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Large violation of Bell inequalities using both particle and wave measurements
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When separated measurements on entangled quantum systems are performed, the theory predicts correlations
that cannot be explained by any classical mechanism: communication is excluded because the signal should
travel faster than light; preestablished agreement is excluded because Bell inequalities are violated. All optical
demonstrations of such violations have involved discrete degrees of freedom and are plagued by the detection-
efficiency loophole. A promising alternative is to use continuous variables combined with highly efficient
homodyne measurements. However, all the schemes proposed so far use states or measurements that are extremely
difficult to achieve, or they produce very weak violations. We present a simple method to generate large violations
for feasible states using both photon counting and homodyne detections. The present scheme can also be used to
obtain nonlocality from easy-to-prepare Gaussian states (e.g., two-mode squeezed state).
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I. INTRODUCTION

The violation of Bell inequalities has played a crucial role in
the foundations of quantum physics since it provides a testable
criterion to rule out classical mechanisms as the origin of
quantum correlations [1]. Moreover, it is also an important test
for future applications since it provides device-independent
assessment of the performance of some quantum tasks like
key distribution [2] or randomness generation [3].

In experiments, violations have been demonstrated so far
only for discrete-outcome measurements [4]. The countless
optical realizations have used several encodings, the most
frequent ones being polarization [5,6] and time bins [7]. Light
can easily be sent at large distances, so the locality loophole
can be closed, but the detection loophole [8] remains open
due to the joint effect of losses (both in the coupling between
the source and the optical link and in the link itself) and of
the limited efficiency of the photon counters. When energy
levels of ions and atoms are used, fluorescence measurements
are very efficient but slow: the detection loophole can be
closed [3,9], but it is practically impossible to think of
separating these systems far enough to close the locality
loophole. Entanglement swapping between light and atoms
was proposed several years ago in order to combine the best
of both worlds [10], but its full implementation has yet to be
reported [11].

Another path toward a loophole-free Bell test consists in
using only light but measuring rather continuous degrees
of freedom, exploiting the high efficiency of homodyne
measurements [12]. However, this path has proved harder than
expected: no experimental violation of Bell inequalities (let
alone loophole-free ones) involving homodyne measurements
has been reported to date. One of the main problems is
that for the simplest states that can be produced (having
positive, usually Gaussian, Wigner functions), homodyne
measurements produce statistics that do not violate any Bell

*dcavalcanti@gmail.com

inequality. Some theoretical schemes have shown, however,
that violations are, indeed, possible; however, they require ei-
ther measurements [13,14] or states [15–18] that are practically
unfeasible. Only in 2004 a proposal was put forth [19,20], in
which homodyne measurements on a feasible state, followed
by suitable data processing, led to a violation S ≈ 2.046 of
the Clauser-Horne-Shimony-Holt (CHSH) inequality S � 2
[21]. Such a small violation, however, is hardly observable in
the presence of imperfections and has, indeed, not yet been
achieved experimentally.

The main goal of the present paper is to demonstrate that
large violations of Bell inequalities can, indeed, be achieved
with feasible setups involving homodyne measurements. We
study schemes in which both Alice and Bob alternate between
photon counting and homodyne measurements, then locally
postprocess their data to extract bits and check the CHSH
inequality. We show that a significant violation S ≈ 2.25 can
be achieved by the state

|�2〉 = |2〉A|0〉B + |0〉A|2〉B√
2

, (1)

where again |0〉 and |2〉 refer to states of well-defined photon
number. This state can be created by having two heralded
single photons from down-conversion sources bunch on a beam
splitter, in a Hong-Ou-Mandel setup [22].

Our scheme was motivated by a recent result by Ji and
coworkers in the tentative finding of Bell tests for easy-to-
prepare quantum states [23]. However, the inequalities they
used are not Bell inequalities in the most general sense since
they rule out only a particular class of local models. Thus
they cannot be used for any device-independent assessment,
as required for demonstrating nonlocality, since they can be
violated by a local model [24].

II. IDEAL CASE

The setup under study is sketched in Fig. 1. Alice and Bob
can perform two measurements each: one is the photon number
N ; the other is the X quadrature. The measurement results are
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FIG. 1. (Color online) Sketch of the setup. (a) A source sends
a photonic entangled state to two space-like separated locations.
In these locations each subsystem is subjected to one of two
measurements: number of photons (photon counting) or quadrature
(homodyning) measurements. In this way both “wave” and “particle”
characteristics of the systems are tested. (b) The state (|0〉|2〉 +
|2〉|0〉)/√2 violates the CHSH Bell inequality in the previous scenario
and can be created as follows: two pairs of photons are created
in different nonlinear crystals by parametric down conversion. The
detection of one photon of each pair at detectors D1 and D2 heralds the
presence of the other two photons, which are sent to a beam splitter.
The Hong-Ou-Mandel interference in the beam splitter makes the
photons bunch, resulting in the desired two-photon state.

then processed to obtain bits a,b ∈ {−1, + 1}, where a and
b label Alice and Bob’s outcomes, respectively. We describe
these binning procedures for the case of Alice; those for Bob
are identical. When measuring N , Alice sets a = +1 if the
result is N > 0 and a = −1 if the result is N = 0: this binning
is simply the direct outcome of a perfect threshold detector.
As for the X measurement, Alice divides the real axis in two
disjoint regions and sets a = +1 if x ∈ A+ and a = −1 if
x ∈ A− = R \ A+. These sets can still be quite complicated
in general; here it will be sufficient to consider very simple sets,
namely, A+ = B+ = [−z,z], where z remains to be chosen.

