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Quantum and classical solutions for statically screened two-dimensional Wannier-Mott excitons

Adam J. Makowski*

Institute of Physics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, PL-87100 Toruń, Poland
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Quantum solutions and classical orbits are discussed for statically screened Wannier-Mott excitons for two
closely related potentials: the Stern-Howard potential and a suggested simple focusing one. Bound states and
exact “quantized” values of screening are obtained as well. For the suggested potential, the scattering matrix, the
Regge poles, and the transmission coefficient are calculated exactly. We argue that the simple potential can be
utilized in applications instead of the Stern-Howard potential, which is difficult to handle.
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I. INTRODUCTION

Studying the electron-hole bound states known as excitons
has a long history [1] in solid-state physics. Objects of this
kind, with binding energy of the order of a few hundredths of
eV and with radii of tens of angstroms, are called the Wannier-
Mott excitons [2,3]. Since their radii are larger than the lattice
spacings, the influence of the lattice on the excitons can be
included in the effective mass of the electron-hole pair. The
excitons are typically observed in semiconductor crystals with
high dielectric constants, e.g., in Ge, Si, GaAs, CuO, and the
like, and also in the liquid xenon. The literature on the subject
is very rich, and we shall only mention here a few papers
concerning calculations of the excitons’ binding energies. One
of the most common methods of describing the influence of
electrons in the vicinity of an exciton on its spectrum is given
in Ref. [4]. Of practical value is a simple method of calculating
excitonic binding energies based on the model of fractional-
dimensional space [5]. This method leads to a satisfactory
agreement with the results obtained from an exact numerical
procedure [6]. In another approach [7], the Bethe-Salpeter
equation is used for the same purpose. In a recent study [8],
the Monte Carlo method was proposed for studying changes
in the character of an exciton during its propagation.

The interaction between an electron and a hole occurs
through the Coulomb potential −e2/(εr) and depends on the
material in question via the value of the dielectric constant
ε. In a semiconductor very often many electrons and holes
are excited, and as a consequence, the Coulomb interaction
of an electron-hole pair may be weakened. This leads to
the phenomenon known as screening, usually modeled with
the Stern-Howard potential [9]. Contemporary semiconductor
growth techniques [10] are able to create high-quality two-
dimensional (2D) systems where electrons and holes are
restricted to move on a plane. Therefore, we are justified
to use 2D theory, which, as observed in [11–15], leads, for
the threshold energy E = 0, to an intriguing expression for
quantization of the screening length. That result has never
been formally derived, and no numerical estimates were made
in order to evaluate its accuracy. The present paper contributes
to the discussion of that problem, among other things.
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This paper is organized as follows. In Sec. II we study
numerically the values of screening for which the Stern-
Howard potential has excitonic bound states at the threshold
energy and compare them with those obtained for a very simple
focusing potential. For the latter potential it is possible to
calculate exactly the scattering matrix and to find from its poles
the quantization rule for screening. Moreover, we consider also
the Regge poles and the transmission coefficient. In Sec. III
classical solutions to both potentials are derived and compared
to each other. Conclusions are given in Sec. IV.

II. QUANTUM SOLUTIONS

One of the most popular 2D statically screened potentials
for the hydrogen-atom-like Wannier-Mott excitons [16–20] is
given by the so-called Stern-Howard model [9]:

VSH (r) = −e2

ε

{
1

r
− π

2
q[H0(qr) − N0(qr)]

}
. (1)

Here ε is the dielectric constant, q [m−1] is a screening
parameter, r = (X̃2 + Ỹ 2)1/2, and H0 and N0 are the Struve
and Neumann (the Bessel function of the second kind Y0)
functions, respectively. The radial part of the Schrödinger
equation for E = 0,[−h̄2

2μ∗

(
d2

dr2
+ 1

r

d

dr
− l2

r2

)
+ VSH (r)

]
R(r) = 0, (2)

can be written in dimensionless quantities. To this end, we
shall express all lengths in the effective Bohr radius a∗ and
energies in the effective Rydbergs R∗:

a∗ = εh̄2

μ∗e2
, R∗ = e2

2εa∗ . (3)

In this way, we will get[
d2

dρ2
+ 1

ρ

d

dρ
− l2

ρ2
− V ∗

SH (ρ)

]
R(ρ) = 0, (4)

where

V ∗
SH (ρ) = −2

ρ

{
1 − qsρ

π

2
[H0(qsρ) − N0(qsρ)]

