x,y,τ ) = 1

m

∫
dpydp√

2π
〈y|py〉φ̃0(py)

× exp[−i(E + λpy)τ ]p〈p|ψ0〉
∫ τ

0
dt〈x|

× exp{−i[H0 − λpyθ (−x̂)]t}|0〉 exp(iEt),

(3.15)

where φ̃0(py) is the initial momentum space wave function of
the clock and E = p2/2m is the kinetic energy of the particle.
Note the appearance of the momentum p in the integrand. The
expression involving the integral over t has been computed
previously using the final crossing PDX [6,10]. In the limit
τ → ∞, it is given by∫ ∞

0
dt〈x| exp{−i[H0 − λpyθ (−x̂)]t}|0〉 exp(iEt)

=
√

2m

λpy

exp(−ix
√

2m(E + λpy)).

We can now write our probability distribution for y.
Carrying out the x integral, we obtain

�(y) =
∫

dpydp
′
ydp dp′φ̃∗

0 (p′
y)φ̃0(py)〈p′

y |y〉〈y|py〉

× exp[−iλ(py − p′
y)τ ]

pp′

m
〈ψ0|p′〉〈p|ψ0〉

× exp[−i(E − E′)τ ]
2√

λ2pyp′
y

× δ(
√

2m(E + λpy) −
√

2m(E′ + λp′
y)). (3.16)

Using the formula δ(f (x)) = δ(x)/f ′(0), we can carry out the
p′

y integral to give

�(y) ≈
∫

dpydp dp′|φ̃0(py)|2 pp′

m2
〈ψ0|p′〉〈p|ψ0〉

× exp

(
−i

(E − E′)
λ

y

)
2

λ

√
2m

λpy

(3.17)

=
∫

dpy |φ̃0(py)|2 2

m2

√
2m

λpy

〈ψ0|

× exp

(
iH0

y

λ

)
p̂δ(x̂)p̂ exp

(
−iH0

y

λ

)
|ψ0〉

= A〈ψ0| exp

(
iH0

y

λ

)
p̂δ(x̂)p̂ exp

(
−iH0

y

λ

)
|ψ0〉,

(3.18)

where A is some constant whose explicit form is not required
and we have used the fact that E � λpy to approximate

φ

(
py + E − E′

λ

)
≈ φ(py). (3.19)

Therefore, we see that, in this limit, the probability of finding
the clock at a position y is given by the kinetic-energy density
of the system at the time t = y/λ, in agreement with Eqs. (1.2)
and (1.3).

Note that there is no response function involved in this case,
as one might have expected from the general form, Eq. (1.7).
(A similar feature was noted in the complex potential model
of Ref. [10]). It seems likely that this is because the strong
measurement prevents the particle from leaving x > 0 until the
last moment so that the response function R(t,s) is effectively
a δ function concentrated around the latest time.
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2. General case

As well as the approximations valid for E � λpy , the key
to the analysis in the special case presented above is that the
position space eigenfunction of the clock Hamiltonian with
eigenvalue py takes the simple form

〈y|py〉 = 1√
2π

exp(iypy). (3.20)

This greatly simplifies the resulting calculation. For the case
of a more general clock Hamiltonian, the eigenstates will not
have this simple form. Instead, we perform a standard WKB
approximation for the eigenstates of the clock,

〈y|ε〉 = C(y,ε) exp[iS(y,ε)], (3.21)

where S(y,ε) is the Hamilton-Jacobi function of the clock at
fixed energy. This means Eq. (3.17) becomes

�(y) ≈
∫

dε dp dp′|〈ε|φ0〉|2 pp′

m2
〈ψ0|p′〉〈p|ψ0〉

×
〈
ε + (E − E′)

λ
|y

〉
〈y|ε〉2

λ

√
2m

λε

≈
∫

dε|〈ε|φ0〉|2 2

m2

√
2m

λε
|C(y,ε)|2

×〈ψ0| exp

(
iH0

1

λ

∂S(y,ε)

