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Semiclassical analysis of the Wigner 12 j symbol with one small angular momentum
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We derive an asymptotic formula for the Wigner 12j symbol, in the limit of one small and 11 large
angular momenta. There are two kinds of asymptotic formulas for the 12j symbol with one small angular
momentum. We present the first kind of formula in this paper. Our derivation relies on the techniques developed
in the semiclassical analysis of the Wigner 9j symbol [L. Yu and R. G. Littlejohn, Phys. Rev. A 83, 052114
(2011)], where we used a gauge-invariant form of the multicomponent WKB wave functions to derive asymptotic
formulas for the 9j symbol with small and large angular momenta. When applying the same technique to the 12j

symbol in this paper, we find that the spinor is diagonalized in the direction of an intermediate angular momentum.
In addition, we find that the geometry of the derived asymptotic formula for the 12j symbol is expressed in terms
of the vector diagram for a 9j symbol. This illustrates a general geometric connection between asymptotic limits
of the various 3nj symbols. This work contributes an asymptotic formula for the 12j symbol to the quantum
theory of angular momentum, and serves as a basis for finding asymptotic formulas for the Wigner 15j symbol
with two small angular momenta.
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I. INTRODUCTION

This paper derives in full detail one of two kinds of
asymptotic formulas for the 12j symbol, in the limit of one
small and 11 large angular momenta. We will first briefly
review some of the previous works on the Wigner 12j symbol.
Its definition and exact formula are described in the textbooks
on angular momentum theory [1–4]. Although it is used less
often than the Wigner 3j , 6j symbols, it has applications in
the theory of x-ray absorption branching ratios [5], two-photon
absorption spectroscopy [6], and loop quantum gravity [7]. The
12j symbol was first defined in the paper by Jahn and Hope [8]
in 1954. In that paper, they listed two kinds of formulas for
the special values of the 12j symbol when any one of its 12
arguments is zero. See Eq. (A8) and Eq. (A9) in [8]. The
complete symmetries of the 12j symbol are given in [9], as
a result of the observation that the graphical representation of
the triangular conditions of the 12j symbol is a Möbius strip.
This Möbius strip is illustrated in Fig. 1 below.

We note that Eq. (A8) in [8] corresponds to placing the
zero argument at the edge of this Möbius strip, and Eq. (A9)
in [8] corresponds to placing the zero argument at the center
of the Möbius strip. Thus, we expect that by placing the small
angular momentum at the edge and center, respectively, of the
Möbius strip, we will have two kinds of asymptotic formulas
for the 12j symbol with one small angular momentum.

The main theoretical tool we use is a generalization of
the Born-Oppenheimer approximation, in which the small
angular momenta are the fast degrees of freedom and the large
angular momenta are the slow degrees of freedom. The nec-
essary generalization falls under the topic of multicomponent
WKB theory. See [10–12] for the relevant background. The
techniques used in this paper are recently developed in the
semiclassical analysis of the Wigner 9j symbol with small
and large quantum numbers [13]. This paper makes extensive
use of the results from that paper and assumes a familiarity
with it.

*liangyu@wigner.berkeley.edu

In analogy with the setup for the 9j symbol in [13], we use
exact linear algebra to represent the small angular momentum,
and use the Schwinger’s model to represent the large angular
momenta. Each wave function consists of a spinor factor
and a factor in the form of a scalar WKB solution. For the
9j symbol, the scalar WKB solutions are represented by
Lagrangian manifolds associated with a 6j symbol, which
have been analyzed in [14] to reproduce the Ponzano Regge
action [15]. In the problem of the 12j symbol with one small
quantum number, the scalar WKB solutions are represented
by Lagrangian manifolds associated with a 9j symbol. The
actions for the 9j symbol are presented in [16]. We will quote
their results in some of the semiclassical analysis of the 9j

symbol in this paper.
We now give an outline of this paper. In Sec. II, we display

the spin network of the 12j symbol in the form of a Möbius
strip and decompose it into a scalar product of a bra and a ket.
In Sec. III, we define the 12j symbol as a scalar product of
two multicomponent wave functions, whose WKB forms are
derived in Sec. IV. By following the procedure in [13], we
rewrite the multicomponent WKB wave functions into their
gauge-invariant forms in Sec. V. In Sec. VI, we describe
the path used in a semiclassical analysis of the Lagrangian
manifolds associated with the 9j symbol by generalizing the
paths used in [14]. We then obtain the action integral associated
with this path by quoting the results from [16]. Finally, we
calculate the spinor inner products at the intersections of
the Lagrangian manifolds in Sec. VII. Putting the pieces
together, we derive an asymptotic formula for the 12j symbol
in Sec. VIII, and display plots for this formula against exact
values of the 12j symbol in Sec. IX. The last section contains
comments and discussions.