}
, (5)

with

ρ = r/a∗, qs = qa∗. (6)
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For further discussion we shall also write

d2R

dx2
+ 1

x

dR

dx
− l2

x2
R

+ λSH

x

{
1 − π

2
x[H0(x) − N0(x)]

}
R(x) = 0, (7)

where

x = qsρ = qr, λSH = 2/qs. (8)

In close relation to the potential in Eq. (1), there is the
following one:

V1/2(r) = −e2

εr(1 + qr)2
, (9)

which is a member of a large family of focusing Lenz-Demkov-
Ostrovsky potentials [21–23]. The potentials in Eqs. (1) and
(9) have exactly the same limiting behavior at small −e2/(εr)
and at large distances −e2/(εq2r3). In between the two limits,
the differences between them are quite small, as discussed in
detail in [24]. Now, using the same notation as in Eq. (7), we
obtain

d2R

dx2
+ 1

x

dR

dx
− l2

x2
R + λ1/2

x(1 + x)2
R(x) = 0, λ1/2 = 2/qs.

(10)

A. Bound states

Equation (10) has normalized solutions provided that
the screening length λ1/2 is “quantized” according to the
rule [24,25]

λ1/2 = (n + 2l)(n + 2l + 1), (11)

with l and n denoting the angular momentum quantum
number and the number of nodes of the corresponding wave
functions, respectively. As shown in [24], the exact functions
can be written in terms of the Gegenbauer polynomials Cσ

n :

Rnl(x) = Nnl

xl

(1 + x)2l
C2l+1/2

n

(
1 − x

1 + x

)
, (12)

where the normalization factor Nnl is derived in Appendix A.
If integer and half-integer angular momenta are accepted,

then the number of degenerate bound states Rnl(x), corre-
sponding to a given λ1/2, is equal to Q = n + 2l − 2. For
instance, when λ1/2 = 12, there is only one normalizable state
(n,l) = (0,3/2). When, e.g., λ1/2 = 72, we have six states:
(n,l) = (0,4),(1,7/2),(2,3),(3,5/2),(4,2),(5,3/2) and so on.

Some time ago [11] the right-hand side of Eq. (11) was
proposed as a proper quantization rule for the screening length
λSH for the Stern-Howard potential, and later it was considered
to be a not strictly exact result [25]. We have shown in a recent
paper [24] that the values of λSH have to be different from those
for λ1/2 to have solutions of Eq. (7) with a correct asymptotic
behavior and hence representing bound states.

Since no exact analytical solutions seem to be possible for
Eq. (7), we integrated the equation numerically and obtained
the allowable values of λSH for which the solutions represent
bound states. Results are given in Tables I and II for integer
and half-integer angular momenta, respectively. Now, there is

no degeneracy, and differences between the values of λSH and
the corresponding single λ1/2 are not large and are very slowly
growing with increasing values of the quantum numbers n

and l. The number of bound states is still equal to Q defined
above if we consider now the states grouping near a selected
value of λ1/2. We should emphasize at this point that neither
of the potentials has bound states for l = 0 and l = 1. All this
shows that the potentials in Eqs. (1) and (9) are, indeed, in
close relation and that particular λ1/2 are roughly the centers
of the “bands” composed of the values of λSH . Nevertheless,
the screening lengths λSH do not obey rule (11), which is exact
exclusively for the potential in Eq. (9).

B. Scattering matrix

We shall now show two other ways of obtaining formula
(11). In the first one, the quantization of screening will be a
result of the square integrability of the solutions represented by
hypergeometric functions. In the second way, we shall derive
the scattering matrix and show the connection of its poles with
discrete values of the screening. Next, it can be proved that for
the quantized values of λ1/2 in Eq. (11) the potential in Eq. (9)
is completely transparent.

First, we will find solutions of Eq. (10) in a form suitable
for S-matrix calculations. Changing the independent variable
according to the relation x = exp(y), we get from Eq. (10)(

d2

dy2
− l2 + λ1/2 exp(y)

[1 + exp(y)]2

)
R(y) = 0, (13)

which constitutes a 1D problem with the Eckart potential

λ1/2 exp(y)

[1 + exp(y)]2
= λ1/2

4 cosh2(y/2)
, (14)

with l2 playing the role of energy. Further, Eq. (13) can be
transformed to a hypergeometric equation in the following
steps. First, we take

z = sinh2(y/2) (15)

and then look for the solution R(z) in the form

R(z) = (1 + z)bf (z), (16)

where

b = 1
4 (1 − √

1 + 4λ1/2). (17)

In this way, also changing z to −z, we have

z(1 − z)
d2f

dz2
+ (1/2 − z − 2bz)

df

dz
− (b2 − l2)f = 0.

