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Hartman effect and weak measurements that are not really weak
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We show that in wave packet tunneling, localization of the transmitted particle amounts to a quantum
measurement of the delay it experiences in the barrier. With no external degree of freedom involved, the envelope
of the wave packet plays the role of the initial pointer state. Under tunneling conditions such “self-measurement”
is necessarily weak, and the Hartman effect just reflects the general tendency of weak values to diverge, as
postselection in the final state becomes improbable. We also demonstrate that it is a good precision, or a ‘not
really weak’ quantum measurement: no matter how wide the barrier d , it is possible to transmit a wave packet
with a width σ small compared to the observed advancement. As is the case with all weak measurements, the
probability of transmission rapidly decreases with the ratio σ/d .
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I. INTRODUCTION

One often reflects on the controversial nature of the
tunneling time issue. A common feature of many approaches
(for a review, see [1–3]) is that proposed tunneling times appear
as mere parameters, endowed, unlike most other quantities,
with neither probability amplitudes nor probability distribu-
tions. Inclusion of such time parameters into the framework
of standard quantum theory is clearly desirable. One such
parameter is the phase (Wigner) time used to characterize
transmission of a wave packet [1–3]. In the phase time analysis,
one typically proceeds by expanding the logarithm of the
transmission amplitude T (p) in a Taylor series around the
particle’s mean momentum p0. Retaining only linear terms,
one finds the transmitted part of a Gaussian pulse to be
given by

�T (x,t) ≈ T (p0) exp(ip0ȳ)�0(x − ȳ,t), (1)

where �0(x,t) is the freely propagating state, and

ȳ(p0) ≡ iT (p0)−1 ∂T (p0)

∂p
(2)

is a complex valued quantity. If spreading of the wave packet
can be neglected, Reȳ gives the shift of the transmitted pulse
�T (x,t) relative to a freely propagating one, while T (p0) and
Imȳ describe overall reduction of its size. The term Hartman
effect (HE) [4] refers to the fact that as the width of a (e.g.,
rectangular) barrier d tends to infinity, the tunneled pulse is
advanced roughly by the width of the classically forbidden
region Reȳ ∼ d. This creates an impression that the barrier
has been crossed almost infinitely fast, and using the shift
to evaluate the duration spent in the region, one arrives at
the phase time τphase = (d − Reȳ)m/p0 � md/p0, which is
independent of the barrier width. There is a large volume
of literature on the HE (see [2–8] and references therein) as
well as current interest in its experimental observations [9].
One problem in defining the HE for wave packets is that
one cannot simply fix the shape of the incident pulse and
increase the width of the barrier [4,5], since eventually the
transmission will become dominated by the momenta passing
over the barrier, for which Eq. (1) no longer holds. One can

make the pulse ever narrower in the momentum space, but
then there is no guarantee that the spatial width σ of the
pulse need not become much greater than the advancement one
wants to detect. In this vein, the authors of Ref. [8] suggested
that the HE is an artifact of the stationary formulation of the
scattering theory and cannot be realized once localization of
the tunneling particle is taken into account. Their conclusions
appear to agree with those of Winful [2], who pointed out
that in a tunneling experiment the width of the incident wave
packet must exceed the size of the barrier. One can, however,
imagine an optimal case, where σ would be large enough
to justify the approximation (1), yet always smaller than the
expected advancement d. If so, one would be able to observe
the advancement associated with the HE in a single tunneling
event.

A similar problem arises in the seemingly different context
of the so-called weak measurements [10–15]. There one
measures the value of an operator Â using a pointer whose
initial position is uncertain, so as not to perturb the measured
system. If the uncertainty is large, the mean of the meter’s
readings coincides with the real part of the the weak value of
Â, 〈A〉W . This may lie well outside the spectrum of Â or even
tend to infinity, and one’s wish is to observe such an “unusual”
value. Often the spread of the readings exceeds Re〈A〉W , thus
requiring a large number of trials before the value can be
established. If, on the other hand, the large spread can be
made significantly smaller than Re〈A〉W , a single measurement
would yield information about 〈A〉W . The authors of [11,12]
gave a possible recipe for constructing such measurements,
which they described as “weak” but not “really weak.” Analogy
between tunneling times and weak values has been studied
in [16–19]. Discussion of causality in barrier penetration can
be found in [20].