Using these measurements, we focus on the CHSH inequal-
ity, which reads

S = EXX + EXN + ENX − ENN � 2, (2)

where Ejk = P (a = b|jk) − P (a �= b|jk) is the expectation
value of the measurements j and k after the binning. Now
we are going to show that this inequality can be violated

by measuring the state (1). The statistics of the four pairs
of measurements are easy to write down. In fact, when both
Alice and Bob measure N , their bits are always different;
hence ENN = −1. When Alice measures N and Bob measures
X, if a = +1, Bob’s state is |0〉, where his measurement of
X is described by the density function |〈x|0〉|2 = |φ0(x)|2,
where φ0(x) = 1

π1/4 e
−x2/2; similarly, if a = −1, Bob’s statis-

tics are described by the density |〈x|2〉|2 = |φ2(x)|2, where
φ2(x) = 1

(4π)1/4 (2x2 − 1)e−x2/2. The case when Alice measures
X and Bob measures N is symmetric. Finally, when both
Alice and Bob measure X, their statistics are described by
|〈xA,xB |�2〉|2 = |�2(xA,xB)|2, where �2(xA,xB ) is obtained
by replacing the state |k〉 with φk(x) in (1). All in all, the
probabilities are given by the following expressions:

P (a,b|NN ) = (1 − ab)/4 ,

P (a,b|XN ) = 1

2

∫
Aa

dx|φm(b)(x)|2 ,

(3)

P (a,b|NX) = 1

2

∫
Bb

dx|φm(a)(x)|2 ,

P (a,b|XX) =
∫
Aa

dx

∫
Bb

dy|�2(x,y)|2,

where m(+1) = 0 and m(−1) = 2. Substituting these statistics
into (2), one obtains a value of S for any choice of z. The
maximal violation of the CHSH inequality is S ≈ 2.25 for
z ≈ 0.83 (see Fig. 2).
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FIG. 2. (Color online) Value of the CHSH expression S as a
function of the parameter z for ideal detectors. The solid line is
for the state |�2〉 given in (1). The dashed lines are for ρ given in
(4), describing, from top to bottom, a lossy line with transmissivity
t = 0.95, 0.9, and 0.85. The inset shows the density functions |φ0(x)|2
(solid blue line) and |φ2(x)|2 (dashed purple line), with the choice
z ≈ 0.83 (dotted vertical lines) for the maximal violation S ≈ 2.25;
notice that this value of z allows one to discriminate the density
functions with high probability. This is important to attain a high
violation of CHSH since it allows us to maximize the correlations
between the X and N measurements.
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III. NONIDEAL CASE

So far, we have proved that an ideal realization of the state
(1) would lead to a large violation of CHSH for ideal detectors.
Let us now introduce two deviations from the ideal case and
study the robustness of the result (for simplicity, all the param-
eters below are supposed to be the same for Alice and Bob).

First, we introduce the transmission t of the optical paths
between the sources and the detectors. This parameter includes
the coupling from the source into the transmitted mode and
the subsequent possible losses in the channel. The ideal state
|�2〉 reaches the detectors with probability t2. With probability
2t(1 − t), one of the two photons is lost. In this case, the state at
the detector becomes ρ1 = 1

2 (|10〉〈10| + |01〉〈01|) because the
photon lost in the environment would identify the path. Finally,
with probability (1 − t)2, both photons are lost, and the state at
the detector is just |00〉. The final state measured is therefore

ρ = t2|�2〉〈�2| + 2t(1 − t) ρ1 + (1 − t)2|00〉〈00|. (4)

Second, while keeping the measurement X fully efficient, we
attribute a quantum efficiency η < 1 to the threshold detector
used to perform the measurement N . We stress that no post-
selection will be performed on the data: each event in which the
threshold detector does not fire will be counted as a = −1 or
b = −1. The final result is shown in Fig. 3 (see Appendix). Our
scheme is more sensitive to losses on the line than to losses on
the threshold detector: this was expected since the former affect
both measurements while the latter affect only the N measure-
ments. For a transmission of t = 90%, a detection efficiency
of η ≈ 86% can be tolerated. Though these are demanding
features, they are within reach of current technology [25,26].
These numbers are also comparable to the most favorable feasi-
ble schemes known to date for discrete variables, where the fig-
ure of merit is ηt [27]. In contrast, here the losses correspond to
the imperfections of the state (since they act on the same degree
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FIG. 3. (Color online) Quantum efficiency of the threshold
detectors (η) vs transmission of the optical links t for violation of
the CHSH inequality. The curve supposes that, for each t , the optimal
choice of z for the binning is made. If there are no losses in the line,
the detector efficiency can be as low as η ≈ 71.1%; conversely, for
perfectly efficient detectors, one can tolerate a transmission t ≈ 84%.

of freedom as the measurements), while for discrete variables
the imperfections of the state are an additional problem.