(18)

This is a standard equation for the hypergeometric function
F (α,β; γ ; z) if

α = b + l, β = b − l, γ = 1/2. (19)

Two independent solutions of Eq. (18),

f1(z) = A1F (α,β; γ ; z), (20)

f2(z) = A2z
1−γ F (α − γ + 1,β − γ + 1; 2 − γ ; z), (21)
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are finite for z = 0(y = 0). In order the wave function be
square integrable, the hypergeometric functions have to reduce
to polynomials. This is the case when

α = 1
4 (1 − √

1 + 4λ1/2) + l = −n, (22)

α − γ + 1 = 1
4 (1 − √

1 + 4λ1/2) + l + 1
2 = −n, (23)

with n = 0,1,2, . . .. Thus, for the even (2n) and odd (2n + 1)
values, we get, respectively,

2n + 2l + 1
2 = 1

2

√
1 + 4λ1/2, (24)

2n + 1 + 2l + 1
2 = 1

2

√
1 + 4λ1/2. (25)

The two formulas can be reduced to the single formula

n + 2l + 1
2 = 1

2

√
1 + 4λ1/2, (26)

which is valid for all natural n. Obviously, this equation leads
at once to rule (11).

As the final step of this part of the calculations, we give
the explicit expression for the wave functions. After using
equations (15), (16), (19), (20), and (21), we can write

R(y) = N1[cosh(y/2)]2bF (b + l,b − l; 1/2; − sinh2(y/2))

+N2[cosh(y/2)]2b sinh(y/2)F (b + l

+ 1/2,b − l + 1/2; 3/2; − sinh2(y/2)), (27)

where N1 and N2 are constants of integration. For bound states,
Eq. (27) can be reduced to the simple form of the solution given
in Eq. (12).

To find the scattering matrix and related quantities, we
can utilize solution (27), in which we put l → il. Since
y = ln(x) = ln(qsρ) = ln(qr), therefore, if 0 � r < ∞, then
−∞ < y < +∞. From asymptotic properties of the hyperge-
ometric functions, we can obtain

R(y) −→ A exp(ily) + B exp(−ily), y → −∞, (28)

R(y) −→ C exp(ily) + D exp(−ily), y → +∞, (29)

where

A = 4il(N1u − N2v),

B = 4−il(N1u
∗ − N2v

∗),
(30)

C = 4−il(N1u
∗ + N2v

∗),

D = 4il(N1u + N2v),

and

u =
√

π
(−2il)


(b − il)
(−b + 1/2 − il)
,

v =
√

π
(−2il)

2
(b + 1/2 − il)
(−b + 1 − il)
. (31)

The scattering matrix S obeys the relation[
C

B

]
=

[
S11 S12

S21 S22

] [
A

D

]
,

and its components are given as

S11 = S22

= i sinh(2πl)
(2il)
(2b − 2il)
(−2b + 1 − 2il)

π
(−2il)
,

(32)

S12 = S21

= sin(2πb)
(2il)
(2b − 2il)
(−2b + 1 − 2il)

π
(−2il)
.

(33)

Putting now l → il, we can see that the poles of the S matrix
are in the points

−2b − 2l = n (= 0,1,2, . . .),

−2b + 2l + 1 = 0, − 1, − 2, . . . , (34)

2l = 0,1,2, . . . .

The first line of Eqs. (34), after using the definition of b

in Eq. (17), gives again the exact formula for bound states in
Eq. (11). The second equation leads to a discrepancy since
b < 0 and l > 1. The third condition represents so-called false
poles or extra poles.

As is well known, each bound state is associated with a pole
of the S matrix, but the inverse statement is not always true.
The potential V1/2, for which we have derived the scattering
matrix, is an example of this kind since the extra poles are
not related to bound states. A separation of the extra poles
from the physical ones is possible when the potential under
consideration is truncated at some sufficiently large distance.
A detailed discussion on the subject can be found in Ref. [26].