The purpose of this paper is to introduce an amplitude
distribution for the phase time τphase or, rather for the spacial
delay associated with τphase, to demonstrate that locating
the transmitted particle amounts to a weak measurement of
this delay, and prove that this measurement is of the “not
really weak” kind mentioned above. The rest of the paper is
organized as follows. In Secs. II and III, we establish formal
equivalence between wave packet transmission and quantum
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measurements. In Sec. IV, we use the analogy to analyze a
weak measurement in the limit where the weak value tends
to infinity. In Sec. V, we consider a special case where such
a measurement is not “really weak.” In Sec. VI, we apply
the analysis to the Hartman effect in tunneling. Section VII
contains our conclusions.

II. WAVE-PACKET TRANSMISSION AS A QUANTUM
MEASUREMENT

Consider a one-dimensional wave packet with a mean
momentum p0 incident from the left on a short-range potential
W (x). Its transmitted part is given by (we put h̄ = 1)

�T (x,t) =
∫

T (p)C(p) exp[ipx − iε(p)t]dp, (3)

where p is the momentum, T (p) is the transmission amplitude,
C(p) is the momentum distribution of the initial pulse, and
the energy ε(p) is p2/2m for massive nonrelativistic particles
or cp (c is the speed of light) for the photons. The freely
propagating [W (x) = 0,T (p) = 1] state is given by

�0(x,t) =
∫

C(p) exp[ipx − iε(p)t]dp. (4)

Writing T (p) as a Fourier integral,

T (p) =
∫

ξ (y) exp(−iyp)dy, (5)

we note that upon transmission, an incident plane wave
exp(ip0x) becomes a superposition of plane waves with var-
ious spacial shifts, T (p0) exp(ip0x) = ∫

dyξ (y) exp[ip0(x −
y)]dy. Thus, the value of the spacial shift (delay relative to
free propagation) with which a particle with a momentum p0

emerges from a barrier is indeterminate unless the superpo-
sition is destroyed. Such a destruction can be achieved by
employing a wave packet with a finite spacial width. Inserting
Eq. (5) into (3), we write down the transmitted pulse as a
superposition of freely propagating states with all possible
spacial shifts y:

�T (x,t) =
∫

ξ (y)�0(x − y,t)dy. (6)

If the potential W (x) is a barrier, and, therefore, does not
support bound states, the causality principle requires ξ (y) must
vanish for all y > 0 [20]. Thus, the Fourier spectrum of T (p)
(5) contains no positive shifts, and in Eq. (6), there are no
terms advanced with respect to free propagation.

In the following, we will consider an incident pulse with a
Gaussian envelope of a width σ and a mean momentum p0,
2/σ << p0, located at t = 0 far to the left of the barrier at
some x0 < 0. Thus, in Eq. (3), we have

C(p) = σ 1/2/(2π )3/4 exp[−(p − p0)2σ 2/4 − i(p − p0)x0],

(7)

and the free state in Eq. (4) takes the form

�0(x,t) = exp[ip0x − iε(p0)t]G0(x,t), (8)

where G0(x,t) is a time dependent envelope, whose explicit
form is given in the Appendix A. Finally, with the help of (8)
and (6), we rewrite Eq. (3) as

�T (x,t) = exp[ip0x − iε(p0)t]
∫

η(y,p0)G0(x − y,t)dy,

η(y,p0) = exp(−ip0y)ξ (y). (9)

Next, we demonstrate that by finding the transmitted particle
at a point x, we do, in fact, perform a quantum measurement
of the shift y for a particle with the momentum p0. In order
to do so, we compare Eq. (9) with the one describing a von
Neumann quantum measurement on a pre- and post-selected
system.

III. QUANTUM MEASUREMENT AS TRANSMISSION

Consider next a freely moving pointer with a position x

and an energy ε(p) = p2/2m. The pointer is prepared in a
Gaussian state (7) so that its free evolution is described by
Eq. (8). At a time t = ti , the pointer is briefly coupled to a
quantum system which is, at that time, in some state |ψI 〉.
Our aim is to measure the system’s variable represented by
an operator Â, so that (neglecting for simplicity the system’s
Hamiltonian) we write the total Hamiltonian as

