
PHYSICAL REVIEW A 84, 022102 (2011)

Relaxed Bell inequalities and Kochen-Specker theorems

Michael J. W. Hall
Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200, Australia

(Received 23 February 2011; published 2 August 2011)

The combination of various physically plausible properties, such as no signaling, determinism, and
experimental free will, is known to be incompatible with quantum correlations. Hence, these properties must
be individually or jointly relaxed in any model of such correlations. The necessary degrees of relaxation are
quantified here via natural distance and information-theoretic measures. This allows quantitative comparisons
between different models in terms of the resources, such as the number of bits of randomness, communication,
and/or correlation, that they require. For example, measurement dependence is a relatively strong resource for
modeling singlet-state correlations, with only 1/15 of one bit of correlation required between measurement
settings and the underlying variable. It is shown how various “relaxed” Bell inequalities may be obtained,
which precisely specify the complementary degrees of relaxation required to model any given violation of a
standard Bell inequality. The robustness of a class of Kochen-Specker theorems, to relaxation of measurement
independence, is also investigated. It is shown that a theorem of Mermin remains valid unless measurement
independence is relaxed by 1/3. The Conway-Kochen “free will” theorem and a result of Hardy are less robust,
failing if measurement independence is relaxed by only 6.5% and 4.5%, respectively. An appendix shows that
existence of an outcome-independent model is equivalent to existence of a deterministic model.
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I. INTRODUCTION

Bell inequalities and Kochen-Specker theorems demon-
strate that at least one very plausible property (such as no
signaling, determinism, or measurement independence) does
not hold in a world that exhibits quantum correlations [1–12].
Any model or simulation of quantum systems must, therefore,
give up at least one such property. But how much must be given
up? Is 20% indeterminism sufficient to maximally violate a
Bell inequality? Is a combination of 5% signaling and 10%
measurement dependence enough to simulate singlet-state
correlations?

The question of the degree to which such properties
must be relaxed is of fundamental interest in constructing
physical theories. It is also relevant to understanding so-called
“quantum nonlocality” as a physical resource in tasks such
as quantum computation and secure quantum cryptography.
For example, singlet-state correlations can be modeled by
giving up 100% of determinism [13], or 14% of measurement
independence (related to the freedom to choose experimental
settings) [14]. Hence, indeterminism appears to be a weaker
“nonlocal” resource than experimental free will for simulating
the singlet state.

The main aim of this paper is to carefully define and
quantify the degrees to which certain physical properties hold
for a given model of correlations, and show how these may be
applied to determine (i) optimal singlet-state models, (ii) the
minimal degrees of relaxation required to simulate violations
of various Bell inequalities, and (iii) the relative robustness of
Kochen-Specker theorems.

The physical properties considered are precisely those
which are brought into question by the existence of quantum
correlations. The quantitative nature of the results helps
considerably to clarify the nature of these correlations, as well
the resources required for their simulation.

The general form of underlying (or “hidden variable”)
models of statistical correlations is recalled in Sec. II, and

the degrees to which such underlying models possess a
number of physically plausible properties, such as determin-
ism, outcome independence, no signaling, and measurement
independence, are defined and discussed in Secs. III– V.
Both statistical and information-theoretic-based measures
are considered. These sections, together with Appendix A,
also demonstrate that the properties of determinism and
outcome independence are effectively equivalent, and relate
the degree of communication required to implement a given
nonlocal model to the amount of signaling permitted by the
model.

In Sec. VI, it is demonstrated that there are three canon-
ical models of singlet-state correlations, corresponding to
the minimal degrees to which one of the above-mentioned
properties must be relaxed while maintaining the others. The
corresponding information-theoretic resources required are
1 bit of randomness generation or outcome correlation, 1 bit
of signaling or communication, and 1/15 of one bit of corre-
lation between the underlying variable and the measurement
settings.

It is shown in Sec. VII, together with Appendices B and
C, how to derive “relaxed” Bell inequalities. These precisely
quantify the individual and/or joint degrees of relaxation
required to model a given violation of a standard Bell in-
equality. Examples include the joint relaxation of determinism,
no signaling, and measurement independence for the Bell–
Clauser-Horne-Shimony-Holt (Bell–CHSH) inequality [2],
verifying a recent conjecture [15]; the relaxation of outcome
independence for the same inequality; and the relaxation
of indeterminism and no signaling for a form of the I3322

inequality [6].
Section VIII shows how local deterministic models may

be obtained for the perfect correlations underlying mem-
bers of a strong class of Kochen-Specker theorems [9–12].
These models require the relaxation of measurement inde-
pendence, and the minimal degree of relaxation quantifies
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the relative robustness of such theorems. It is found that a
version due to Mermin [10] is the most robust, requiring
relaxation by 1/3. Conclusions are given in Sec. IX.

II. UNDERLYING MODELS

Consider a given set of statistical correlations {p(a,b|x,y)},
where the pair (a,b) labels the possible outcomes of a
joint experiment (x,y), for some fixed preparation procedure.
Any underlying model of these correlations introduces an
underlying variable λ on which the correlations depend, which
is typically interpreted as representing information about the
preparation procedure. From Bayes theorem, one has the
identity

p(a,b|x,y) =
∫

dλ p(a,b|x,y,λ) p(λ|x,y), (1)

with integration replaced by summation over any discrete
ranges of λ. A given underlying model specifies the type
of information encoded by λ, and the underlying probability
densities p(a,b|x,y,λ) and p(λ|x,y).

For example, the standard Hilbert space model of quantum
correlations represents the underlying variable by a density
operator ρ and the joint measurement setting by a probability
operator measure {Exy

ab }, with

p(a,b|x,y,ρ) = tr
[
ρE

xy

ab

]
,p(ρ|x,y) = δ(ρ − ρ0). (2)

One may alternatively use a pure state model, of the form

p(a,b|x,y,ψ) = 〈ψ |Exy

ab |ψ〉,p(ψ |x,y) = p0(ψ),

where λ is restricted to the set of unit vectors {ψ} on the Hilbert
space, and the models are related by ρ0 ≡ ∫

dψ p0(ψ)|ψ〉〈ψ |.
A given underlying model may or may not satisfy var-

ious physically plausible properties, such as no signaling,
determinism, outcome independence, etc. The violation of
Bell inequalities and Kochen-Specker theorems, by certain
quantum correlations, implies that at least one such property
must be relaxed by any model of these correlations. The
necessary degrees of relaxation are the central concern of this
paper and help both to clarify and quantify the nonclassical
nature of quantum entanglement.

These properties are defined in Secs. III–V below, and
natural measures of the degree to which they hold, for a given
model, are defined. These measures can generally be expressed
in terms of the variational distance between two probability
distributions P and Q, D(P,Q) := ∑

n |P (n) − Q(n)|, or in
terms of Shannon entropy and mutual information. While
the distance measures are typically easier to work with, the
information-theoretic measures have the advantage of directly
quantifying various resources, such as randomness, correlation
information, and communication capacity.

III. DETERMINISM AND OUTCOME INDEPENDENCE

A. Physical significance

Determinism is the property that all outcomes can be
predicted with certainty, given knowledge of the underlying
variable λ, i.e., p(a,b|x,y,λ) = 0 or 1. This is easily shown

to be equivalent to the property that all underlying marginal
probabilities are deterministic, i.e., to

p(a|x,y,λ), p(b|x,y,λ) ∈ {0,1}. (3)

In contrast, outcome independence is the property that, given
knowledge of the underlying variable λ, the joint measurement
outcomes are uncorrelated [16], i.e.,

p(a,b|x,y,λ) = p(a|x,y,λ) p(b|x,y,λ). (4)

Thus, any observable correlations arise only as a consequence
of ignorance of the underlying variable.

Any deterministic model is trivially outcome independent
(see Appendix A), and so it may appear that determinism is a
more restrictive property. However, as shown in Appendix A,
the difference between these two properties is largely cosmetic:
For any set of statistical correlations {p(a,b|x,y)}, there exists
an underlying deterministic modelM if and only if there exists
an underlying outcome-independent model M′. Furthermore,
M satisfies no-signaling or measurement independence if and
only if M′ does.

At least two plausible arguments may be made for the
existence of an underlying deterministic (and hence outcome-
independent) model of physical correlations. The first is
based on a “realist” interpretation of probability, in which
the assignation of probabilities to measurement outcomes
merely reflects ignorance as to an underlying “real state of
affairs.” This implies an underlying deterministic model for
the outcomes, where p(λ|x,y) in Eq. (1) describes ignorance
of the precise state of affairs.

This argument is easily countered by adopting a nonrealist
interpretation of probability, with measurement considered to
be an act of creation rather than one of revelation [17,18].
Indeed, Bohr stated that “we have in each experimental
arrangement . . . not merely to do with the ignorance of the
value of certain physical quantities, but with the impossibility
of defining these quantities in an unambiguous way [18].”
For example, one may adopt a Bayesian interpretation of
probability, where probabilities reflect consistent methods for
making predictions on the basis of given knowledge [19],
without requiring the existence of some underlying perfect
knowledge.

The second main argument for determinism is based on the
existence of perfect correlations. In particular, as first pointed
out by Einstein, Podolsky, and Rosen [20], perfect quantum
correlations can exist between the outcomes corresponding to a
given joint measurement setting (x,y). Thus, knowledge of the
outcome for setting x immediately implies knowledge of the
outcome for setting y, and vice versa. If no signaling between
the two measurement regions is permitted, it immediately
appears that the outcomes must have been predetermined;
how else could such a perfect correlation be realized? Since
quantum mechanics does not assign deterministic values to
these outcomes, some underlying model must then do so. This
argument was also used by Bell in obtaining the original Bell
inequality [1].

However, this argument may also be countered, even when
no signaling is assumed. For example, in the many-worlds
interpretation of quantum mechanics, the two observers may,
in fact, obtain random outcomes that do not always satisfy
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the predicted correlation, in which case they will simply
end up in different branches of the universal wave function,
unable to compare their inconsistent results [21]. In Bayesian
interpretations, the rebuttal is that the correlations are a
property of degrees of belief of observers (which may be
informed by quantum models), rather than of some physical
state per se, where any knowledge gained about one outcome
from the other outcome (e.g., due to a perfect correlation)
merely reflects a local and consistent updating of either
observer’s degree of belief [19].