II. SPIN NETWORK OF THE 12 j SYMBOL

The spin network [4] for the Wigner 12j symbol⎧⎨
⎩

j1 j2 j12 j125

j3 j4 j34 j135

j13 j24 j5 j6

⎫⎬
⎭ (1)
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FIG. 1. The spin network of the Wigner 12j symbol.

is illustrated in Fig. 1. In the spin network, each triangular
condition of the 12j symbol is represented by a trivalent vertex.
The spin network has the shape of a Möbius strip.

The symmetries of the 12j symbol are associated with the
symmetries of the Möbius strip, which are given by sliding
along the Möbius strip and reflecting it about the vertical
center of Fig. 1. Using these symmetries, any position in
the center can be moved to any other position in the center,
and any position on the edge can be moved to any other
position on the edge. However, a center position cannot be
move to an edge position, or vice versa. Thus, there are
two inequivalent asymptotic limits of the 12j symbol with
one small angular momentum, corresponding to placing the
small angular momentum at the center or edge of the strip,
respectively. In other words, we could either place the small
angular momentum at j1,j4,j5, or j6 across the center of the
strip, or place it at j2,j3,j12,j34,j13,j24,j125, or j135 along the
edge of the strip. In this paper, we will focus on the case where
the small angular momentum is placed at a center position
at j5.

One can decompose the spin network of the 12j symbol
into two spin network states by cutting j2,j3 at the twist,
and cutting j1,j4,j5,j6 along the center of the strip. Using
this decomposition, illustrated in Fig. 2, the 12j symbol is
expressed as a scalar product between a bra and a ket, in
the Hilbert space represented by the six angular momenta
j1, . . . ,j6. This is explicitly expressed in Eq. (2).

III. DEFINING THE 12 j SYMBOL

We use the decomposition of the spin network for the
12j symbol in Fig. 2 to write it as a scalar product. This
is equivalent to Eq. (A4) in [8]. We have⎧⎨
⎩

j1 j2 j12 j125

j3 j4 j34 j135

j13 j24 s5 j6

⎫⎬
⎭ = 〈b|a〉

{[j12][j34][j13][j24][j125][j135]} 1
2

,

(2)

FIG. 2. Decomposition of the spin network of the 12j symbol.

where the square bracket notation [·] denotes [c] = 2c + 1,
and |a〉 and |b〉 are normalized simultaneous eigenstates of
lists of operators with certain eigenvalues. We will ignore the
phase conventions of |a〉 and |b〉 for now, since we did not use
them to derive our formula. In our notation, the two states are

|a〉 =
∣∣∣∣ Î1 Î2 Î3 Î4 S2

5 Î6 Ĵ2
12 Ĵ2

34 Ĵ2
125 Ĵtot

j1 j2 j3 j4 s5 j6 j12 j34 j125 0

〉
, (3)

|b〉 =
∣∣∣∣ Î1 Î2 Î3 Î4 S2

5 Î6 Ĵ2
13 Ĵ2

24 Ĵ2
135 Ĵtot

j1 j2 j3 j4 s5 j6 j13 j24 j135 0

〉
. (4)

In the above notation, the large ket lists the operators on the
top row, and the corresponding quantum numbers are listed
on the bottom row. The hat is used to distinguish differential
operators from their symbols, that is, the associated classical
functions.

The states |a〉 and |b〉 live in a total Hilbert space of
six angular momenta H1 ⊗ H2 ⊗ H3 ⊗ H4 ⊗ H6 ⊗ Hs . Each
large angular momentum Jr , r = 1,2,3,4,6, is represented
by a Schwinger Hilbert space of two harmonic oscillators,
namely, Hr = L2(R2) [17]. The small angular momentum S
is represented by the usual 2s + 1 dimensional representation
of SU(2), that is, Hs = C2s+1, where s = s5.