H(t) = −i∂xÂδ(t − ti) − (2m)−1∂2
x , (10)

where δ(z) is the Dirac delta. After a brief interaction at t ≈ ti ,
the pointer becomes entangled with the system [21], and at
some t > ti , the meter is read, i.e., the pointer position is
accurately determined. Taking into account the pointer’s free
evolution, for the state of the composite system |�(t)〉, we
have

〈x|�(t)〉 =
∑

n

〈n|ψI 〉�0(x − An,ti)|n〉, (11)

where An and |n〉 are the eigenvalues and eigenstates of the
operator Â, Â|n〉 = An|n〉. Postselecting the system in some
final state |ψF 〉 = ∑

n 〈n|ψF 〉|n〉 purifies the state of the meter,
which then becomes

�F←I (x,t) = exp[ip0x − iε(p0)t]

×
∫

ηF←I (y,p0)G0(x − y,t)dy, (12)

with

ηF←I (y,p0) ≡ exp(−ip0y)

×
∑

n

〈ψF |n〉〈n|ψI 〉δ(y − An), (13)

which has the same form as (9)
Defining a state-dependent “transmission amplitude”

T F←I (p) ≡
∫

ηF←I (y,p0) exp[−i(p − p0)y] dy

=
∑

n

〈ψF |n〉〈n|ψI 〉 exp(−iAnp) (14)

allows us rewrite Eq. (12) also in a form similar to Eq. (3):

�F←I (x,t) =
∫

T F←I (p)C(p) exp[ipx − iε(p)t] dp, (15)
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where C(p) is given in Eq. (7). The Fourier series of T F←I (p)
(14) only contains frequencies An from the spectrum of Â and,
since T F←I (p) is a transition amplitude for the Hamiltonian
(10), we have

|T F←I (p)| � 1. (16)

Both representations, [(3),(15)] and [(9),(12)], are useful.
Equations (12) and (9) highlight the nature of the measured
quantity and the accuracy of the measurement. In particular,
using a von Neumann measurement, the meter determines
the value of Â to accuracy σ . If the system is postselected
in |ψF 〉 and no meter is employed, possible values of A,
An, are distributed with probability amplitudes 〈ψF |n〉〈n|ψI 〉,
and the exact value of A remains indeterminate. With the
meter switched on, only those values of A which fit under
the Gaussian G0 centered at the observed value x contribute
to the amplitude �F←I (x,t). Thus, finding the pointer at
x guarantees that A has the value roughly in the interval
[x − σ,x + σ ]. Similarly, in Eq. (9), finding the tunneling
particle at a location x determines to accuracy σ the delay y.
Again, for a plane wave with a momentum p0, the value of y is
indeterminate, its amplitude distribution is η(y,p0), and only
those values of y which fit under G0 centered at x contribute
to �T (x,t) in Eq. (9).

For their part, Eqs. (3) and (15) show that both wave-
packet transmission and a quantum measurement explore local
behavior of the correspondening transmission amplitude, T (p)
or T F←I (p), in a region of the width σp = 2/σ around p0.
They are, therefore, convenient for studying the limit in which
the momentum width of the initial Gaussian σp becomes small,
i.e., the case of a nearly monochromatic initial pulse or an
initial meter state broad in coordinate space. More discussion
of the attributes of the measurement formalism can be found
in the Appendix B, and in the next section, we consider such
inaccurate or weak quantum measurements.

IV. WEAK QUANTUM MEASUREMENT

If the momentum width of the initial meter’s state σp is
small, expanding ln T F←I (p) around p = p0, we arrive at an
analog of Eq. (1):

�F←I (x,t) ≈ T F←I (p0) exp[iĀp0]�0(x − Ā(p0),t), (17)

where

Ā(0) = Ā1 + iĀ2 ≡ i

T F←I (p0)

∂T F←I (p0)

∂p

=
∫

yηF←I (y,p0)dy/

∫
ηF←I (y,p0)dy. (18)

The second equality in (18) defines Ā(p0) as an “im-
proper” average [22] calculated with the amplitude distribution
ηF←I (y,p0). For p0 = 0, the complex valued Ā(p0) coincides
with the “weak value” of A, 〈A〉W , introduced in [11]:

Ā(0) =
∑

n

An〈ψF |n〉〈n|ψI 〉/〈ψF |ψI 〉 = 〈A〉W . (19)