B. Indeterminism and outcome dependence

The degree of indeterminism of an underlying model may
be defined as just how far away the marginal probabilities can
be from the deterministic values of 0 and 1 in Eq. (3). This is
the smallest positive number I , such that

p(a|x,y,λ), p(b|x,y,λ) ∈ [0,I ] ∪ [1 − I,1]. (5)

Thus, 0 � I � 1/2, with I = 0 if and only if the probabilities
are confined to {0,1} as per Eq. (3), i.e., if and only if the model
is deterministic [15,22].

A simple measure of outcome dependence O is the
maximum variational distance between an underlying joint
distribution and the product of its marginals, i.e.,

O := sup
x,y,λ

∑
a,b

|p(a,b|x,y,λ) − p(a|x,y,λ) p(b|x,y,λ)|. (6)

Thus, 0 � O � 2, and it follows immediately from Eq. (4)
that O = 0 if and only if outcome independence is satisfied.

As noted above, the properties of determinism and outcome
independence are closely related. For example, as shown in
Appendix A, for the particular case of two-valued outcomes,
one has the tight inequality

O � 4I (1 − I ) � 1. (7)

This inequality chain is saturated, for example, by the singlet
state of two qubits (see Sec. VI), and by nonlocal boxes [23].
In both cases, one has the maximum possible degrees of
indeterminism and outcome dependence, i.e., I = 1/2 and
O = 1.

C. Random bits and outcome correlation

Indeterminism corresponds to a degree of randomness.
Hence, a natural information-theoretic measure of indeter-
minism is given by the maximum entropy of the underlying
marginal probability distributions:

Crandom := sup
x,y,λ

{Hx,y,λ(A),Hx,y,λ(B)}, (8)

where Hx,y,λ(A) denotes the Shannon entropy of the outcome
distribution {p(a|x,y,λ)}. Thus, Crandom is the maximum
number of random bits that must be generated to simulate a
local outcome distribution, and Crandom = 0 for deterministic
models. Since there is an underlying marginal probability
arbitrarily close to I , one has the lower bound

Crandom � h(I ), (9)

with equality for the case of two-valued outcomes,
where

h(x) := −x log2 x − (1 − x) log2(1 − x). (10)

A corresponding information-theoretic measure of outcome
dependence is given by the maximum Shannon mutual
information between the outcomes:

Coutcome := sup
x,y,λ

Hx,y,λ(A : B)

= sup
x,y,λ

∑
a,b

p(a,b|x,y,λ)

× log2
p(a,b|x,y,λ)

p(a|x,y,λ)p(b|x,y,λ)
. (11)

This quantifies the maximum degree of correlation that is
present between measurement outcomes, given knowledge
of the underlying variable λ [24], and vanishes for models
satisfying outcome independence via Eq. (4).

One has the relations

Crandom � Coutcome � 1
2O2 log2 e, (12)

where the upper bound follows from Eq. (8) and the (nontight)
lower bound from Pinsker’s inequality [25]. For the case of
two-valued measurement outcomes, this lower bound can be
improved to the tight bound

Coutcome � 1 − h

(
1 + O

2

)
, (13)

in analogy to Eq. (9). In the standard Hilbert space model
of singlet-state spin correlations, the maximum possible
values for two-valued outcomes Crandom = Coutcome = 1 bit are
achieved (see Sec. VI).

IV. NO SIGNALING

A. Physical significance

The property of no signaling (or parameter independence)
is satisfied if the underlying marginal distribution associated
with one setting is independent of the other setting, i.e., if

p(a|x,y,λ) = p(a|x,y ′,λ),p(b|x,y,λ) = p(a|x ′,y,λ) (14)

for all joint settings (x,y), (x,y ′), and (x ′,y) of the model.
Thus, neither observer can affect the underlying measurement
statistics of the other via their choice of measurement setting.
Hilbert space models satisfy this property when the measure
in Eq. (2) has the tensor product form E

xy

ab = Ex
a ⊗ E

y

b .
There are two strong arguments for requiring physical

models to have the no-signaling property. The first applies
when the respective measurement settings are made in space-
like separated regions: Altering the underlying statistics of a
measurement in one such region, via varying a measurement
setting in the other region, would violate the principle of
relativistic causality and thus lead to the need to resolve various
paradoxes.

The second argument is that any signaling model un-
derlying quantum correlations would have to explain the
apparent “conspiracy” that quantum correlations are them-
selves nonsignaling. In particular, all nonzero shifts in the
underlying probability distributions, for any such underlying
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model, would have to average out to zero at the observable
level.

However, while relativistic causality is a natural as-
sumption, it still may be possible to consistently resolve
apparent paradoxes if it does not hold. Furthermore, it is
often possible to transform conspiracies into well-motivated
physical principles. Thus, for example, in the de Broglie–
Bohm model of quantum mechanics, one can either postulate
a typical universal initial state [26] or the existence of suitably
smooth initial conditions relative to some degree of coarse
graining [27].

B. Signaling

The degree of signaling is quite simply defined as the max-
imum possible shift in an underlying marginal probability for
one observer as the consequence of changing the measurement
setting of the other observer. More formally, one-way degrees
of signaling are defined by [15]

S1→2 := sup
{x,x ′,y,b,λ}

|p(b|x,y,λ) − p(b|x ′,yλ)|,

S2→1 := sup
{x,y,y ′,a,λ}

|p(a|x,y,λ) − p(a|x,y ′λ)|,

where a and b label measurement outcomes corresponding to
measurement settings x and y, respectively. Thus, for example,
S1→2 is the maximum possible shift in an underlying marginal
probability distribution for the second observer, induced via
changing a measurement setting of the first observer. If
S1→2 > 0 and λ is known, the first observer can, in principle,
communicate to the second observer merely by modulating
the local measurement setting.

The overall degree of signaling, for a given underlying
model, is defined by

S := max{S1→2,S2→1}. (15)

It follows that 0 � S � 1, and S = 0 for nonsignaling mod-
els [28].

The degrees of indeterminism and signaling I and S are
not fully independent of one another. For example, in a
deterministic model, the underlying marginal probabilities are
restricted to the values 0 and 1, and hence only a probability
shift of unity is possible between these values. More generally,
any shift S in a marginal probability value must keep it in
the range [0,I ] ∪ [1 − I,1], i.e., the value must either stay in
the same subinterval (S � I ) or cross the gap between the
subintervals (S � 1 − 2I ). Hence,

I � min{S,(1 − S)/2}. (16)

In contrast, the degree of outcome dependence O is completely
independent of S.

C. Signaling capacity

The maximum signaling capacity of a given model is, in
analogy to Eq. (15), given by

Csig := sup
λ,x,y

{Hx,λ(A : Y ),Hy,λ(B : X)}, (17)

where Hx,λ(A : Y ) denotes the Shannon mutual information
between the measurement outcome of the first observer and the

measurement setting of the second observer for fixed x and λ.
Thus, Csig directly quantifies the amount of information that
may be transmitted between observers via appropriate choices
of measurement settings [24].

The two measures S and Csig are related via [15]

Csig � 1 − h

(
1 + S

2

)
, (18)

analogous to Eqs. (9) and (13). Thus, nonlocal communication
is always possible, in principle, if S > 0.

For example, the standard Hilbert space model in Eq. (2)
is nonsignaling, with S = Csig = 0. On the other hand, for
the deterministic Toner-Bacon model of the singlet state [29],
one has S = 1 since the probability of one observer’s outcome
can flip between 0 and 1, in dependence on the choice of
measurement made by the first observer. Noting that the right-
hand side of Eq. (17) can not be greater than than 1 for two-
valued measurements, it follows via Eq. (18) that Csig = 1 bit
for this model.

D. Relation to communication models

The signaling capacity of a model is, prima facie, a different
concept to the degree of nonlocal communication required to
simulate a given model. The signaling capacity is the amount of
information that the observers are able to exploit, in principle,
for arbitrary communication once the model is in place. In
contrast, the communication capacity may be defined as the
amount of information required to be transmitted between
observers to simulate the model. The connections between the
two concepts are explored and clarified below in the context
of one-way communication models.

In a one-way communication model, a message m is
communicated from the first observer to the second observer,
which may depend on the measurement setting x and a shared
underlying variable λ [30]. The message is used to generate
outcomes for the second observer, such that Eq. (1) is satisfied.

For example, in the Toner-Bacon model of the singlet state,
one has [29] m = f (x,λ) := [sgn x · λ1][sgn y · λ2], where the
underlying variable λ ≡ (λ1,λ2) comprises two unit vectors
λ1 and λ2 uniformly distributed over the unit sphere. The
corresponding measurement outcomes are deterministically
generated as a = −sgn x · λ1 and b = sgn y · (λ1 + mλ2) for
spin directions x and y.

Since λ is known by both observers, the maximum
information obtainable from m, about the measurement setting
and outcome of the first observer, is given by the mutual
information Hλ(M : X,A). Since m is the only communication
used to generate the underlying correlations, this information
must subsume any information obtainable from the outcome b

for any measurement setting y of the second observer. Hence,

Hλ(M : X,A) � sup
y

Hy,λ(B : X,A) � sup
y

Hy,λ(B : X). (19)

The communication model will be said to be nonredundant if
strict equality holds.
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The communication capacity is defined to be the maximum
possible mutual information that is communicated about x and
a via the message m, i.e.,

Ccommun := sup
λ

Hλ(M : X,A). (20)

It follows immediately via Eqs. (17) and (19), recalling the
communication is one way only, that

Ccommun � Csig, (21)

with equality for nonredundant models.
For a deterministic communication model (such as the

Toner-Bacon model), the message and the outcome of the
first observer are completely specified by x and λ, i.e.,
p(m,x,a|λ) = δm,f (x,λ)δa,α(x,λ) p(x|λ) for suitable functions
f and α. Hence, Hλ(M : X,A) = Hλ(M), and Eq. (20)
simplifies to

Cdeterm commun = sup
λ

Hλ(M) (22)

for such models, i.e., the communication capacity is just the
maximum possible entropy of the message.

As an example, consider the Toner-Bacon (TB) model
described above. If the distribution of measurement settings of
the first observer p(x) is uniformly distributed, then Hλ(M) =
h(π−1 cos−1 λ1λ2), with h(x) defined as in Eq. (10) [29]. This
is equal to 1 bit for λ1λ2 = 0. This is the maximum possible
entropy Hλ in Eq. (22) since m only takes two values. Hence,
CTB

commun = 1 bit for this model. Note this also follows from
Eq. (21), since Csig = 1 from the previous section. An example
of an indeterministic communication model is discussed in
Sec. VII A.