Let us now define the lists of operators in Eqs. (3) and
(4). First we look at the operators Îr , r = 1,2,3,4,6, J2

12,
J2

34, J2
13, J2

24, which act only on the large angular momentum
spaces Hr , each of which can be viewed as a space of
wave functions ψ(xr1,xr2) for two harmonic oscillators of
unit frequency and mass. Let ârμ = (x̂rμ + ip̂rμ)/

√
2, and

â
†
rμ = (x̂rμ − ip̂rμ)/

√
2, μ = 1,2, be the usual annihilation

and creation operators. The operators Îr and Ĵri are constructed
from these differential operators â and â† as follows:

Îr = 1
2 â

†
r âr , Ĵri = 1

2 â
†
r σi âr , (5)

where i = 1,2,3, and σi are the Pauli matrices. The quantum
numbers jr , r = 1,2,3,4,6 specify the eigenvalues of both Îr

and Ĵ2
r , to be jr and jr (jr + 1), respectively.

The operators Ĵ2
12, Ĵ2

34, Ĵ2
13, and Ĵ2

24 that define intermediate
coupling of the large angular momenta are defined by partial
sums of Ĵr ,

Ĵ12 = Ĵ1 + Ĵ2 , Ĵ34 = Ĵ3 + Ĵ4 . (6)

Ĵ13 = Ĵ1 + Ĵ3 , Ĵ24 = Ĵ2 + Ĵ4 . (7)

The quantum numbers ji , i = 12,34,13,24 specify the
eigenvalues of the operators Ĵ2

i to be ji(ji + 1), for i =
12,34,13,24. See [17] for more detail on the Schwinger model.

Now we turn our attention to the operator S2 that acts
only on the small angular momentum space C2s+1. Let S
be the vector of dimensionless spin operators represented by
2s + 1 dimensional matrices that satisfy the SU(2) commuta-
tion relations

[Si,Sj ] = i εijk Sk . (8)

The Casimir operator, S2 = s(s + 1), is proportional to the
identity operator, so its eigenvalue equation is trivially satis-
fied.
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The remaining operators Ĵ2
125, Ĵ2

135, and Ĵtot are nondiagonal
matrices of differential operators. They are defined in terms of
the operators Îr , Ĵri , and Si as follows:(

Ĵ 2
125

)
αβ

= [
J 2

12 + h̄2s(s + 1)
]
δαβ + 2Ĵ12 · Sαβ, (9)(

Ĵ 2
135

)
αβ

= [
J 2

13 + h̄2s(s + 1)
]
δαβ + 2Ĵ13 · Sαβ, (10)

(Ĵtot)αβ = (Ĵ1 + Ĵ2 + Ĵ3 + Ĵ4 + Ĵ6)δαβ + h̄ Sαβ. (11)

These three operators act nontrivially on both the large and
small angular momentum Hilbert spaces.

IV. MULTICOMPONENT WAVE FUNCTIONS

We follow the approach used in paper [13] to find a gauge-
invariant form of the multicomponent wave functions ψa

α (x) =
〈x,α|a〉 and ψb

α (x) = 〈x,α|b〉. Let us focus on ψa
α (x), since the

treatment for ψb is analogous. We will drop the index a for
now.

Let D̂i , i = 1, . . . ,12 denote the the operators listed in the
definition of |a〉 in Eq. (3). We seek a unitary operator Û , such
that D̂i for all i = 1, . . . ,12 are diagonalized when conjugated
by Û . In other words,

Û †
α μ(D̂i)α β Ûβ ν = (	̂i)μν , (12)

where 	̂i , i = 1, . . . ,12 is a list of diagonal matrix operators.
Let φ(μ) be the simultaneous eigenfunction for the μth diagonal
entries λ̂i of the operators 	̂i , i = 1, . . . ,12. Then we obtain
a simultaneous eigenfunction ψ (μ)

α of the original list of
operators D̂i from

ψ (μ)
α = Ûα μ φ(μ) . (13)

Since we are interested in ψα only to first order in h̄, all we
need are the zeroth-order Weyl symbol matrix U of Û , and the
first order symbol matrix 	i of 	̂i . The resulting asymptotic
form of the wave function ψ(x) is a product of a scalar WKB
part BeiS and a spinor part τ , that is,

ψ (μ)
α (x) = B(x) ei S(x)/h̄ τ (μ)

α (x,p) . (14)

Here the action S(x) and the amplitude B(x) are simultaneous
solutions to the Hamilton-Jacobi and the transport equations,
respectively, that are associated with the Hamiltonians λ

(μ)
i .