Thus, if approximation (17) holds, the final state of the
meter is a reduced copy of its freely propagating state �0

translated into the complex coordinate plane by Ā(p0). A von

Neumann measurement typically employs a heavy pointer at
rest, prepared in a the Gaussian state (8) centered at the origin:

m → ∞, p0 = 0, x0 = 0, (20)

which will be assumed throughout the rest of this section. With
(20), the Gaussian pointer state (17) becomes

�F←I (x,t) ≈ K exp(2iĀ2x/σ 2) exp[−(x − Ā1)2/σ 2],

(21)

K ≡ T F←I (0)(2/πσ 2)1/4 exp[(Ā2
2 − 2iĀ1Ā2)/σ 2],

so that the complex translation results in a real coordinate shift
ReĀ and a momentum “kick” of 2Ā2/σ

2. This is a known
result (see, for example, Ref. [13]), and from it we proceed to
the main question of this section.

It is well known [10–12] that weak values can exhibit
unusual properties. For example, 〈A〉W could be arbitrarily
large for initial and final states that are nearly orthogonal,
〈ψF |ψI 〉 ≈ 0, even though the spectrum of Â is bounded. We
ask next whether such large shifts can, in principle, be observed
with a pointer state whose width σ is less than Re〈A〉W , so that
the uncertainty in the final pointer position is smaller than the
mean measured value? We note that one can always justify
the approximation (17) by making the pointer state narrow in
the momentum space, i.e., by sending σ → ∞, but there is no
guarantee that the spread in the meter reading will not exceed
Re〈A〉W , however large it may be.

As a simple example, consider the case where one measures
the z component of a spin 1/2, Â = σ̂z, pre- and post-
selected in the states |ψI 〉 = (|↑〉 + |↓〉)/21/2 and |ψF 〉 =
[|↑〉 − (1 − d−1|↓〉)]/N1/2, N (d) ≡ 1 + (1 − d−1). Here the
parameter d controls the overlap 〈ψF |ψI 〉, so that as d → ∞,
we have 〈ψF |ψI 〉 → 0. With the help of Eqs. (14) and (18), we
easily find T F←I (p) = [2i sin(p) − exp(ip)/d]/(2N )1/2 and
Ā = 2d − 1. Expanding the logarithm of the transmission
amplitude in a Taylor series around p = 0, lnT F←I (p) =∑

n=0(n!)−1∂n ln T F←I (0)/∂pnpn, we note that as d → ∞,
∂n ln T F←I (0)/∂pn → dn. The range of p’s contributing to
the integral (15) is determined by the momentum width of
the initial state, σp, so that we have p � 1/σ . Thus, we
can truncate the above Taylor series and, therefore, satisfy
the approximation (17), only if d/σ << 1. Consequently,
no matter how large the weak value, the coordinate width
of the initial pointer state must be even larger. This weak
measurement is, in terms of Ref. [12], really weak.

V. WEAK QUANTUM MEASUREMENT WHICH IS
“NOT REALLY WEAK”

A “not really weak” measurement can be realized for a
system whose Hilbert space has sufficiently many dimensions
as follows. One can choose initial |I 〉 and final |F 〉 states of
the system in such a way that in some vicinity of p = 0, the
transmission amplitude can be approximated as [23]

T F←I (p) ≈ B exp[−iF (p)d], B = const,
(22)

F (p) = F1(p) + iF2(p), F2(0) < 0,
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where d is, as before, a large parameter and F (n) ≡ ∂nF/∂pn,
n = 0,1,2, . . ., are all of order of unity. As in the first example,
the weak value of Â tends to infinity as d → ∞:

〈A〉W = d[F ′
1(0) + iF ′

2(0)]. (23)

In Eq. (15), we have p � 1/σ , and so may choose

σ = γ d1/2+ε/2, γ < 1 = const., 0 < ε � 1, (24)

so that the width σ , although large for a large d, is
always smaller than Re〈A〉W = F ′

1(0)d. (For ε = 1, we
have σ/ReĀ = γ ; otherwise, limd→∞ σ/ReĀ = 0.) Return-
ing to the Taylor expansion of ln T F←I (p), −iF (p)d =
−id

∑
n=0(n!)−1F (n)(0)pn, we note that while the first two

terms are proportional to d and d1/2−ε/2, respectively, the
higher order terms behave as d1−n(ε+1)/2, n = 2,3, . . ., and
can, therefore, be neglected as d → ∞. With this, the Gaussian
meter state (21) becomes

limd→∞�F←I (x,t)

≈ K exp[2ixF ′
2(0)/(γ 2dε)]

× exp{−[x − F ′
1(0)d]2/γ 2d1+ε}, (25)

K = B[2/(πγ 2d1+ε)]1/4 exp{−iF (0)d

+d1−ε[2iF ′
1(0)F ′

2(0) + F̄ ′
2(0)2]/γ 2}.