∂ε

)
p̂δ(x̂)p̂

× exp

(
−iH0

1

λ

∂S(y,ε)

∂ε

)
|ψ0〉, (3.22)

where we have used〈
ε + (E − E′)

λ
|y

〉
〈y|ε〉

≈ |C(y,ε)|2 exp

(
−i

(E − E′)
λ

∂S(y,ε)

∂ε

)
, (3.23)

which is valid for E − E′ � λε.
We now suppose that the clock state is a simple Gaussian

in y, or equivalently, in py . It follows that it will be peaked
in ε about some value ε0. This means that the integral over
ε0 in Eq. (3.22) may be carried out. The result for �(t) will
again be proportional to the kinetic-energy density of the form,
Eq. (1.2), where the relationship between t and the pointer
variable y is defined by the equation,

t = 1

λ

∂S(y,ε0)

∂ε
, (3.24)

as one might expect from Hamilton-Jacobi theory [21]. Hence,
the arrival-time distribution has the expected general form,
Eq. (1.2) [and, therefore, Eq. (1.3) also holds], but the precise
definition of the time variable depends on the properties of the
clock.

IV. DWELL TIMES

We now turn to the related issue of dwell times. Here,
the aim is to measure the time spent by the particle in
a given region of space, which, for simplicity, we take to
be the region [−L,L]. This is portrayed in Fig. 3. In this

L−L
x

t

y

FIG. 3. The dwell-time problem, defined using a model clock.
The clock runs while the particle is in the region [−L,L].

section, we will work exclusively in the weak-coupling regime
where E � λε.

The starting point is the final state of the particle plus the
clock, Eq. (1.12), which we write as

�(x,y,τ ) = 〈x,y| exp{−i[H0 + λHcχ (x̂)]τ }|�0〉, (4.1)

where χ (x̂) = θ (x̂ + L)θ (L − x̂). We wish to reexpress this
using the path decomposition in a similar way to Eq. (3.1).
For this case, we need a PDX, which is more general than the
one used for the arrival time, since there are now crossings for
two surfaces. One way to proceed is to use the path-integral
expression for the first crossing of x = L and x = −L, which
is

�(x,y,τ ) = 1

m2

∫
dε〈ε|φ0〉〈y|ε〉

∫ ∞

0
ds

∫ τ−s

−∞
dt〈x|

× exp{−i[H0 + λχ (x̂)ε](τ − s − t)}| − L〉
×〈−L|p̂ exp{−i[H0 + λχ (x̂)ε]s}|L〉〈L|p̂
× exp(−iH0t)|ψ0〉, (4.2)

This is shown in Fig. 4. However, there are other choices we
could make. We could consider the first crossing of x = L and
the last crossing of x = −L, for example. In the semiclassical
limit, these choices lead to equivalent expressions for the dwell
time. It would be interesting to explore what differences do
arise in other regimes. This will be addressed elsewhere.

x

t

t

L−L

t + s

x0

x1

FIG. 4. The PDX used for the dwell-time problem: Paths from
x0 > 0 to x1 < 0 have a first crossing of x = L at a time t and a first
crossing of x = −L at a time t + s.
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It will prove more useful to work with the wave function
in position space for the clock and momentum space for
the particle. Changing to this representation and making
use of the semiclassical approximation, Eq. (2.10), we
obtain

〈p,y|�τ 〉 ≈ 1

m2

∫
dε〈y|ε〉〈ε|φ0〉

∫ ∞

0
ds

∫ τ−s

−∞
dt〈p|

× exp[−iH0(τ − s − t)]| − L〉
× 〈−L|p̂ exp[−i(H0 + λε)s]|L〉〈L|p̂
× exp(−iH0t)|ψ0〉. (4.3)