The spinor τμ is the μth column of the matrix U ,

τ (μ)
α (x,p) = Uαμ(x,p) , (15)

where p = ∂S(x)/∂x.
Now let us apply the above strategy to the 12j symbol. The

Weyl symbols of the operators Îr and Ĵri , r = 1,2,3,4,6, are
Ir − 1/2 and Jri , respectively, where

Ir = 1

2

∑
μ

zrμzrμ , Jri = 1

2

∑
μν

zrμ(σ i)μνzrν , (16)

and where zrμ = xrμ + iprμ and zrμ = xrμ − iprμ are the
symbols of â and â†, respectively. The symbols of the
remaining operators have the same expressions as Eqs. (6),
(7), and (9)–(11), but without the hats.

Among the operators D̂i , Ĵ 2
125 and the vector of the three

operators Ĵtot are nondiagonal. By looking at Eq. (9), the
expression for Ĵ 2

125, we see that the zeroth-order term of the

symbol matrix J 2
125 is already proportional to the identity

matrix, so the spinor τ must be an eigenvector for the first-order
term J12 · S. Let τ (μ)(J12) be the eigenvector of the matrix
J12 · S with eigenvalue μJ12, that is, it satisfies

(J12 · S)αβ τ
(μ)
β = μJ12 τ

(μ)
β , (17)

where μ = −s, . . . , + s. In order to preserve the diagonal
symbol matrices J12 through the unitary transformation, we
must choose the spinor τ (μ) to depend only on the direction of
J12. One possible choice of τ (μ) is the north standard gauge
(see Appendix A of [11]), in which the spinor δα μ is rotated
along a great circle from the z axis to the direction of J12.
Explicitly,

τ (μ)
α (J12) = ei(μ−α)φ12 d (s)

α μ(θ12) , (18)

where (θ12,φ12) are the spherical coordinates that specify the
direction of J12. Note that this is not the only choice, since
Eq. (17) is invariant under a local U(1) gauge transformation.
In other words, any other spinor τ ′ = eig(J12) τ that is related to
τ by a U(1) gauge transformation satisfies Eq. (17). This local
gauge freedom is parametrized by the vector potential

A(μ)
12 = i(τ (μ))†

∂τ (μ)

∂J12
, (19)

which transforms as A(μ)′ = A(μ) − ∇J12 (g) under a local
gauge transformation. Moreover, the gradient of the spinor
can be expressed in terms of the vector potential [Eq. (A.22)
in [11]] as follows:

∂τ (μ)

∂J12
= i

(
−A(μ)

12 + J12 × S

J 2
12

)
τ (μ) . (20)

Once we obtain the complete set of spinors τ (μ), μ =
−s, . . . ,s, we can construct the zeroth-order symbol matrix
U of the unitary transformation Û from Eq. (15).

Now let us show that all the transformed symbol matrices
of the operators in Eq. (3), namely, the 	i , are diagonal to
first order. Let us write 	̂[D̂] to denote the operator Û †D̂Û ,
and write 	[D̂] for its Weyl symbol. First, consider the
operators Îr , r = 1,2,3,4,6, which are proportional to the
identity matrix. Using the operator identity

[	̂(Îr )]μν = Û †
αμ(Îr δαβ)Ûβν = Îr δμν − Û †

αμ[Ûαν, Îr ] , (21)

we find

[	(Îr )]μν = (Ir − 1/2)δμν − ih̄U ∗
0αμ {U0αν, Ir} , (22)

where we have used the fact that the symbol of a commutator
is a Poisson bracket. Since Uαμ = τ (μ)

α is a function only of
J12, and since the Poisson brackets {J12,Ir} = 0 vanish for all
r = 1,2,3,4,6, the second term in Eq. (22) vanishes. We have

[	(Îr )]μν = (Ir − 1/2) δμν . (23)

Similarly, because {J12,J
2
12} = 0 and {J12,J

2
34} = 0, we find

[
	
(
Ĵ 2

12

)]
μν

= J 2
12 δμν ,

[
	
(
Ĵ 2

34

)]
μν

= J 2
34 δμν . (24)

Now we find the symbol matrices 	(Ĵ125) for the vector of
operators Ĵ125, where

[	̂(Ĵ125)]μν = Û †
αμ(Ĵ12δαβ)Ûβν + h̄ Û †

αμSαβÛβν . (25)
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After converting the above operator equation to Weyl symbols,
we find