In Eq. (25), we have, apart from a constant and a phase factor,
a reduced copy of the original Gaussian shifted by a distance
exceeding its width. This weak measurement is, therefore, not
really weak.

Finally, to demonstrate that as d → ∞, �F←I does indeed
build up from the momenta in an ever narrower vicinity of
p = 0, it is helpful to evaluate the contribution to the integral
(15) from the tail of the momentum distribution A(p), i.e.,
from p’s greater then some fixed pmin:

I ≡
∣∣∣∣
∫ ∞

pmin

exp(−p2σ 2/4)T F←I (p) exp(ipx)dp

∣∣∣∣
�

∫ ∞

pmin

exp(−p2σ 2/4)|T F←I (p)|dp (26)

�
∫ ∞

pmin

exp(−p2σ 2/4)dp = π1/2σ−1erfc(σpmin/2),

where erfc(z) is the complementary error function, and we
have used Eq. (16) in going from the second inequality to the
third. Using the large argument asymptotic of erfc(z) shows
that as d → ∞,

I ∼ (γ 2pmind
1+ε)−1 exp(−d1+εγ 2p2

min/4). (27)

For any 0 < ε � 1, and d → ∞, I can, therefore, be neglected
in comparison with �F←I (x) ∼ d−(1+ε)/4 exp[−|F2(0)|d],
which proves the above point.

Rather than proceed with the construction of a weak von
Neumann measurement corresponding to (22), we continue
with the analysis of tunneling across the potential barrier.
Equivalence between the two cases has been demonstrated
in Secs. II and III.

VI. HARTMAN EFFECT WITH WAVE PACKETS

Consider the tunneling of a Gaussian wave packet (8)
representing a nonrelativistic particle of unit mass m = 1
across a rectangular potential barrier of a height W and width d.
The frequently quoted transmission amplitude is given by

T (p) = 4ipκ exp(−ipd)

(p + iκ)2 exp(κd) − (p − iκ)2 exp(−κd)
, (28)

where κ = (2W − p2)1/2. For a fixed initial momentum p0

and a height W , p2
0/2m < W , we increase the barrier width

d in order observe the advancement of the transmitted pulse
relative to free propagation. As in the case of a not really weak
quantum measurement, we wish to find a condition where the
advancement exceeds the wave-packet width by as much as
possible. As d → ∞, and for p ≈ p0, we have

T (p) ≈ 4ip0κ0

(p0 + iκ0)2
exp[−i(p − iκ)d],

(29)
κ0 = (

2W − p2
0

)1/2
,

which clearly has the form (22) with F (p) = [p − iκ(p)], and
we can use Eq. (24) to define the wave-packet width σ in such
a way that it increases with the barrier width d while always
remaining smaller than d. The only difference with the case
analyzed in Sec. V is that now the tunneling particle plays the
role of a pointer whose mass m = 1 and mean momentum p0

are both finite. In particular, in the language of measurement
theory, Eq. (2) which now reads,

ȳ(p0) ∼ d + ip0d/κ0, (30)

gives the weak value of the shift relative to free propagation,
experienced by a tunneling particle with momentum p0.

The weak value is of an unusual kind mentioned above:
Reȳ(p0) ∼ d lies far beyond the range −∞ < y � 0 allowed
by causality [20].