Toner and Bacon have numerically calculated the average
of Hλ(M) over λ for the case of a uniform distribution p(x)
as ≈0.85 bits. As a consequence of the deterministic nature of
the model, one further finds

H (M,� : X) = 〈Hλ(M)〉 ≈ 0.85 bits (23)

for this case. In contrast, H (M : X) = 0 whenever the first
observer’s setting is independent of λ, i.e., p(x|λ) = p(x),
implying no information can be gained about this setting from
the knowledge of m alone.

V. MEASUREMENT INDEPENDENCE AND
EXPERIMENTAL FREE WILL

A. Physical significance

Measurement independence is the property that the dis-
tribution of the underlying variable is independent of the
measurement settings, i.e.,

p(λ|x,y) = p(λ|x ′,y ′) (24)

for any joint settings (x,y), (x ′,y ′). It is trivially satisfied by
the quantum model in Eq. (2). It follows immediately via
Bayes theorem that this property is equivalent to each of
p(x,y|λ) = p(x,y),p(x,y,λ) = p(x,y) p(λ) whenever there
is a well-defined distribution p(x,y) of joint measurement
settings [31].

Measurement independence, particularly in the form
p(x,y|λ) = p(x,y), is often justified by the notion of

experimental free will, i.e., that experimenters can freely
choose between different measurement settings irrespective
of the underlying variable λ describing the system. More
neutrally, if random number generators are used to determine
the measurement settings, it may be argued that the physical
operation of these generators should be independent of the
underlying variables describing the system that is to be
measured.

However, there is no a priori physical reason why the
behavior of experimenters or random generators should not
be statistically correlated with a given system to some
degree, reflecting a common causal dependence on some
underlying variable. For example, as has been clearly pointed
out in the quantum context by Brans [32], any fundamental
deterministic model underlying nature should certainly predict
the joint measurement settings (which are, after all, physical
phenomena) to the same degree as it predicts the measurement
outcomes.

Further, a violation of measurement independence is not
automatically inconsistent with apparent experimental free-
dom. For example, suppose two experimenters run a series of
experiments where they aim to choose their joint measurement
settings according to some predetermined joint probability
distribution p(x,y). For example, they might use random
number generators to choose between local settings according
to some factorizable joint distribution p(x,y) = p(x) p(y). It
might be argued that an underlying correlation between the
joint settings and some underlying variable λ could prevent
such a prearranged joint distribution from being realized.
However, this is not so: such a realization merely restricts
the joint distribution of x, y, and λ to be

p(x,y,λ) = p(λ|x,y) p(x,y), (25)

irrespective of whether or not measurement independence is
satisfied.

Finally, it may be mentioned that the violation of mea-
surement independence is natural for retrocausal models, in
which future measurement settings may influence the past
statistics of the underlying variable. While retrocausality is
counterintuitive in allowing two directions of time, Price has
shown it is surprisingly robust to paradoxes [33]. However,
of course, one does not require retrocausality to violate the
measurement independence property in Eq. (24) [32].

B. Measurement dependence and correlation

The degree to which an underlying model violates measure-
ment independence is most simply quantified by the variational
distance [14]

M := sup
x,x ′,y,y ′

∫
dλ |p(λ|x,y) − p(λ|x ′,y ′)|. (26)

Thus, M = 0 when Eq. (24) holds. In contrast, a maximum
value of M = 2 implies that there are at least two particular
joint measurement settings (x,y) and (x ′,y ′) such that, for
any physical state λ, at most one of these joint settings is
possible. Hence, the observers can exercise no experimental
free will whatsoever to choose between the joint settings
in this case. Such a model has been given by Brans for
any state of two qubits, where the underlying variable λ in
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fact completely determines the joint measurement settings
[32] (this model easily generalizes to any set of statistical
correlations). Individual degrees of measurement dependence
M1 and M2 may also be defined for each observer [14], but
will not be considered here.

The fraction of measurement independence corresponding
to a given model is defined by [14]

F := 1 − M/2. (27)

Thus, 0 � F � 1, with F = 0 corresponding the case where
no experimental free will can be exercised to choose between
two particular settings. Note that, geometrically, F also
represents the minimum degree of overlap between any two
underlying distributions p(λ|x,y) and p(λ|x ′,y ′).

A natural information-theoretic characterization of the de-
gree of measurement dependence has been recently proposed
by Barrett and Gisin [34]. In particular, the mutual information
between the measurement settings and the underlying vari-
able H (X,Y : �) = ∑

x,y

∫
dλ p(x,y,λ) log2

p(x,y,λ)
p(x,y) p(λ) quan-

tifies the degree of correlation between the joint measurement
setting and the underlying variable [24]. It is well defined
whenever the joint distribution p(x,y) exists [31], with
p(x,y,λ) given by Eq. (25).

For models satisfying measurement independence, there
is no correlation and the mutual information vanishes via
Eq. (24). In contrast, for the Brans model of two qubits
[32], where the hidden variable uniquely determines the joint
measurement setting, there is perfect correlation, and the
mutual information can become infinitely large [e.g., for the
case of randomly chosen settings with p(x,y) = 1/(4π )2].

The measurement dependence capacity of a given model
may be defined by maximizing the mutual information over
all possible distributions of measurement settings:

Cmeas dep := sup
p(x,y)

H (X,Y : �). (28)

Barrett and Gisin have shown the existence of deterministic
nonsignaling models of the singlet state with Cmeas dep � 1
bit [34]. It will be shown in the following section that a recently
proposed model of this type has Cmeas dep = 0.0663 bits, i.e., no
more than ≈1/15 of one bit of mutual information is required
to reproduce all spin correlations, for any distribution p(x,y)
of experimental settings.

VI. MINIMAL SINGLET-STATE MODELS

To indicate how the above-introduced measures allow
quantitative comparisons between different models, three
fundamental models of the singlet-state correlations

p(a,b|x,y) = 1
4 (1 − ab xy) (29)

are briefly examined here, where a,b = ±1 denote spin-up and
spin-down outcomes for measurements in directions x and y,
respectively.

Each of the three models corresponds to the minimum
possible relaxation of one of the properties of determinism,
outcome independence, no signaling, and measurement in-
dependence, while retaining the others. It will be seen that
measurement dependence is a particularly strong resource for
modeling quantum correlations.

A. Relaxing determinism

First, consider the class of singlet-state models that only
relax determinism and/or outcome independence, i.e., for
which S = M = 0. The canonical member of this class is the
standard Hilbert space (HS) model. As noted in Sec. III, this
model has the maximum possible degrees of indeterminism
and outcome dependence

IHS = 1/2,OHS = 1, (30)

as well as the maximum possible number of locally generated
random bits and outcome correlation

CHS
random = CHS

outcome = 1 bit. (31)

The above properties, in fact, hold for any model of
the singlet state satisfying no signaling and measurement
independence. That is, if only determinism (or outcome
independence) is relaxed, then it must be relaxed completely
to model all singlet-state correlations.

In particular, a strong result by Branciard et al. states that
any underlying model of the singlet state with S = M = 0
must almost always predict a 50:50 chance of spin up or
down in any direction, i.e., p(a|x,λ) = 1

2 = p(b|y,λ) for all
λ, except possibly on a set of total probability zero [13].
This immediately implies via Eqs. (5) and (9) that I = 1/2
and Crandom = 1 bit, as claimed. It further implies, using the
notation of Eq. (A1), that the joint probability distribution
p(a,b|x,y,λ) is of the form (cλ,1/2 − cλ,1/2 − cλ,cλ) for
almost all underlying variables, with 0 � cλ � 1/2 [note that
the singlet-state correlation in Eq. (29) is also of this form].
But, for the case x = y, one has, via Eqs. (1) and (29),

p(a = b|x,x) = 0 =
∫

dλ p(a = b|x,x,λ) p(λ|x,x)

= 2
∫

dλ cλ p(λ|x,x).

Hence, cλ = 0 for this case with probability unity, i.e., the
joint distribution is of the form (0,1/2,1/2,0). It immediately
follows via Eqs. (6), (7), and (13) that O = 1 and Coutcome =
1 bit, as claimed.

B. Relaxing no signaling

The class of singlet-state models that only relax no sig-
naling, with I = M = 0, are represented by the Toner-Bacon
model [29]. As noted in Sec. IV C, this model in fact has the
maximal possible degree of signaling, i.e.,

STB = 1,CTB
sig = 1 bit. (32)

These properties, in fact, hold for all deterministic measure-
ment independent models of the singlet state, and hence,
the Toner-Bacon model is a canonical representative of such
models.

To demonstrate the generic nature of Eq. (32) for I = M =
0, note first from Eq. (16) that, for deterministic underlying
models, one must either have S = 0 or S = 1. But, there are
no singlet-state models having I = S = M = 0 [1]. Hence,
S = 1, as claimed. This immediately implies that there is some
particular underlying variable λ for which the marginal under-
lying probability of one observer shifts between the values of
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0 and 1, in dependence on which one of two measurement
settings is selected between by the other observer. Selecting
between these settings with equal prior probabilities allows
transmission of 1 bit of information per measurement, in
agreement with Eq. (18). Since this is the maximum possible
for two-valued measurement outcomes, if follows that Csig = 1
bit, as claimed.

C. Relaxing measurement independence

It is seen from the above that, when relaxed individually,
determinism or no signaling must be completely relaxed to
model the singlet state (as must outcome independence).
It has recently been conjectured that, when jointly relaxed,
the degrees of indeterminism and signaling must satisfy the
complementarity relations [15,35]

S + 2I � 1, Crandom + Csig � 1 bit. (33)

Thus, it appears that at least 1 bit of total resources is required
for any measurement-independent model of the singlet state.
In contrast, if instead measurement independence is relaxed,
only 1/15 of a bit is required, as will be shown below.
Measurement dependence is, therefore, a relatively strong
resource for simulating quantum correlations.

In particular, for I = S = 0, a singlet-state model has been
recently given with deterministic local outcomes a = sgn x · λ

and b = −sgn y · λ for measurement directions x and y, where
λ denotes a unit three-vector with probability density [14]

p(λ|x,y) := 1 + x · y

8(π − φxy)
for sgn x · λ = sgn y · λ,

:= 1 − x · y

8φxy

for sgn x · λ �= sgn y · λ. (34)

Here, φxy ∈ [0,π ] denotes the angle between these directions,
and the density is defined to be zero when the denominators
vanish. The degree of measurement dependence for this model
is given by [14]

Msinglet = 2(
√

2 − 1)/3 ≈ 0.276, (35)

corresponding to a fraction of measurement independence
Fsinglet ≈ 86% in Eq. (27). It will be shown in Sec. VII
that these are, respectively, the smallest possible and largest
possible values of M and F for any deterministic nonsignaling
model of the singlet state. Hence this model is minimal,
with a degree of relaxation of only 14% of measurement
independence required.