This is a semiclassical version of the PDX for the first crossing
of x = L and x = −L. Now, we make the standard scattering
approximation of letting the upper limit of the integral over t

go to infinity. This means we can carry out the t and s integrals
to obtain

〈p,y|�τ 〉 ≈
∫

dε 〈y|ε〉 〈ε|φ0〉 exp(−iEτ )

× exp(−i2Lmλε/|p|)〈p|ψ0〉, (4.4)

where we have used the standard integral [6],∫ ∞

0
ds 〈x| exp(−iH0s)p̂ |0〉 eiEs = m exp(i|x|

√
2mE),

(4.5)

and ∫ ∞

−∞

dt

2π
〈x| p̂ exp[−i(H0 − E)t] |ψ0〉

= 〈x| p̂δ(H0 − E) |ψ0〉 = m 〈x| δ(p̂ − p)|ψ0〉. (4.6)

Here, we have neglected the term involving δ(p̂ + p) since
this corresponds to reflection, which is negligible in this
semiclassical limit. We have also used the fact that E � λε to
approximate

exp(i2L
√

2m(E − λε)) ≈ exp (i2L|p| − i2Lmλε/|p|) .

(4.7)

Therefore, we obtain the distribution for y as

�(y) =
∫

dp |〈p,y|�τ 〉|2

=
∫

dε dε′〈φ0|ε′〉〈ε′|y〉〈y|ε〉〈ε|φ0〉

×
∫

dp|ψ0(p)|2 exp

(
i2Lmλ

|p| (ε′ − ε)

)

=
∫

dp|ψ0(p)|2|�(y,2Lm/|p|)|2, (4.8)

where

�(y,2Lm/|p|) =
∫

dε 〈y|ε〉 〈ε|φ0〉 exp

(−i2Lmλ

|p| ε

)

= 〈y| exp

(−i2Lmλ

|p| Hc

)
|φ0〉 (4.9)

is the clock wave function. We may rewrite this as

�(y) =
∫

dt |�(y,t)|2〈ψ0|δ
(

t − 2mL

|p̂|
)

|ψ0〉. (4.10)

Therefore, it is of precisely the desired form, Eqs. (1.6) and
(1.7), with |�(y,t)|2 playing the role of the response function.
The discussion of clock characteristics is then exactly the same
as the arrival-time case discussed in Sec. III.

V. CONCLUSION

We have studied the arrival- and dwell-time problems
defined using a model clock with a reasonably general
Hamiltonian. We found that, in the limit of weak-particle-
clock coupling, the time of arrival probability distribution is
given by the probability current density, Eq. (1.1), smeared
with some function depending on the initial clock wave
function, Eq. (1.7). This is expected semiclassically, agrees
with previous studies, and is independent of the precise form
of the clock Hamiltonian.

In the regime of strong coupling, we found that the arrival-
time distribution is proportional to the kinetic-energy density
of the particle, in agreement with earlier approaches using a
complex potential. The fact that two very different models give
the same result in this regime suggests that the form, Eq. (1.3),
is the generic result in this regime, independent of the method
of measurement. It would be of interest to develop a general
argument to prove this. (See Ref. [9] for further discussion of
this regime.)

For the case of dwell time, we have shown that the dwell-
time distribution measured by our model clock may be written
in terms of the dwell-time operator in semiclassical form,
smeared with some convolution function, Eqs. (1.6) and (1.7).

In all of these cases, the precise form of the clock Hamilto-
nian and clock initial state determine the relationship between
the time t and the pointer variable y, and they determine the
form of the response function R in the general form, Eq. (1.7).
These are particularly simple for the special case HC = p̂y ex-
plored previously. However, what is important is that, once the
definition of the time variable is fixed, the clock characteristics
do not effect the form of the underlying distributions—the �(s)
in Eq. (1.7). The �(s) are always one of the general forms, Eqs.
(1.1), (1.2), and (1.6), no matter what the clock characteristics
are. This means that these general forms will always play a
central role, irrespective of how they are measured.
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