[	(Ĵ125)]μν

= J12δμν − ih̄U ∗
αμ{Uαμ, J12} + h̄ U ∗

αμSαβUβν

= J12δμν − ih̄τ (μ)∗
α {τ (ν)

α , J12} + h̄ τ (μ)∗
α Sαβτ

(ν)
β . (26)

Let us denote the second term above by T i
μν , and use Eq. (20),

the orthogonality of τ ,

τ (μ)∗
α τ (ν)

α = δμν , (27)

to get

T i
μν = −ih̄τ (μ)∗

α

{
τ (ν)
α , J12i

}
= −ih̄τ (μ)∗

α

[{
τ (ν)
α , J1i

}+ {
τ (ν)
α , J2i

}]

= −ih̄τ (μ)∗
α εkji

(
J1k

∂τ (ν)
α

∂J1j

+ J2k

∂τ (ν)
α

∂J2j

)

= −ih̄τ (μ)∗
α εkjiJ12k

∂τ (ν)
α

∂J12j

= h̄
(
A(μ)

12 × J12
)
i
δμν +h̄

μJ12i

J12
δμν −h̄ τ (μ)∗

α Sαβτ
(ν)
β , (28)

where in the third equality, we used the reduced Lie-Poisson
bracket [Eq. (30) in [17]] to evaluate the Poisson bracket {τ,J1}
and {τ,J2}, and in the third equality we used ∂τ/J1 = ∂τ/J12

and ∂τ/J1 = ∂τ/J12 from the chain rule, and in the fifth
equality, we used Eq. (20) for ∂τ/∂J12. Notice the term
involving S in T i

μν in Eq. (28) cancels out the same term in

	(Ĵ125) in Eq. (26), leaving us with a diagonal symbol matrix

[	(Ĵ125)]μν = J12

[
1 + μh̄

J12

]
+ h̄ A(μ)

12 × J12 . (29)

Taking the square, we obtain[
	
(
Ĵ2

125

)]
μν

= (J12 + μh̄)2δμν . (30)

Finally, let us look at the last three remaining operators
Ĵtot in Eq. (11). Since each of the the symbols Jr for r =
3,4,6 defined in Eq. (16) Poisson commutes with J12, that is,
{J12,Jr} = 0, we find 	(Ĵr ) = Jr − ih̄U

†
0 {U0(J12),Jr} = Jr ,

for r = 3,4,6. Using 	(Ĵ125) from Eq. (29), we obtain

[	(Ĵtot)]μν

=
[

J12

(
1 + μh̄

J12

)
+ h̄ A(μ)

12 × J12 + (J3 + J4 + J6)

]
δμν .

(31)

Therefore, all 	i , i = 1, . . . ,12, are diagonal.
The analysis above is completely analogous to those in [13],

except that the spinor is diagonalized in the direction of the
intermediate angular momentum vector J12. We see that the
procedure in [13] generalizes to the case of the 12j -symbol
wave functions without any complication. This is because of
the chain rule for differentiation and Poisson brackets. See the
calculations in Eq. (28).

Not counting the trivial eigenvalue equation for S2, we
have 11 Hamilton-Jacobi equations associated with the 	i

for each polarization μ in the 20-dimensional phase space
C10. It turns out that not all of them are functionally

independent. In particular, the Hamilton-Jacobi equations
	(Ĵ 2

12) = J 2
12h̄ = (j12 + 1/2)h̄ and 	(Ĵ 2

125) = (J12 + μh̄)2 =
(j125 + 1/2)2h̄2 are functionally dependent. For them to be
consistent, we must pick out the polarization μ = j125 − j12.
This reduces the number of independent Hamilton-Jacobi
equations for S(x) from 11 to 10, half of the dimension of the
phase space C10. These ten equations define the Lagrangian
manifold associated with the action S(x).

Now let us restore the index a. We express the multicom-
ponent wave function ψa

α (x) in the form of Eq. (14),

ψa
α (x) = Ba(x) eiSa (x)/h̄ τ a

α (x,p) . (32)

Here the action Sa(x) is the solution to the ten Hamilton-Jacobi
equations associated with the μth entries λa

i of ten of the
symbol matrices 	a

i , given by

I1 = (j1 + 1/2)h̄ ,

I2 = (j2 + 1/2)h̄ ,

I3 = (j3 + 1/2)h̄ ,

I4 = (j4 + 1/2)h̄ ,

I6 = (j6 + 1/2)h̄ , (33)

J 2
12 = (j12 + 1/2)2h̄2 ,

J 2
34 = (j34 + 1/2)2h̄2 ,

J(a)
tot = J12

[
1 + μh̄

J12

]
+ h̄ A12 × J12 + (J3 + J4 + J6) = 0 ,

and τ a = τ (μ) with μ = j125 − j12. Note that all the Hamilto-
nians except the last three, J(a)

tot , preserve the value of J12 and
J6 along their Hamiltonian flows.