To calculate the corresponding measurement-dependence
capacity Cmeas dep in Eq. (28), note first that the entropy of the
probability density p(λ|x,y) is given by

Hxy(�) = h

(
1 + xy

2

)
+ 1

2
(1 − xy) log2 φxy

+1

2
(1 + xy) log2(π − φxy) + log2 4.

This has a maximum value of Hmax = log 4π ≈ 3.651 45 bits
(achieved for xy = 0, ± 1), and a minimum value of Hmin ≈
3.585 21 bits (for xy ≈ ±0.9148, corresponding to an angle
φxy ≈ 24◦ or 156◦). Thus, the probability density is always

very close, in the sense of entropy, to the uniform density
1/(4π ) for any joint measurement setting.

It follows that the mutual information between the mea-
surement settings and the underlying variable is given by

H (X,Y : �) = H (�) −
∫

dx dy p(x,y) Hxy(�)

� H (�) − Hmin

� log2 4π − Hmin,

where the last inequality is an immediate consequence of the
entropy of λ being maximized by a uniform distribution on the
sphere. Moreover, the inequalities are saturated, for example,
by choosing p(x,y) such that x is uniformly distributed on the
sphere and, for each value of x, y, is uniformly distributed
on the circle xy ≈ 0.9148. This choice immediately gives
Hxy(�) = Hmin, while the rotational symmetry of p(λ|x,y) in
Eq. (34) yields p(λ) = 1/(4π ), and hence H (�) = log2 4π .
The measurement-dependence capacity of the model is,
therefore,

Cmeas dep = log2 4π − Hmin ≈ 0.0663 bits. (36)

This value, about 1/15 of a bit, is seen to be relatively small
in comparison to the 1 bit required when either determinism
or no signaling is relaxed, as well as to the general bound of 1
bit obtained for such models by Barrett and Gisin [34].

It is of interest to calculate the mutual information H (X,Y :
�) for this model in two particular scenarios: when the mea-
surement settings are chosen uniformly from the unit sphere,
and when the measurement settings are chosen randomly from
the four settings corresponding to maximum violation of the
Bell–CHSH inequality.

In the first case, p(x,y) = 1/(4π )2, leading via Eq. (34)
to p(λ) = 1/(4π ). Hence, Iuniform(X,Y : �) = log2 4π −
〈Hxy(�)〉 ≈ 0.0280 bits. This value, about 1 36 of a bit, may
be favorably compared to the corresponding values of 0.85
and 0.28 bits in the corresponding models given by Barrett
and Gisin [34,36].

In the second case, the four CHSH settings (x,y), (x,y ′),
(x ′,y), and (x ′,y ′) are defined by measurement directions
x,y,x ′,y ′ lying on a great circle, consecutively separated
by 45◦ [2]. One finds by straightforward calculation that
Hxy(�) = log2 π + H (q/3,q/3,q/3,1 − q) for each setting,
where the second term denotes the entropy of the distribution
defined by its arguments and q = (1 + 1/

√
2)/2. One further

finds H (�) = log2 4π , yielding

ICHSH(X,Y : �) = 2 − H (q/3,q/3,q/3,1 − q)

≈ 0.0463 bits, (37)

i.e., about 1/22 of a bit.
To emphasize just how weak a degree of correlation the

latter case represents, suppose that the observers make 22
independent repetitions of the CHSH experiment. There are
then 422 ≈ 2 × 1013 possible sequences of joint measurement
settings. Given knowledge of the corresponding sequence
λ1,λ2, . . . ,λ22 of underlying variables, the number of possible
measurement settings drops by just a factor of 2, to ≈ 1013.
The correlation is, therefore, very subtle. This is of obvious
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interest in the physical simulation of quantum cryptographic
protocols via local deterministic devices.

VII. RELAXED BELL INEQUALITIES

The preceding section demonstrates that, to model the
singlet state, one or more of the properties of determinism,
nonsignaling, and measurement independence have to be
relaxed. As noted in Appendix A, these properties must
similarly be relaxed to model violations of Bell inequalities.
Since such inequalities are directly testable, the question of
just how much relaxation is required, for a given degree
of violation, is studied here. The relaxation of outcome
independence is also considered in Sec. VII B.

A. Jointly relaxing determinism, no signaling, and
measurement independence

1. Main theorem

Let x,x ′ and y,y ′ denote possible measurement settings
for a first and second observer, respectively, and label each
measurement outcome by ±1. If 〈XY 〉 denotes the average
product of the measurement outcomes, for joint measurement
setting (x,y), then it is well known that the Bell–CHSH
inequality [2] 〈XY 〉 + 〈XY ′〉 + 〈X′Y 〉 − 〈X′Y ′〉 � 2 must be
satisfied if the measured correlations admit an underlying
model with I = S = M = 0. Conversely, if this inequality
is satisfied by the measured correlations, then an underlying
model can be constructed such that I = S = M = 0 [37].

The joint degrees of relaxation, required to model any given
violation of the Bell–CHSH inequality, are precisely quantified
by the following relaxed version.

Theorem. If an underlying model exists, having values of
indeterminism, signaling, and measurement dependence of at
most I , S, and M , respectively, then

〈XY 〉 + 〈XY ′〉 + 〈X′Y 〉 − 〈X′Y ′〉 � B(I,S,M) (38)

with tight upper bound

B(I,S,M) = 4 − (1 − 2I )(2 − 3M) for S < 1 − 2I

and M < 2/3

= 4 otherwise. (39)

The theorem verifies a conjecture in Ref. [15], where the
form of B(I,S,0) was obtained. The extension to arbitrary
M is nontrivial, as per the proof in Appendix B. Noting that
B(0,0,0) = 2, the theorem reduces to the standard Bell–CHSH
inequality for models satisfying determinism, no signaling,
and measurement independence.

If a given value 2 + V is measured for the left-hand side
of Eq. (38), thus violating the standard Bell–CHSH inequality
by an amount V , the theorem imposes the strong constraint

B(I,S,M) � 2 + V (40)

on the joint degrees of indeterminism, signaling, and measure-
ment dependence that must be present in any corresponding
model of the violation. This constraint may be regarded as
a complementarity relation for I , S, and M , quantifying the
tradeoff required between these quantities to model a given
violation.

Note that signaling is a useful resource for modeling a
violation if and only if the “gap” condition

S � Sgap := 1 − 2I (41)

is satisfied. This corresponds to a degree of signaling sufficient
for a marginal probability to shift across the gap between the
subintervals [0,I ] and [0,1 − I ]. This property also holds for
violations of other Bell inequalities (see Sec. VII C). Note
further that any violation of the Bell–CHSH inequality can be
modeled if M � 2/3.

2. Example: Measurement independent models

The case M = 0 has been extensively discussed elsewhere
[15]. For example, a measurement-independent model of the
maximum quantum violation V = 2

√
2 − 2 in Eq. (40) exists

if and only if

I � V/4 ≈ 0.207 and/or S � 1 − V/2 ≈ 0.586. (42)

Further, the randomness and signaling capacities must satisfy

Crandom � 0.736 bits and/or Csig � 0.264 bits (43)

via Eqs. (9) and (18). Models saturating these bounds are given
in the Appendix of Ref. [15].

It is of interest to compare these bounds with a commu-
nication model recently given by Pawlowski et al., which in
the notation of this paper corresponds to the joint distributions
p(a,b|x,y,λ) = p(a,b|x,y ′,λ) = p(a,b|x ′,y,λ) = δaλδbλ and
p(a,b|x ′,y ′,λ) = [p(1 − δaλ) + (1 − p)δaλ] δbλ, with λ = ±1
and p := √

2 − 1 ≈ 0.414 [38] (for arbitrary p ∈ [0,1], the
corresponding violation of the Bell–CHSH inequality is V =
2p). It is straightforward to calculate IP = SP = p. Hence,
the model is nonoptimal in the sense that, as per Eq. (42),
models exist with only half the degree of indeterminism I =
p/2 ≈ 0.207, and no signaling S = 0 [15]. Note, however, that
the above model is outcome independent, with OP = 0.

The randomness capacity follows from Eq. (9) as CP
random =

h(p) ≈ 0.979 bits. To calculate the signaling capacity, note
that for the measurement setting x ′, a marginal probability of
the first observer shifts between 0 and p, independently of
λ. Hence, if the second observer chooses between settings
y and y ′ with prior probabilities w and w′ = 1 − w, the
mutual information that can be communicated is Hλ(A : Y ) =
h(w′p) − w′ h(p), with h(x) as per Eq. (10). For p = √

2 − 1,
this is maximized for w′ ≈ 0.393, yielding the corresponding
signaling capacity CP

sig ≈ 0.256 bits.
To compare CP

sig with the communication capacity in
Eq. (20), note that the model is implemented via the second
observer sending a message bit m = 0,1 to the first observer,
with corresponding probabilities p(m|y) = δm0 and p(m|y ′) =
(1 − p)δm0 + pδm1, independently of the underlying variable
λ [30,38]. Hence, if the settings y and y ′ are chosen with
prior probabilities w and w′ = 1 − w, the mutual information
between the setting and the message is given by Hλ(M :
Y,B) = H (M : Y ) = h(w′p) − w′ h(p), which is equal to
Hλ(A : Y ) calculated above. Hence, noting that the roles of
the first and second observers are reversed relative to the
discussion in Sec. IV D, the model is nonredundant, and

CP
commun = CP

sig ≈ 0.256 bits. (44)
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Finally, it may be noted that, for the choice w = w′ =
1/2, the mutual information H (M : Y ) is h(p/2) − h(p)/2 ≈
0.247 bits. This corrects the value of h(p/2) ≈ 0.736 bits given
in Ref. [38]. Thus, fortuitously, less communication is required
in this case than was originally thought.

3. Example: Nonsignaling models

The class of nonsignaling models, with S = 0, is of obvious
interest. The upper bound of the theorem in Eq. (38) reduces
in this case to

B(I,0,M) = 4 − (1 − 2I )(2 − 3M) for M < 2/3

= 4 otherwise. (45)

Thus, for example, a nonsignaling model exists for the
maximum quantum violation V = 2

√
2 − 2, if and only if

(I,M) lies on or above the hyperbola

(1 − 2I )(2 − 3M) = 2 − V = 4 − 2
√

2 (46)

in the IM plane. This hyperbola has asymptotes I = 1/2 and
M = 2/3, and intersects the I axis at I = V/4 and the M

axis at M = V/3. Hence, either I � V/4 ≈ 0.207 or M �
V/3 ≈ 0.276 are sufficient (but not necessary) conditions for
a nonsignaling model of the maximum quantum violation to
exist.