We note further that in Eq. (17), spreading of the wave
packet �0(x,t) can be neglected, since spreading results in
replacing initial width σ by a complex time dependent width
σ 2

t ≡ (σ 2 + 2it) [cf. Eq. (A2)]. We wish to compare positions
of the freely propagating and tunneling pulse roughly at the
time it takes the free particle to cross the barrier region, i.e.,
at t ∼ d/p0. Thus, as d → ∞, we have σ 2

t ≈ γ 2d1+ε[1 +
2i/(dεp0)] ∼ γ 2d1+ε = σ 2. Equation (17) for the transmitted
Gaussian wave packet now reads

�T (x,t) ≈ K exp[ip0x − iε(p0)t] exp[2ip0X/(κ0d
εγ 2)]

× exp[−(X − d)2/(γ 2d1+ε)], (31)

K = T (p0)[2/(πγ 2d1+ε)]1/4

× exp
[(

p2
0/κ

2
0 − 2ip0/κ0

)
d1−ε/γ 2

]
,

where

X(x,p0,x0,t) ≡ x − p0t − x0 (32)

is the particle’s position relative to the center of the
freely propagating pulse. It is readily seen that the
peak of the transmitted density, ρT (x,t) ≡ |ψT (x,t)|2 ≈
|K|2 exp[−2(X − d)2/(γ 2d1+ε)] is advanced, as desired, by
a distance ∼d exceeding its width ∼γ d (1+ε)/2/

√
2. Note that
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FIG. 1. (Color online) Modulus (thick solid) and real part
(thick dashed) of the transmitted pulse, GT (x,t) ≡ exp[−ip0x −
iε(p0)t]ψT (x,t), multiplied by a (large) factor Z2 = exp[i(p0 −
ik0)d]. The same quantities evaluated using Eq. (31) are shown by the
dotted-dotted- and dotted-dashed lines, respectively. Also shown are
the initial (solid) and final (dashed) free envelopes (A2) multiplied
by a factor Z1 = 200. Other parameters are W 1/2d = 103, ε = 0.85,
W 1/2−εγ = 0.8, W−1/2p0 = 1, and Wt = W (d + 10σ )/p0 = 5765.

Eqs. (26) and (27) guarantee that the contributions from
the momenta passing above the barrier, p > pmin = √

2W ,
are negligible and the transmission is always dominated by
tunneling, rather than by the momenta passing above the
barrier.

The advancement mechanism relies on the wave packet
exploring local behavior of the transmission amplitude
T (p) which oscillates around p = p0 with the period τp =
2π/Reȳ(p0) = 2π/d. The number of times T (p) must oscil-
late within the momentum width of the pulse σp = 2/σ in
order to ensure a given ratio of the spacial width of the pulse
to the observed advancement, ν = σ/d, is given by

nosc ≡ σp/τp = 1/πν ≈ d (1−ε)/2/πγ. (33)

The cost of advancement (31) in terms of the tunneling
probability P T for a particle with an energy equal to half
of the barrier height, P T ≡ ∫ |ψT (x,t)|2dx ∼ |T (p0)|2 ∼
exp(−2W 1/2d), can be estimated by recalling that the approx-
imation (1) requires |2dσ−2F ′′(p0)| = 2dσ−2∂2κ(p0)/∂p2 =
4(d/σ )2/(W 1/2d) << 1. Thus, for a bound on P T , given the
value of the ratio ν, we have

P T (ν) << exp(−8/ν2). (34)

We conclude by giving in Fig. 1 a comparison between
the exact (3) and approximate (31) forms of the tunneled wave
function for a broad, W 1/2d >> 1, rectangular potential barrier.

VII. CONCLUSIONS

In summary, spacial delay in transmission is conveniently
analyzed in terms of quantum measurement theory. Classically,
a particle with a momentum p0 passing over a potential barrier
experiences a unique delay y (an advancement if y > 0)
relative to the free propagation. This delay can, if one wishes,
be used to determine the duration τ the particle has spent in
the barrier region. Quantally, there is no unique spacial delay
for tunneling with a momentum p0, but rather a continuous
spectrum of possible delays, which for a barrier extends from
−∞ to 0, −∞ < y � 0. Finding the particle with a mean

momentum p0 at a location x, one effectively performs a
quantum measurement of the delay y. This is evident from
comparing the state for the transmitted pulse (9) and the
final state of the pointer in a von Neumann measurement
with postselection (12). The physical conditions are clearly
different. A von Neumann measurement requires coupling to
an additional (pointer) degree of freedom, while a tunneling
particle “measures itself,” with the role of the initial meter state
played by the envelope of the wave packet, superimposed on a
plane wave with momentum p0. Yet a further analogy is valid.
Just as the width of the initial pointer state determines the
accuracy of a von Neumann measurement, the spacial width
of the incident wave packet σ determines the uncertainty with
which one can know the delay. For a large σ , the measurement
is weak and is, therefore, capable of producing unusual results
outside the spectrum of available delays. Spacial advancement
of the transmitted pulse, while causality limits the spectrum
of delays to y � 0, is just another example of such an unusual
value. Quantally, there is no reason for converting it into an
estimate for the duration spent in the barrier or subbarrier
velocity. Yet even if such a conversion is made, a tunneling
electron can be said to “travel at a speed greater than c” no
more than a spin 1/2 for which a weak measurement of the
z component finds a value of 100 [10] can be said “to be a
spin 100.”