The position of Regge poles as a function of the screening
parameter qs can be easily found to be

l(qs) = 1

2

(√
1

4
+ 2

qs

− n − 1

2

)
, (35)

with the condition l(qs) > 0 and n = 0,1,2, . . .. This agrees
with a similar result found in a different context in [27]. The
number of Regge poles, in the right half plane, grows with
the growing strength of the potential or with the decreasing
screening qs . For the repulsive V1/2 potential, there are no
Regge poles in the right half plane.

One can also calculate the transmission coefficient T for
the considered potential at E = 0. From Eqs. (32) and (33),
we get

T = 1

1 + | S12
S11

|2

= sinh2(2πl)

sinh2(2πl) + cos2(π
2

√
1 + 4λ1/2)

. (36)

The plot of T versus λ1/2, for l = 2, is given in Fig. 1.
The transmission coefficient has maxima, all equal to 1,
if π

2

√
1 + 4λ1/2 = (2k + 1)π

2 , k = 0,1,2, . . ., i.e., for λ1/2 =
k(k + 1) = 0,2,6,12,20,30,42, and so on. There are no bound
states corresponding to the values of 0, 2, and 6. The next
maximum, for λ1/2 = 12, is related to the bound state with
l = 3/2 (see Table II). All remaining values for which we have
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FIG. 1. Plot of the transmission coefficient T in Eq. (36) vs λ1/2.
To make the oscillations of T clearly visible, the amplitudes of the
cosine fuction were multiplied by a factor of 1012. As discussed in
the text, the succeeding maxima correspond to the values of λ1/2 in
Eq. (11).

maxima correspond to the bound states with integer angular
momenta (see Table I). So we can conclude that the attractive
potential V1/2 is totally transparent for some discrete values
of screening. The same is expected for the Stern-Howard
potential as well.

We should note at this point that for λ1/2 = 2
with (n,l) = (0,1/2),(1,0) and for λ1/2 = 6 with (n,l) =
(0,1),(1,0),(1,1/2), the exact solutions in Eq. (12) are all finite
everywhere in the interval 0 � x < ∞, but they do not decay
fast enough at infinity to be square integrable. They are called
half-bound states or zero-energy resonances and correspond
to the first two maxima in Fig. 1.

If V1/2 is a repulsive potential, the transmission coefficient
can also be found. It follows immediately from Eq. (36),
where we have to replace λ1/2 with −λ1/2. Now, there are no
oscillations in T , and the coefficient is a diminishing function
of the coupling constant λ1/2.

III. CLASSICAL SOLUTIONS

Classical equations of motion can also be integrated exactly
for the potential V1/2(r), and the solution can be given in terms

of integrals of motion: the total energy E and the angular
momentum L. We can introduce the same system of units and
notation as in the quantum case. To this end, it is enough to
replace the classical angular momentum L with γh̄, where γ is
a dimensionless scale factor. Then, using the polar coordinates
X̃ = r cos ϕ and Ỹ = r sin ϕ, we get for V1/2(r) and E = 0 in
the 2D configuration space(

dx

dϕ

)2

+ x2 = λcx
3

(1 + x)2
= λcx

2(
x−1/2 + x1/2

)2 , (37)

where λc = 2/q̃s = λ1/2/γ
2, q̃s = γ 2qa∗ = γ 2qs , and x =

qr . The equivalent form of Eq. (37) can be found as[
2

d

dϕ
(x1/2 − x−1/2)

]2

+ (x1/2 − x−1/2)2 = λc − 4. (38)

Now, the exact solution can be easily obtained, and we have

x1/2 − x−1/2 = ±2{C1 sin[(ϕ − ϕ0)/2]

+C2 cos[(ϕ − ϕ0)/2]}, (39)

where

C2
1 + C2

2 = λc/4 − 1 (40)

and C1 and C2 are real constants of integration. They
are determined by the relations C1 =√

λc/4 − 1 − C2
2 and C2

2 =
(1/4)(x1/2

0 − x
−1/2
0 )2, where x0 is the initial position for an

initial angle.
The solution x = x(ϕ) from Eq. (39) is plotted in Fig. 2

(solid line) for λ1/2 = 20, γ 2 = 2, and C2 = 0 from which
x0 = 1. As a result, we get the limacon of a Pascal-shaped
curve. Using the same units, notation, and initial conditions,
we integrated numerically the classical equations of the motion
for the Stern-Howard potential as well. Again, a similarly
shaped curve is obtained for λSH = 20.022524 (dashed line).
The differences between the two curves follow from some
differences between the potentials V1/2 and VSH . We have to
note at this point that the orbits for VSH , even for large values
of λSH , are about the same in shape for each particular value of
the screening length within a selected band. Thus the curves in

TABLE I. Values of λSH from Eq. (7) for which solutions of the equation are square integrable. For comparison, the first column contains
the corresponding values of λ1/2 from Eq. (11).