IV. EXPERIMENTAL CONSIDERATIONS

Let us make some considerations about the experimental
implementation of our scheme. Homodyne measurements
require a sufficiently long coherence time of the signal. So, if
the state |�2〉 is implemented using down-conversion sources
as we propose, the bandwidth of the down-converted photons
must be narrow enough. Fortunately, the Hong-Ou-Mandel
effect between photons coming from different crystals has
been demonstrated using continuous pumping [28]; thus
pulsed pumping is not a hidden requirement (notice that
this fact has another positive consequence: the four-photon
processes in down conversion can, indeed, be neglected).
Also, homodyne measurements on one and two-photon states
coming from down conversion have already been reported
[29]. It seems therefore that the experiment is feasible with
current technology, though certainly challenging.

V. OTHER QUANTUM STATES

The combination of counting and homodyne measurements
can be applied to many more scenarios. A natural question
is whether other states, among those that are feasible in
laboratories today, violate the CHSH inequality. It turns out
that the two-mode squeezed state

|ψ〉 =
√

1 − λ2
∑

n

λn|n〉|n〉 (5)

violates a version of CHSH for some values of λ, provided
(say) Bob’s homodyne measurements is in the complementary
quadrature P . Although the violation found is small (S ≈ 2.05
for λ ≈ 0.83 and z ≈ 0.86), it is remarkable since this state is
Gaussian and easily producible in the laboratory. Note also that
the amount of violation is similar to the best value previously
reported with a feasible state [19,20]. The latter, however, used
a more complicated state, obtained from (5) by photon subtrac-
tion in each arm. We could not find any violation for the states
(here unnormalized) |1〉|0〉 + |0〉|1〉 [30] and |α〉| − α〉 + | −
α〉|α〉 (with |α〉 being a coherent state of amplitude α) [31].

VI. DISCUSSION

The use of efficient homodyne measurements and photonic
continuous degrees of freedom in Bell tests has triggered
much attention in the past years. Although this appears to
be an interesting path toward a loophole-free nonlocality test,
no result so far has indicated that this method could actually
work in practice. All the results reported previously suffered
from using impractical quantum states and measurements or
achieved very small violations. Our main goal was to overcome
these problems and present a feasible scheme to observe
large violations of Bell inequalities with continuous-variable
measurements. The key element was to combine both photon
counting and homodyne measurements in the same Bell test.

Although the implementation of our explicit scheme is
still challenging, we believe that our method opens up new
possibilities for designing a loophole-free Bell test. From the
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theoretical point of view, considering other quantum states
and/or more sophisticated Bell inequalities could lead to larger
and more robust violations. From the experimental point of
view, simplifying the creation of the states described here
and the progress toward the experimental considerations we
discussed are certainly fruitful ways to continue research.

Finally, we believe that a proof-of-principle experiment in
which the experimental data are postprocessed in order to take
into account the inefficiencies in the experiment (similar to the
fair-sampling assumption in the discrete case) is interesting
in its own right. Such an experimental demonstration would
reinforce the usefulness of homodyne measurements in Bell
tests and could be realized with current technology.
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APPENDIX

In order to study the effect of the limited efficiency η, we
rewrite the CHSH inequality in the Clauser-Horne form [32],

which is equivalent for no-signaling distributions:

−p(aX = +) − p(bX = +) + p(+ + |XX) + p(+ + |NX)

+p(+ + |XN ) − p(+ + |NN ) � 0. (A1)

Here p describes the observed statistics. Now, p(+ + |NN ) =
0 because one of the modes is always empty (we are
neglecting spurious counts here). The first line can be
rewritten as p(− − |XX) − 1, and there is no effect of η,
so one just has to compute this quantity for ρ along the
same lines as we did for |�2〉 above. Finally, consider
p(+ + |NX), the case for p(+ + |XN ) being symmetric.
If the state is |�2〉, one has p(+ + |NX,�2) = [1 − (1 −
η)2] P (+ + |NX), where P (+ + |NX) is given in (3), because
there are two photons reaching the detector. If the state
is ρ1, one has p(+ + |NX,ρ1) = η P (+ + |NX): indeed,
Alice finds aN = +1 with probability η

2 and prepares the
state φ0(x) on Bob’s side. When the state is |00〉, Alice
never finds aN = +1. All in all, p(+ + |NX) = tη(2 −
tη) P (+ + |NX). Thus the condition for (A1) to be violated
becomes

tη � 1 −
√

1 − 1 − p(− − |XX)

P (+ + |NX) + P (+ + |XN )
. (A2)

Note that t enters in the right-hand side of this equation through
p(− − |XX) evaluated for ρ. So, contrary to the schemes
using discrete variables, the effects of t and η are not identical.
Ultimately, one has to resort to numerical evaluation to find
the best value of z for each case.
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