Mathematically, the Hartman effect reflects a general
property of the weak values which become infinite as the
probability to reach the final (in this case, transmitted) state
vanishes [cf. Eq. (19)]. In Section VI, we have demonstrated
that the measurement of the delay as the barrier width d → ∞
is not just weak, but also belongs to the class of good precision
measurements which “are not really weak.” Contrary to the
suggestions of Refs. [2,8], if the barrier is broad, one can
always find a wave packet with a width large but smaller
than d, which would tunnel and exhibit an advancement by
approximately the barrier width. This is a consequence of the
exponential behavior of the transmission amplitude in Eq. (29)
and some properties specific to a Gaussian wave packet. We
note also that in our estimate the width σ must increase with
d at a rate no slower than ∼d1/2. This agrees with the findings
of Ref. [5], whose authors analyzed the Hartman effect using
flux-based arrival times. It also agrees qualitatively with the
best relative uncertainty of above 1/N1/2, achievable in a weak
measurement on a system consisting of a large number N >> 1
of spins 1/2 [11,12]. Thus, just as in the case of a good preci-
sion weak measurement, a single tunneling event may suffice to
observe the Hartman effect. One would also have to wait a long
time for that single event, as the tunneling probability rapidly
decreases with the decrease of the ratio σ/d. We will follow
the authors of [12] in assuming that whoever might perform
the experiment is sufficiently patient and has time on his/her
hands.
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APPENDIX A: SOME GAUSSIAN INTEGRALS

Evaluating Gaussian integral (4) with C(p) given by Eq. (7)
yields

G0(x,t,p0) = [
2σ 2/πσ 4

t

]1/4
exp

[ − (x − p0t − x0)2/σ 2
t

]
,

(A1)

where for a particle of a unit mass σ 2
t ≡ (σ 2 + 2it) and ε(p) =

p2/2. For a photon, ε(p) = cp, we have

G0(x,t,p0) = [2/πσ 2]1/4 exp[−(x − ct − x0)2/σ 2]. (A2)

APPENDIX B: CONNECTION WITH THE
TWO-STATE FORMALISM

In [12] (see also references therein), the authors have
formulated a time-symmetric description for a system pre-
and post-selected in the states |ψI 〉 and |ψF 〉 at some times
t1 and t2, respectively. Evolving |ψI 〉 and |ψF 〉 forward
and backward in time to the moment ti when the system
interacts with an external meter yields what the authors of [12]
called a two-state vector, 〈Û−1(t2,ti)ψF ||Û (ti ,t1)ψI 〉, where

Û (t,t ′) is the system’s evolution operator. The vector contains
sufficient information to describe the statistical properties of
the observed system at ti [12]. For example, for Û ≡ 1, the
weak value (19) of an operator Â takes the simple form
AW = 〈ψF |Â|ψI 〉/〈ψF |ψI 〉. A similar description can also
be applied to the case of barrier penetration. One recalls that
T (p0) is a transmission amplitude for a particle preselected in
the plane wave |p0〉 traveling to the right, 〈x|p0〉 = exp(ip0x),
at some t1 in the distant past, and then postselected in the same
state at some t2 in the distant future,

exp[−iε(p0)(t2 − t1)]T (p0) = 〈p0|Û (t2,t1)|p0〉, (B1)

where Û (t2,t1) may include effects of adiabatic switching of
the barrier potential. The postselection excludes the possibility
of reflection, i.e., the particle ending up in the state | − p0〉.
With |ψI 〉 and |ψF 〉 thus defined, one can introduce a two-state
vector 〈Û−1(t2,t)p0||Û (t,t1)p0〉 for any t1 � t � t2. However,
an immediate advantage of such a description is not clear since
transmission, unlike an impulsive von Neumann interaction,
is a continuous process and no simple expression, e.g., for the
weak shift (2), is obtained as a result.
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