λ1/2 n + 2l l = 2 l = 3 l = 4 l = 5 l = 6 l = 7

20 4 20.022 524
30 5 29.959 704
42 6 41.934 331 42.063 091
56 7 55.933 377 55.961 382
72 8 71.947 402 71.898 862 72.126 555
90 9 89.970 287 89.866 892 89.984 127
110 10 109.998 322 109.857 905 109.881 986 110.213 443
132 11 132.029 357 131.865 822 131.813 870 132.029 325
156 12 156.062 181 155.886 004 155.773 770 155.886 243 156.323 980
182 13 182.096 128 181.915 026 181.756 340 181.779 380 182.097 603
210 14 210.130 843 209.950 411 209.757 035 209.703 873 209.912 800 210.458 281
240 15 240.166 145 239.990 389 239.772 112 239.655 134 239.765 709 240.189 281
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6
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2
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FIG. 2. Plots of the orbits x = x(ϕ) for the potentials VSH in
Eq. (1) (dashed line) and V1/2 in Eq. (9) (solid line), where x =
qr = q

√
X̃2 + Ỹ 2 and ϕ = tan−1(Ỹ /X̃). The labels X and Y denote,

respectively, X = qX̃ and Y = qỸ . The plots are in dimensionless
units, as explained in the text.

Fig. 2 can be considered to be a characteristic image or simply
an icon of the discussed model of the Wannier-Mott exciton.

IV. CONCLUSION

We have studied here the validity of formula (11) for the
spectrum of allowed values of the screening lengths λSH for the
Stern-Howard potential. This is important since the potential
VSH is one of the most popular models used for Wannier-
Mott excitons. It is shown that the formula is not exact for
the values of λSH ; however, the numerically calculated “true”
values shown in Tables I and II differ slightly from those
obtained from Eq. (11). Then, why not use in applications the
potential V1/2 instead of VSH ? As we have shown in Secs. II
and III, the former enables formally exact calculations for

many quantities. Among them, we have obtained the S matrix,
the Regge poles, and the transmission coefficient.

It is also interesting that V1/2(x) = −λ1/2/[x(1 + x)2]
belongs to the class of potentials expressible as a superposition
of Yukawa potentials [27,28]

V1/2(x) = −λ1/2

∫ ∞

0

exp(−μx)

x
exp(−μ)μdμ. (41)

This is not the case for the Stern-Howard potential

VSH (x) = −λSH

x

{
1 − π

2
x[H0(x) − N0(x)]

}
. (42)

However, we can find for it an analog in the form

VSH (x) = −λSH x

∫ ∞

0

exp(−μx)

x

(
1 − 1√

1 + μ2

)
dμ.

(43)

This representation follows from formula 2.3.5(6) in [29],∫ ∞

0

exp(−μx)√
1 + μ2

dμ = π

2
x[H0(x) − N0(x)]. (44)

One more argument in favor of V1/2 is the following: The
physically important quantity, the ionization degree for a fixed
qs , depends on the sum over all angular momenta l. When
the quasiclassical limit is utilized, then, for large l, the total
number of bound states is given by the integral

λ = −
∫ ∞

0
xV (x)dx. (45)

If V (x) = V1/2(x) [cf. Eq. (10)], we get at once λ = λ1/2 =
2/qs , and its values are given in Eq. (11). If V (x) = VSH (x) [cf.
Eq. (7)], the rhs of Eq. (45) is again equal to λ = λSH = 2/qs

(see Appendix B), but the screening is not quantized according
to rule (11). Now, the bound states are found to be as given
in Tables I and II. The small differences in the values of λ do
not affect the results for ionization degree in the low-density
limit [13]. That is why we are allowed to use again the simple
focusing potential V1/2 instead of the difficult-to-handle Stern-
Howard one.