4. Example: Local deterministic models

It is only recently that serious attention has been paid to
the case I = S = 0 (see Secs. V and VI). The corresponding
underlying models are both deterministic and nonsignaling,
but have some degree of correlation between the measurement
settings and the underlying parameter λ. The upper bound of
the theorem reduces in this case to

B(0,0,M) = min{2 + 3M,4}. (47)

This bound is saturated by the models given in Tables I and II
of Ref. [14] (see also Appendix B).

It follows via Eq. (40) that a local deterministic model
exists for the maximum quantum violation V = 2

√
2 − 2, if

and only if M � V/3 ≈ 0.276. This corresponds to a fraction
F = 86% of measurement independence, i.e., measurement
independence need only be relaxed by 14%. Noting that the
singlet state achieves this degree of violation, it further follows
that the deterministic nonsignaling model of singlet-state
correlations given in Ref. [14] (also discussed in Sec. VI C
above) is optimal in that it has the smallest degree of
measurement dependence possible for any such model.

B. Relaxing outcome independence

The measures I , S, and M are linear with respect to
the relevant probability distributions, making the explicit
analytic calculation of the relaxed bound B(I,S,M) a tractable
problem. It is much more difficult to obtain corresponding
bounds if I is replaced by the quadratic measure of outcome
dependence O defined in Eq. (6).

However, for the case of models satisfying no signaling
and measurement independence (i.e., S = M = 0), one may
derive the relaxed Bell–CHSH inequality

〈XY 〉 + 〈XY ′〉 + 〈X′Y 〉 − 〈X′Y ′〉 � 4

2 − O
, (48)

which holds whenever a model exists with a degree of outcome
dependence no greater than O.

Recalling that 0 � O � 1 for two-valued outcomes, the
right-hand side of this inequality ranges between 2 and 4, and
reduces to the standard Bell–CHSH inequality when outcome
independence is satisfied, i.e., when O = 0. Moreover, it
follows, for a degree of violation V of the Bell–CHSH
inequality, that a nonsignaling and measurement-independent
model exists if and only if 4/(2 − O) � 2 + V . In particular,
for the maximum quantum degree of violation V = 2

√
2 − 2,

such a model exists if and only if

O � 2V

2 + V
= 2 −

√
2 ≈ 0.586. (49)

Further, from Eq. (13), the maximum mutual information
between the outcomes must be at least

Coutcome � 1 − h

(
2 + 3V

4 + 2V

)
≈ 0.264 bits. (50)

To obtain the relaxed Bell inequality in Eq. (48), let
〈XY 〉λ denote the expectation value of the product of mea-
surement outcomes for settings x and y, and define Eλ :=
〈XY 〉λ + 〈XY ′〉λ + 〈X′Y 〉λ − 〈X′Y ′〉λ. Defining the probabil-
ities cj , mj , and nj as per Appendix B, one has Eλ =
2 + 2

∑3
j=1(2cj − mj − nj ) − 2(2c4 − m4 − n4).

Further, the no-signaling assumption allows one to rewrite
the marginals as m := m1 = m2, m′ := m3 = m4, n := n1 =
n3, and n′ := n2 = n4, leading to Eλ = 2 + 4(c1 + c2 + c3 −
c4) − 4(m + n).

Now, noting Eqs. (A2) and (A3), cj must lie between the
lower and upper bounds max{0,mj + nj − 1,mjnj − O/4}
and min{mj,nj ,mjnj + O/4}. Hence, replacing cj by its
upper bound for j = 1,2,3 and c4 by its lower bound, one
obtains, after some simplification, the corresponding tight
inequality

Eλ � 4
[
f (1 − m,1 − n,O) + f (m,n′,O) + f (m′,n,O)

+f (m′,1 − n′,O)
] − 4m′ − 2,

where f (a,b,c) := min{a,b,ab + c/4}. The maximum value
of the right-hand side over all marginal probabilities
m,m′,n,n′ ∈ [0,1], for a fixed degree of outcome dependence
O, is found numerically to occur when m′ = 1/2 and n = n′ =
1 − O/2. Substituting these values into the right-hand side,
and maximizing over m, yields the upper bound 4/(2 − O),
achieved for m = 3/2 − 1/(2 − O). Averaging over λ then
yields Eq. (48) as required.

For the above values of m,m′,n,n′, one has c1 =
c2 = 1 − O/2 and c3 = c4 = 1/2, implying that a set
of probability distributions saturating Eq. (48) is given
by p1 = p2 ≡ (1 − O

2 , 1+O
2 − 1

2−O
,0, 1

2−O
− 1

2 ), and p3 ≡
( 1

2 ,0, 1−O
2 ,O

2 ),p4 ≡ ( 1−O
2 ,O

2 , 1
2 ,0,), where it is recalled from

Appendix B that p1 ≡ p(a,b|x,y,λ), p2 ≡ p(a,b|x,y ′,λ), etc.
This model is nonsignaling by construction, but is maximally
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indeterministic, with I = 1/2. Note that the distributions
correspond to a nonlocal box for O = 1 [23].

The corresponding outcome correlation capacity of this
model follows via Eq. (11) as

Coutcome = g[O/2] + g[3/2 − 1/(2 − O)]

−g[(1 + O)/2 − 1/(2 − O)],

where g[x] := −x log2 x, and ranges from a minimum of 0
for O = 0 to a maximum of 1 bit for O = 1. For the case of
maximum quantum violation O = 2 − √

2, one has Coutcome ≈
0.480 bits. Thus, less than half a bit of outcome correlation is
required to model this degree of violation.

It is possible, in principle, to generalize Eq. (48) to obtain a
relaxed Bell inequality corresponding to jointly relaxing both
outcome independence and no signaling. The mj and nj now
remain distinct, and subject to Eq. (B5). The corresponding
bound B(O,S) would quantify the complementary contribu-
tions required from jointly relaxing outcome independence
and no signaling, to model a given violation of the standard
Bell–CHSH inequality.

C. Relaxing I3322 and other Bell inequalities

Consider a Bell inequality of the general linear form
Aα := ∑

a,b,j,k αab
jkp(a,b|xj ,yk) � Bα , where the upper bound

holds for any underlying model with I = S = M = 0. It
is not difficult, in principle, to quantify the joint degrees
of relaxation of determinism and no signaling required for
modeling violations of such Bell inequalities. This is done
via determining the corresponding least upper bound Bα(I,S)
of Aα .

In particular, determining Bα(I,S) may be reduced to
a standard linear programming problem (solvable in poly-
nomial time). One defines the linear function Aα(λ) by
replacing p(a,b|xj ,yk) with p(a,b|xj ,yk,λ) in the above
expression for Aα , and maximizes over all joint probability
distributions subject to the linear constraints of positiv-
ity, normalization, p(a|xj ,yk,λ),p(b|xj ,yk,λ) ∈ [0,I ] ∪ [1 −
I,1], and |p(a|xj ,yk,λ) − p(a|xj ,yk′ ,λ)|,|p(b|xj ,yk,λ) −
p(b|xj ,yk′ ,λ)| � S. The maximum value is the desired upper
bound Bα(I,S). In particular, since p(λ|xj ,yk) ≡ p(λ) for
M = 0, the integration of Aα(λ) over λ yields the relaxed
Bell inequality Aα � Bα(I,S). The case where measurement
independence is also relaxed is more difficult (see, e.g.,
Appendix B for the case of the relaxed Bell–CHSH inequality),
and a general procedure remains to be found.

As an example that can be treated analytically, a variant
of the I3322 inequality obtained by Collins and Gisin will be
considered here. The I3322 inequality is the canonical Bell
inequality for the case of three measurement settings for each
observer and two-valued measurement outcomes, and has the
form [6]

I3322(a,b) :=
3∑

j,k=1

αjkp(a,b|xj ,yk) − p(a|x1)

−2p(b|y1) − p(b|y2) � 0,

with αjk = 1 for j + k � 4, α23 = α32 = −1, and α33 = 0.
Note that this form is not suitable for dealing with models
having a nonzero degree of signaling S since the marginals

p(a|xj ) and p(b|yj ) are not well defined in such a case
[e.g., one may have p(a|xj ,y1,λ) �= p(a|xj ,y2,λ)]. However,
multiplying by the non-negative quantity 1 + ab and summing
over a and b yields a suitable variant:

A3322 :=
∑
j,k

αjk 〈XjYk〉 � 4, (51)

where 〈XjYk〉 denotes the expectation of the product of
measurement outcomes for the joint measurement setting
(xj ,yk).

The corresponding relaxed Bell inequality is then

A3322 � B3322(I,S) := 4 + 8I, S < 1 − 2I

= 8 otherwise, (52)

and is derived in Appendix C. This inequality is tight, reduces
to Eq. (51) for I = S = 0, and is seen to be exactly twice the
upper bound B(I,S,M) of the relaxed Bell–CHSH inequality
in Eq. (38) for M = 0.

A generalization of Eq. (52) to m measurement settings on
each side is conjectured in Appendix C.

VIII. HOW MUCH FREE WILL DO
EPR–KOCHEN-SPECKER THEOREMS NEED?

The original Kochen-Specker theorem showed that one
can not consistently assign any pre-existing measurement
outcomes to a particular set of (117) quantum observables on a
three-dimensional Hilbert space, under the assumption of
noncontextuality, i.e., that the outcome assigned to one ob-
servable is independent of whether or not it is simultaneously
measured with a compatible observable [7]. A similar result
was obtained independently by Bell [8], but relying on a
continuum of observables. Both results have the advantage
of holding independently of the quantum state. However,
as pointed out by Bell, the noncontextuality assumption is
rather strong. For example, if the compatible observables
are measured in the same local region of space-time, then
there is no compelling physical reason why simultaneous
measurement contexts should not interfere with each other
in some way [8].

Heywood and Redhead were able to substantially
strengthen the basis for the noncontextuality assumption
by only requiring that it hold for observables measured
in spacelike separated regions, and restricting attention to
quantum states for which these observables were perfectly
correlated [9]. Thus, they were able to effectively replace
(or justify) noncontextuality in their version of the Kochen-
Specker theorem via the physically more plausible assumption
of no signaling, albeit at the mild expense of having to
restrict attention to particular quantum states. Note also that,
as per the argument for “elements of reality” by Einstein,
Podolsky, and Rosen (EPR) [20], perfect correlations between
distant observables motivate why one might wish to assign
pre-existing measurement outcomes in the first place (see
also Sec. III A). Hence, the Heywood-Redhead result, and
later simplified versions, may be referred to as EPR–Kochen-
Specker theorems.

EPR–Kochen-Specker theorems are seen to rely on as-
sumptions essentially equivalent to determinism (pre-existing
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TABLE I. A class of local deterministic models for Mermin’s correlations.

λ A B C A′ B ′ C ′ pABC′ pAB ′C pA′BC pA′B ′C′

λ1 a1 b1 c1 a1b1 a1c1 b1c1 1/3 1/3 1/3 0
λ2 a2 b2 c2 a2b2 a2c2 −b2c2 1/3 1/3 0 1/3
λ3 a3 b3 c3 a3b3 −a3c3 b3c3 1/3 0 1/3 1/3
λ4 a4 b4 c4 −a4b4 a4c4 b4c4 0 1/3 1/3 1/3

outcomes) and no signaling (each outcome is independent of
what is measured in a spacelike separated region). They, in
fact, also rely on a further assumption, only first made explicit
by Conway and Kochen [12], i.e., that experimenters can
freely choose to measure any of the observables in question.
Thus, an assumption implying measurement independence
is also required. All such theorems have, therefore, similar
significance to Bell inequalities.

However, EPR–Kochen-Specker theorems are distin-
guished from Bell inequalities in the important respect that
they are not statistical in character: they show that particular
correlated observables can not be logically assigned any set
of fixed outcomes, irrespective of the probabilities of these
outcomes. Hence, relaxing the assumptions of determinism or
no signaling would contradict the essence of these theorems.
In contrast, it is natural to consider by how much the degree
of measurement independence must be relaxed to be able to
consistently assign such a set of pre-existing measurement
outcomes.

It is shown below that an EPR–Kochen-Specker theo-
rem due to Mermin [10] is quite robust: one must relax
measurement independence by at least 1/3 to allow pre-
existing measurement outcomes to be assigned. In contrast,
the Conway-Kochen free will theorem [12] and a theorem due
to Hardy [11] fail if measurement independence is relaxed by
only 6.5% and 4.5%, respectively.

A. Relaxing Mermin’s theorem

Mermin gave an EPR–Kochen-Specker theorem for three
mutually spacelike separated observers, who may be labeled
Alice, Bob, and Charlie. The observers conduct a joint
experiment where Alice measures one of two observables
A,A′, Bob measures one of two observables B,B ′, and Charlie
measures one of two observables C,C ′, with each observer’s
outcome labeled by ±1. The observables are assumed to
exhibit the perfect correlations

〈ABC ′〉 = 〈AB ′C〉 = 〈A′BC〉 = 1,〈A′B ′C ′〉 = −1, (53)

where 〈XYZ〉 denotes the expectation value of the product of
the outcomes of observables X, Y , and Z. Such correlations
can be implemented quantum mechanically, for example, when
A,A′, B,B ′, and C,C ′ correspond to the spin-1/2 observables
σA

x ,σA
y , σB

x ,σB
y , and σC

x ,σC
y , respectively, and the observers

share the tripartite state |ψ〉 defined by the +1 eigenval-
ues of the commuting operators σA

x σB
x σC

y , σA
x σB

y σC
x , and

σA
y σB

x σC
x [10].

Mermin argued that, if the existence of an underlying
nonsignaling model is assumed, one is impelled to conclude
that the measurement outcomes are predetermined [10]. Of
course, one is not compelled to conclude this: determinism

does not logically follow from the combination of no signaling
and perfect correlations, as discussed in Sec. III A. However, if
the model is assumed to be deterministic, then the outcomes of
A,A′, B,B, and C,C ′ are fixed prior to any measurements, and
may be denoted by a,a′,b,b′,c,c′ = ±1 for any given run of
the experiment. The perfect correlations then appear to imply
that

abc′ = ab′c = a′bc = 1,a′b′c′ = −1, (54)

which is clearly inconsistent for any assignment of values [10]
(since the product of the first three equations gives a′b′c′ = 1).
It therefore seems that there is no deterministic nonsignaling
model of the correlations.

However, the derivation of Eq. (54), in fact, requires a
further assumption, not explicitly discussed by Mermin: that
Alice can always choose which one of A and A′ to measure in
each run of the experiment, and similarly for Bob and Charlie.
If this assumption is not made, it is in fact possible to construct
a deterministic nonsignaling model of the correlations in
Eq. (53), as is demonstrated in Table I.

The model in Table I has an underlying variable λ taking
four possible values λ1,λ2,λ3,λ4. For each λj , the corre-
sponding measurement outcomes are deterministically and
locally specified, via 12 fixed numbers aj ,bj ,cj = ±1. The
underlying probability density p(λ|A,B,C ′) corresponding to
a joint measurement of A, B, and C ′ is denoted by pABC ′ ,
and similarly for the other joint measurements appearing in
Eq. (53). It is easily checked that this model reproduces
the perfect correlations in Eq. (53) with, e.g., 〈ABC ′〉 =∑

j pABC ′(λj )A(λj )B(λj )C ′(λj ) = 1.
Hence, there is indeed a deterministic nonsignaling model

for these correlations, as claimed. However, this is at the cost
of relaxing measurement independence, i.e., of introducing
correlations between the measurement settings and the under-
lying variable (see Sec. V). For example, from Table I, the
joint measurement of A′, B ′, and C ′ can not be performed if
the underlying variable is equal to λ1.

The degree of measurement dependence of the model may
be calculated via Eq. (26) as M = 2/3, corresponding to a
fraction F = 2/3 of measurement independence in Eq. (27).
Thus, one third of measurement independence must be given
up. The corresponding measurement-dependence capacity
may also be calcuated, via Eq. (28), as Cmeas dep = log2 4/3 ≈
0.415 bits (achieved by choosing between the four possible
joint measurements with equal probabilities). Thus, less than
half a bit of correlation is required between the settings and
the underlying variable.

It is important to note that the above model does not simulate
the Mermin state |ψ〉; nor is that the aim here. The much more
modest aim is to calculate to the degree to which measurement
independence must be relaxed to overcome the conclusions
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of Mermin’s theorem, i.e., to provide a local deterministic
model of the perfect correlations in Eq. (53). However, it would
certainly be of interest to generalize the local deterministic
model of the singlet state in Sec. VI C to find a similar optimal
model for Mermin’s state.

B. Relaxing the free will theorem

Conway and Kochen have given a theorem of the same
ilk as Mermin’s theorem above, the main differences being
(i) only two observers are required, and (ii) the need for
a further assumption such as free will is explicitly noted
[12]. However, it will be seen that this free will theorem is
weaker than Mermin’s theorem in the sense that measurement
independence needs only to be relaxed by 6.5% to give a local
deterministic model of the correlations.

Briefly, Conway and Kochen consider two distant ob-
servers, each of whom measures a two-valued observable
labeled by members of a particular set of unit three-vectors,
with possible measurement outcomes 0 or 1. The outcomes
are assumed to exhibit perfect correlations when the same
measurement direction is chosen by both observers, i.e.,
p(a = b|x,x) = 1. It is further assumed that the measurements
corresponding to any orthogonal triple of measurement direc-
tions, x,y,z say, can be performed simultaneously by either
observer, and always give the outcomes 1,0,1 in some order.
Such correlations can be implemented quantum mechanically,
for example, via the observers sharing a pair of spin-1 particles
in a state of total spin 0, where the observable labeled by
direction j corresponds to the square of the spin observable in
that direction [9,12].

Conway and Kochen show that there is a particular set of 33
measurement directions D33 for which there is no underlying
model of the above correlations that satisfies determinism,
no signaling, and measurement independence. They conclude
that particles have “exactly the same kind” of free will as
experimenters, where both indeterminism and measurement
independence are equated with free will for particles and exper-
imenters, respectively. However, a model having 0% indeter-
minism and 93.5% measurement independence is given below.

In particular, to construct a deterministic nonsignaling
model of the above correlations, note first that D33 is minimal
in the sense observed by Peres [39]: For each direction
w ∈ D33, there exists a corresponding function θw(x), from
D33 to {0,1}, such that θw(x) + θw(y) + θw(z) = 2 for any mu-
tually orthogonal triple (x,y,z) satisfying x,y,z �= w. Hence,
consider a model having the underlying joint probabilities
p(a,b|x,y,λw) := δa,θw(x) δb,θw(y), where the possible values
of the underlying variable are labeled by w ∈ D33. This
model is clearly deterministic and nonsignaling, and satisfies
p(a = b|x,x) = 1 as required. Further, by construction, the
outcomes for a simultaneous measurement of any mutually
orthogonal triple (x,y,z) must be 1,0,1 in some order, provided
that no member of the triple is equal to w. Finally, the
latter proviso may be guaranteed to hold in any actual joint
measurement by defining the probability distribution of the
underlying variable to be

p(λw|x,y) := 0, w = x or w = y,

:= δxy

32
+ 1 − δxy

31
, otherwise.

Hence, no measurement can be made in the direction corre-
sponding to the label of the underlying variable.

The degree of measurement dependence of the above
model can be calculated via Eq. (26) as M = 4/31, achieved
for the case of joint measurements (x,y), (x ′,y ′) having no
directions in common. This corresponds to a fraction F =
29/31 ≈ 93.5% of measurement independence in Eq. (27),
i.e., measurement independence only needs to be relaxed
by ≈6.5%. The measurement-dependence capacity can be
estimated via Eq. (28) as Cmeas dep � Hmax(�) − Hmin(�) =
log2

33
31 , where the upper entropy bound follows from λw

taking 33 possible values, and the lower bound corresponds
to any joint setting with x �= y. Thus, ≈0.0902 bits (less than
one tenth of one bit of correlation) is required between the
underlying variable and the measurement settings.