We have also considered the classical solutions of both
related potentials. Contrary to the quantum case, where bound
states exist only for λ1/2 and λSH being precisely as given

TABLE II. As in Table I but for the half-integer values of the angular momentum l.

λ1/2 n + 2l l = 3
2 l = 5

2 l = 7
2 l = 9

2 l = 11
2 l = 13

2

12 3 12.010 441
20 4 19.965 813
30 5 29.957 321 30.040 002
42 6 41.968 158 41.958 053
56 7 55.988 261 55.914 531 56.091 918
72 8 72.012 450 71.898 974 71.970 008
90 9 90.038 346 89.902 882 89.887 893 90.167 053
110 10 110.064 973 109.919 978 109.838 283 110.003 870
132 11 132.091 987 131.945 882 131.814 446 131.881 382 132.265 747
156 12 156.119 311 155.977 641 155.810 645 155.794 129 156.060 554
182 13 182.146 972 182.013 311 181.822 225 181.736 720 181.896 688 182.388 155
210 14 210.175 038 210.051 624 209.845 521 209.704 200 209.769 853 210.140 503
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in Tables I and II, the classical solutions are not sensitive
to the exact values of λ. It is interesting that closed orbits
corresponding to the bound states of both potentials are all of
the limacon of Pascal shape.

Closed classical orbits are usually expected for potentials
having bound states, as in the present paper. Nevertheless,
there can be some singular potentials with square-integrable
solutions at E = 0 where closed classical trajectories do not
exist. Examples are given in Refs. [30,31].
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APPENDIX A

Normalization of the function Rnl(x) in Eq. (12) in 2D space
leads to the integral

q2 = N2
nl

∫ ∞

0
xR2

nl(x)dx. (A1)

Performing the integral is not simple and can be done in the
following steps. First, change the variable ξ = (1 − x)/(1 + x)
and then introduce a new one ξ = −η. Next, use the parity
property [32]

Cσ
n (−η) = (−1)nCσ

n (η) (A2)

of the Gegenbauer polynomials and the recurrence relation
[33]

(n + 2l + 1/2)C2l+1/2
n (η)

= (2l + 1/2)
[
C2l+3/2

n (η) − C
2l+3/2
n−2 (η)

]
. (A3)

Thus, we will derive

q2 = N2
nl(2l + 1/2)

24l−1(n + 2l + 1/2)

∫ 1

−1
(1 + η)2l+1(1 − η)2l−3C2l+1/2

n (η)

× [
C2l+3/2

n (η) − C
2l+3/2
n−2 (η)

]
dη. (A4)

As a final step, we use formula 2.21.18(5) in Ref. [34]. In this
way, we have, for l > 1,

q2

N2
nl

=
(
2l + 1

2

)
(4l + n)B(2l + 2,2l − 2)

24n!n!l
(
n + 2l + 1

2

)

(4l + 3)

× [f (n) − n(n − 1)(4l + n − 1)

× (4l + n − 2)f (n − 2)], (A5)

where B(a,b) is the beta function, and

f (ν) = 
(4 + ν)
(4l + 3 + ν)4F3(−n,4l + 1 + n,2l − 2,

− 3; 2l + 1,4l + ν, − ν − 3; 1), (A6)

with 4F3 denoting the generalized hypergeometric function.
Thanks to the value of α4 = −3, the infinite series representing
the function 4F3(α1,α2,α3,α4; β1,β2,β3; 1) terminates after
four terms.

APPENDIX B

We shall prove here that λ in Eq. (45) is equal to λSH

if V (x) = VSH (x). To this end, we insert formula (43) into
Eq. (45) and integrate over x. This gives 1/μ2, and hence, we
have

λ = λSH

∫ ∞

0

1

μ2

(
1 − 1√

1 + μ2

)
dμ

= λSH

(
−1

μ
+

√
1 + μ2

μ

)∞

0

. (B1)

Now, using the expansion√
1 + μ2 = 1 + 1

2
μ2 − 1 · 1

2 · 4
μ4 + 1 · 1 · 3

2 · 4 · 6
μ6 − ...,

(B2)

we finally get

λ = λSH

[
lim
μ→0

1

μ
+ 1 − lim

μ→0

1

μ

− lim
μ→0

(
1

2
μ − 1 · 1

2 · 4
μ3 + 1 · 1 · 3

2 · 4 · 6
μ5 − ...

)]
= λSH .

(B3)
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