C. Relaxing Hardy’s theorem

Finally, it is of interest to also consider a result due to Hardy,
which derives an EPR–Kochen-Specker theorem having a
minor statistical element [11]. In particular, first and second
observers each measure one of two observables Uj and Dj ,
where j = 1,2 refers to the observer. Labeling the correspond-
ing measurement outcomes by uj ,dj = 0 or 1, it is assumed
that they satisfy the perfect correlations u1u2 = 0, d1 = 1 ⇒
u2 = 1,d2 = 1 ⇒ u1 = 1, and further that the joint outcome
d1 = d2 = 1 can occur with some probability γ > 0. Such
correlations can be implemented quantum mechanically via
the observers sharing one of a large class of two-qubit states,
providing that [11] γ � γmax := (5

√
5 − 11)/2 ≈ 9%.

Hardy argues that there is no deterministic nonsignaling
model of such correlations on the grounds that such a model
must predict values d1 = 1 = d2 in at least some instances,
which is incompatible with any simultaneous assignation of
values of u1 and u2 as per the required correlations [11].
However, this argument makes an implicit assumption that
the model is measurement independent. If this assumption is
relaxed, it is quite straightforward to write down determin-
istic nonsignaling models of the correlations, as is done in
Table II.

The class of models in Table II is defined via an under-
lying variable λ taking five possible values λ1,λ2, . . . ,λ5,
and corresponding deterministic outcomes specified by two
numbers a,b = 0 or 1 (thus, there are four distinct models,
corresponding to the choices of a and b). The underlying
probability distribution p(λ|U,U ) is denoted by pUU , and
similarly for the other joint settings (U,D), (D,U ), and (D,D).
The required correlations can all be checked to hold whenever
they can be measured. For example, u1u2 = 0 identically

TABLE II. A class of local deterministic models for Hardy’s
correlations [note γ ′ := (1 − γ )/2].

λ u1 u2 d1 d2 pUU pUD pDU pDD

λ1 a 1 − a 0 0 γ ′ γ ′ γ ′ γ ′

λ2 b 1 − b 1 − b b γ ′ γ ′ γ ′ γ ′

λ3 0 1 1 1 γ

2 0 γ

2
γ

3
λ4 1 0 1 1 γ

2
γ

2 0 γ

3
λ5 1 1 1 1 0 γ

2
γ

2
γ

3
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except for λ = λ5, but the probability of λ = λ5 vanishes for
the corresponding setting (U,U ).

The associated degree of measurement dependence is
easily calculated via Eq. (26) as M = γ , with associated
fraction of measurement independence F = 1 − γ /2. Hence,
measurement independence need only be relaxed by at
most γmax/2 ≈ 4.5% to model the correlations. One can
also estimate the degree of correlation required between
the underlying variable and the measurement settings via
Cmeas dep � Hmax(�) − Hmin(�) = γ log2

3
2 ≈ 0.585γ . Here,

the maximum entropy value corresponds to choosing between
the four joint settings with equal probabilities, while the
minimum value corresponds to the (D,D) setting. For γ =
γmax, this gives a bound of ≈0.053 bits.

IX. CONCLUSIONS

The main aim of this paper has been to carefully define
the quantitative degrees to which certain physical proper-
ties hold for underlying models of statistical correlations
(Secs. III–V), and to show how these may be applied to
determine optimal singlet-state models (Sec. VI); the minimal
degrees of relaxation required to simulate violations of various
Bell inequalities (Sec. VII); and the relative robustness of
Kochen-Specker theorems (Sec. VIII). The results help to both
clarify and quantify the nonclassical nature of quantum corre-
lations, including the resources required for their simulation.

A number of possible directions for future work are sug-
gested by the results of the paper. First, while the information-
theoretic measures defined in Secs. III–V quantify various
resources required to simulate correlations, little is known
about the interconversion of these resources. For example,
while Barrett and Gisin show how a communication model
may be converted into a measurement-dependent model [34]
(see also [40]), with Ccommun = Cmeas dep, it is not clear how
to proceed in the reverse direction. Nor has the conjecture
Csig + Crandom � 1 bit [15,35] for measurement-independent
models of singlet-state correlations yet been proved.

Second, for signaling to be a useful resource for modeling
violations of standard Bell inequalites in Eqs. (38), (52),
and (C2), the gap condition S � 1 − 2I in Eq. (41) must be
satisfied. This condition corresponds to signaling of a degree
sufficient to be able to “flip” a marginal probability from
p to 1 − p, and it would be of interest to know whether it
generalizes to all Bell inequalities.

Third, it has been seen in Secs. VI–VIII that the relaxation of
measurement independence is a remarkably strong resource for
modeling quantum correlations. For example, as per Eq. (37),
one requires a correlation between the measurement settings
and the underlying variable of only ≈1/22 of a bit to obtain
a local deterministic model of the CHSH scenario. It would
be of interest to exploit such a model to simulate quantum
cryptographic protocols. It would similarly be of interest to
generalize the local deterministic model of the singlet state,
discussed in Sec. VI, to find corresponding optimal models
for the quantum states that generate the perfect correlations
in Sec. VIII. Presumably, the required degree of relaxation of
measurement independence will increase with Hilbert space
dimension to some saturating value M∗ � 2. It is not known
if M∗ < 2.

Finally, it would be of interest to generalize the relaxed Bell
inequality in Eq. (48), to include the relaxation of no signaling
and measurement independence, similarly to the analogous
inequality in Eq. (38). This would also allow determination
of whether the model of Pawlowski et al. [38], discussed
in Sec. VI A, has the minimal possible degree of signaling
for the case O = M = 0. Another reason for pursuing such
a generalization, despite the technical difficulties due to the
quadratic nature of O in Eq. (6), is that the degrees of relaxation
O, S, and M are completely independent of one another,
whereas the quantities I and S are mutually constrained via
Eq. (16).
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APPENDIX A: DETERMINISM VERSUS OUTCOME
INDEPENDENCE

As noted in Sec. III, any set of statistical correlations
admits a deterministic model if and only if it admits an
outcome-independent model. A brief proof is given here. This
result further implies that derivations of Bell inequalities based
on outcome independence (or factorizability) are no more
general than derivations based on determinism. A proof of the
relation in Eq. (7), linking the measures of indeterminism I

and outcome dependence O, is also given.
Proposition. For any set of statistical correlations

{p(a,b|x,y)}, there exists an underlying model M satisfying
determinism if and only if there exists an underlying model
M′ satisfying outcome independence. Further, these models
“commute” with the properties of no signaling and measure-
ment independence, i.e., M satisfies either of these properties
if and only if M′ does.

Proof. Suppose first one has a model satisfying outcome
independence, as per Eq. (4). Choosing some fixed ordering of
the possible results {aj } and {bk} for each measurement, define
a corresponding deterministic model via (i) the underlying
variable λ̃ ≡ (λ,α,β), where α and β take values in the interval
[0,1); (ii) the corresponding probability density p(λ̃|x,y) =
p(λ,α,β|x,y) := p(λ|x,y) for λ̃ (i.e., α and β are uniformly
and independently distributed over the interval [0,1]); and
(iii) deterministic joint probabilities p(aj ,bk|λ̃) equal to unity
if and only if α∈ [

∑
i<j p(ai |x,y,λ),

∑
i�j p(ai |x,y,λ)] and

β ∈ [
∑

i<k p(bi |x,y,λ),
∑

i�k p(bi |x,y,λ)] are satisfied (and
equal to zero otherwise). It is trivial to check that, by
construction, for any pair of measurements x and y, one
then has p(aj ,bk|x,y) = ∫

dλ̃ p(λ̃|x,y) p(aj |x,λ̃) p(bk|y,λ̃).
Hence, there is a deterministic model as claimed. Further,
p(a|x,y,λ̃) and p(a|x,y,λ̃) satisfy the no-signaling conditions
in Eq. (14) if and only if p(a|x,y,λ) and p(b|x,y,λ) do, while
p(λ̃|x,y) satisfies the measurement-independence condition
in Eq. (24) if and only if p(λ|x,y) does. Finally, the converse
is trivial since any deterministic model is automatically an
outcome-independent model. In particular, dropping explicit
x, y, and λ dependence, suppose that p(a),p(b) ∈ {0,1}. Then,
p(a,b) is no greater than either of p(a) and p(b), implying
p(a,b) = 0 if one of the marginals vanishes. Otherwise,
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p(a) = p(b) = 1, and so 1 � p(a,b) = p(a) + p(b) − p(a ∨
b) � p(a) + p(b) − 1 = 1. Thus, p(a,b) = p(a) p(b) in all
cases, i.e., outcome independence is satisfied. �

The above proposition is a simple generalization of existing
results in the literature for single measurements [8,41] and can
be straightforwardly further generalized to continuous ranges
of measurement outcomes and more than two observers. Note
that the assumed ordering means that the model is (locally)
contextual [8,41]. Fine has previously used a rather different
(nonlocally contextual) construction to obtain a form of the
proposition for the case of four measurement pairs [37],
which can be generalized to the case of a countable set of
measurement pairs [42]. In contrast, the above proposition
applies to arbitrary sets of measurement pairs, such as spin
measurements in all possible directions (and does not require
no-signaling or measurement independence assumptions as
per Fine).

It follows that all derivations of Bell inequalities make
assumptions equivalent to, or stronger than, the existence of
an underlying model satisfying determinism, no signaling,
and measurement independence. This is sometimes prima
facie clear [1–3,6]. While some derivations are based on
measurement independence and the factorizability property
p(a,b|x,y,λ) = p(a|x,λ) p(b|y,λ) [4,16], this latter property
is equivalent to the combination of outcome independence
and no signaling in Eqs. (4) and (14), which by the above
proposition is equivalent to the existence of a deterministic
nonsignaling model. Finally, some derivations are based
on assuming the existence of underlying joint probability
distributions for counterfactual measurement settings [5,41],
however, Fine has shown this is also equivalent to the existence
of an underlying model satisfying determinism, no signaling,
and measurement independence [37].

To demonstrate the relation between the degrees of in-
determinism and outcome dependence in Eq. (7), for the
case of two-valued measurements, denote the possible out-
comes by ±1 and order the joint measurement outcomes as
(+,+),(+,−),(−,+),(−,−). The corresponding joint proba-
bility distribution for joint measurement setting (x,y) can then
be written in the form

p(a,b|x,y,λ) ≡ (c,m − c,n − c,1 + c − m − n), (A1)

where m and n denote the corresponding marginal probabilities
for a +1 outcome. The positivity of probability implies that

max{0,m + n − 1} � c � min{m,n}. (A2)

The degree of outcome dependence for a particular model
follows from Eq. (6) as

O = 4 sup |c − mn|, (A3)

where the supremum is over all possible triples (c,m,n)
generated by the model.

Now, writing m = 1 − m and n = 1 − n, Eq. (A2) is
equivalent to − min{mn,m n} � c − mn � min{mn,mn}, and
hence |c − mn| can be no greater than the modulus of either
bound. But the modulus of the lower bound is mn for
m + n � 1 and m n for m + n � 1, with a similar result
for the upper bound, yielding |c − mn| � max {uv|u + v �
1,u ∈ {m,m},v ∈ {n,n}}. For models having a degree of

indeterminism I , one has m,n ∈ [0,I ] ∪ [1 − I,1] from
Eq. (5). Hence, the righthand side has a maximum of I (1 − I ),
corresponding to u = 1 − v = I (or 1 − I ). This yields O �
4I (1 − I ) via Eq. (A3), as required.

The joint distributions achieving the maximum value of
outcome dependence O = 4I (1 − I ) follow as (I,0,0,1 − I ),
(1 − I,0,0,I ), (0,I,I − I,0), and (0,1 − I,I,0). Note that
these distributions are either perfectly correlated, with p(a =
b) = 1, or perfectly anticorrelated, with p(a = −b) = 1.

APPENDIX B: PROOF OF RELAXED
BELL–CHSH INEQUALITY

To obtain Eqs. (38) and (39) of the theorem in Sec. VII A,
first write the joint probability distribution for joint measure-
ment setting (x,y) as per Eq. (A1). If 〈XY 〉λ denotes the
average product of the measurement outcomes, for a fixed
value of λ, then 〈XY 〉λ = 1 + 4c − 2(m + n). It follows from
Eq. (A2), noting 2 max(x,y) = x + y + |x − y|, that

2|m + n − 1| − 1 � 〈XY 〉λ � 1 − 2|m − n|, (B1)

where the upper and lower bounds are attainable via suitable
choices of c.

It is convenient to label the four measurement settings (x,y),
(x,y ′), (x ′,y), and (x ′,y ′) by 1, 2, 3, and 4, and to write
p1 ≡ p(a,b|x,y,λ), p2 ≡ p(a,b|x,y ′,λ), etc., and P1(λ) ≡
p(λ|x,y), P2(λ) ≡ p(λ|x,y ′), etc. By defining

T (λ) := P1(λ)〈XY 〉λ + P2(λ)〈XY ′〉λ + P3(λ)〈X′Y 〉λ
−P4(λ)〈X′Y ′〉λ,

it immediately follows via Eq. (B1) that T (λ) � P1(λ) +
P2(λ) + P3(λ) + P4(λ) − 2J (λ), where

J := P1|m1 − n1| + P2|m2 − n2| + P3|m3 − n3|
+P4|m4 + n4 − 1| (B2)

and the upper bound is attained via the choices cj =
min{mj,nj } for j = 1,2,3 and c4 = max{0,m4 + n4 − 1}.
Note that Pj , mj , nj , and cj are all functions of λ.

Hence, the quantity on the left-hand side of Eq. (38) satisfies

E := 〈XY 〉 + 〈XY ′〉 + 〈X′Y 〉 − 〈X′Y ′〉
=

∫
dλ T (λ) � 4 − 2

∫
dλ J (λ). (B3)

Thus, maximizing this quantity corresponds to minimizing
the integral of the positive quantity J (λ) in Eq. (B2). This
minimum will now be determined, subject to the constraints
imposed by the statement of the theorem, i.e.,

mj,nj ∈ [0,I ] ∪ [1 − I,1], (B4)

|m1 − m2|,|m3 − m4|,|n1 − n3|,|n2 − n4| � S, (B5)

∫
dλ |Pj (λ) − Pk(λ)| � M. (B6)

To proceed, suppose first that S � 1 − 2I . One may then
take J (λ) ≡ 0 in Eq. (B2), consistently with the above
constraints, via the choices mj = nj = m4 = 1 − n4 = I (or
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1 − I ) for j = 1,2,3. Hence, Eq. (B3) yields the tight bound
E � 4 for this case, for any Pj (λ), as per the theorem. Equality
is obtained when, for example,

p1 ≡ p2 ≡ p3 ≡ (I,0,0,1 − I ), p4 ≡ (0,I,1 − I,0). (B7)

Conversely, suppose that S < 1 − 2I . From the analysis
of this case for M = 0 in Ref. [15], at least one of the four
absolute values in Eq. (B2) for J must be nonzero for each λ

with a minimum value of 1 − 2I , while the other three absolute
values can be chosen to vanish. For example, choosing mj =
nj = I (or 1 − I ), for j = 1,2,3,4, gives J (λ) = P4(λ) (1 −
2I ). More generally, choosing the nonvanishing absolute value
to correspond to the smallest multiplier Pj in Eq. (B2), for
each value of λ, one obtains the tight bound J (λ) � (1 −
2I ) minj {Pj (λ)}, leading via Eq. (B3) to the tight bound E �
4 − 2(1 − 2I )

∫
dλ minj {Pj (λ)}. Equation (38) immediately

follows, providing that the tight bound∫
dλ min

j
{Pj (λ)} � max{0,1 − 3M/2} (B8)

can be established. This will now be done.
First, since 2 min(x,y) = x + y − |x − y|, one has in

general that

min{w,x,y,z} = min { min{w,x}, min{y,z}}
= 1

2 min{w,x} + 1
2 min{y,z}

− 1
2 |min{w,x} − min{y,z}| .

Suppose that w � x. Then, if y � z, the “absolute value”
term above is equal to |w − y|, while if y > z, the six
possible orderings wxzy,wzxy,wzyx,zwxy,zwyx,zywx are
easily checked to yield an absolute value term no greater than
|w − y| in the first three cases and no greater than |x − z| in the
second three cases. It follows that |min{w,x} − min{y,z}| �
|w − y| + |x − z| for w � x. But, swapping w with x and
y with z does not change either side, implying that this
inequality also holds for x � w. Thus, in general,

min{w,x,y,z} � 1
2 min{w,x} + 1

2 min{y,z}
− 1

2 |w − y| − 1
2 |x − z|

= 1
4 (w + x + y + z) − 1

4 |w − x|
− 1

4 |y − z| − 1
2 |w − y| − 1

2 |x − z|.
Substituting w = P1(λ), x = P2(λ), etc., integrating over λ,
and using the measurement-dependence constraint in Eq. (B6)
then yields Eq. (B8) as desired (noting that the left-hand side
of this equation is necessarily non-negative).

It still remains to show that the bound in Eq. (B8) is tight.
First, for M � 2/3, one needs to find suitable Pj (λ) such
that minj {Pj (λ)} ≡ 0 for all λ. This is achieved, for example,
via a model with four underlying variables, λ1, . . . ,λ4, as per
Table II of Ref. [14]. In particular, choosing Pj (λk) to be
p for j = k, 0 for j + k = 5, and (1 − p)/2 otherwise, with
0 � p � 1/3, one easily finds that M = 2 − 4p, which ranges
over the interval [2/3,2] as desired. Finally, for M < 2/3,
consider a model with five underlying variables, λ1, . . . ,λ5, as
per Table I of Ref. [14], i.e., with Pj (λk) = 1 − 3p for k = 5,
0 for j + k = 5, and p otherwise, again with 0 � p < 1/3.

One easily finds that M = 2p, which ranges over the interval
[0,2/3], with equality in Eq. (B8) as required.

APPENDIX C: RELAXED Imm22 INEQUALITIES

Here, the relaxed Bell inequality of Eq. (52), related to I3322,
is proved, and a generalization to the case of m measurement
settings for each observer is conjectured.

It is convenient to write the joint distribution p(a,b|xj ,yk,λ)
as per Eq. (A1), with c, m, and n replaced by cjk , mjk , and
njk . Equations (51) and (B1) immediately imply that

A3322(λ) � 8 − 2K, (C1)

with equality for suitable choices of cjk , where K :=∑
j+k�4 |mjk−njk|+|m23+n23−1|+|m32+n32−1|. Hence,

the minimum possible value of K must be determined,
subject to the constraints mjk,njk ∈ [0,I ∪ [1 − I,1] and
|mjk − mjk′ |,|njk − nj ′k| � S.

Defining Fjk := |mjk − njk| and Gjk := |mjk + nkj − 1|,
one has

2K = [F11 + F13 + F21 + G23] + [F21 + F13

+F22 + G23] + [F11 + F12 + F31 + G32]

+ [F21 + F22 + F31 + G32].

Now, each of the square-bracket terms corresponds to a
particular case of the quantity J defined in the Appendix
of Ref. [15], which was shown there to have a minimum
value of 1 − 2I for S < 1 − 2I and 0 otherwise, under
the corresponding constraints. But, for S < 1 − 2I , these
minimum values are simultaneously achieved by the choices
mjk = njk = I , while for S � 1 − 2I , they are simultaneously
achieved by choosing mjk = njk = I when j + k � 4, and
mjk = 1 − njk = I for j + k = 5. Equation (52) of the text
immediately follows via Eq. (C1) and integration over λ.

A plausible generalization of Eq. (52) corresponds to
relaxing a variant of the more general Imm22 Bell inequality [6].
This inequality holds for a choice of m measurement settings
for each observer, with two-valued measurement outcomes,
and with the general form

Imm22(a,b) :=
m∑

j,k=1

α
(m)
jk p(a,b|xj ,yk) − p(a|x1)

−
∑

k

(m − k) p(b|yk) � 0,

where α
(m)
jk = 1 for j + k � m + 1, α

(m)
jk = −1 for j + k =

m + 2, and α
(m)
jk = 0 otherwise.

As for I3322, the marginal probabilities in the above
inequality are not well defined for a nonzero degree of
signaling, and hence it is convenient to consider the vari-
ant obtained via multiplication by 1 + ab and summation
over a,b = ±1, i.e., Amm22 := ∑m

j,k=1 αjk 〈XjYk〉 � 1
2m(m −

1) + 1. Note that this is equivalent to the standard Bell–CHSH
inequality for m = 2.

It is conjectured that the corresponding relaxed Bell
inequality is

Amm22 � Bmm22(I,S), (C2)
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where

Bmm22(I,S) := 1
2 (m − 1)(m + 8I ) + 1, S < 1 − 2I

= 1
2 (m − 1)(m + 4) + 1, otherwise.

This reduces to Eq. (38) for m = 2 (with M = 0) and to
Eq. (52) for m = 3. Note that the upper bound is obtained for
S < 1 + 2I via the choice mjk = njk = I , and for S � 1 − 2I

via the choices mjk = njk = I when j + k � m + 1 and
mjk = 1 − njk = I when j + k = m + 2.
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