We carry out an analogous analysis for ψb(x). The result is

ψb
α (x) = Bb(x) eiSb(x)/h̄ τ b

α (x,p) , (34)

where Sb(x) is the solution to the following ten Hamilton-
Jacobi equations:

I1 = (j1 + 1/2)h̄ ,

I2 = (j2 + 1/2)h̄ ,

I3 = (j3 + 1/2)h̄ ,

I4 = (j4 + 1/2)h̄ ,

I6 = (j6 + 1/2)h̄ , (35)

J 2
13 = (j13 + 1/2)2h̄2 ,

J 2
24 = (j24 + 1/2)2h̄2 ,

J(b)
tot = J13

[
1 + νh̄

J13

]
+ h̄ A13 × J13 + (J2 + J4 + J6) = 0 .

Here the spinor τ b = τ
(ν)
b satisfies

(J13 · S)αβ

(
τ

(ν)
b

)
β

= νJ13
(
τ

(ν)
b

)
β
, (36)

where ν = j135 − j13. The vector potential A13 is defined by

A13 = i(τ b)†
∂τ b

∂J13
. (37)

Again, note that all the Hamiltonians except the last three, J(b)
tot ,

preserve the value of J13 and J6 along their Hamiltonian flows.
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V. GAUGE-INVARIANT FORM OF THE WAVE FUNCTIONS

We follow the procedure described by the analysis pre-
ceding Eq. (69) in [13] to transform the wave functions into
their gauge-invariant form. The result is a gauge-invariant
representation of the wave function,

ψa(x) = Ba(x) eiS
9j
a (x)/h̄ [Ua(x) τ a(x0)], (38)

where the action S
9j
a (x) is the integral of p dx starting at a point

z0, which is the lift of a reference point x0 in the Lagrangian
manifold L9j

a . The Lagrangian manifold L9j
a is defined by the

following equations:

I1 = (j1 + 1/2)h̄ ,

I2 = (j2 + 1/2)h̄ ,

I3 = (j3 + 1/2)h̄ ,

I4 = (j4 + 1/2)h̄ ,

I6 = (j6 + 1/2)h̄ , (39)

J 2
12 = (j12 + 1/2)2h̄2 ,

J 2
34 = (j34 + 1/2)2h̄2 ,

Jtot = J1 + J2 + J3 + J4 + J6 = 0 .

The rotation matrix Ua(x) that appears in Eq. (38) is de-
termined by the SO(3) rotation that transforms the shape
configuration of J12 and J6 at the reference point z0 =
(x0,p(x0)) on L9j

a to the shape configuration of J12 and J6 at
the point z = (x,p(x)) on L9j

a . Here J12 and J6 are functions
of z and are defined in Eq. (16).

Similarly, the multicomponent wave function for the state
|b〉 has the following form:

ψb(x) = Bb(x) eiS
9j

b (x)/h̄ [Ub(x) τ b(x0)] , (40)

where the action S
9j

b (x) is the integral of p dx starting at
a point that is the lift of x0 onto the Lagrangian manifold
L9j

b . The Lagrangian manifold L9j

b is defined by the following
equations:

I1 = (j1 + 1/2)h̄ ,

I2 = (j2 + 1/2)h̄ ,

I3 = (j3 + 1/2)h̄ ,

I4 = (j4 + 1/2)h̄ ,

I6 = (j6 + 1/2)h̄ , (41)

J 2
13 = (j13 + 1/2)2h̄2 ,

J 2
24 = (j24 + 1/2)2h̄2 ,

Jtot = J1 + J2 + J3 + J4 + J6 = 0 .

The rotation matrix Ub(x) that appears in Eq. (40) is de-
termined by the SO(3) rotation that transforms the shape
configuration of J13 and J6 at the reference point z0 =
(x0,p(x0)) on L9j

b to the shape configuration of J13 and J6

at the point z = (x,p(x)) on L9j

b .
Taking the inner product of the wave functions, and treating

the spinors as part of the slowly varying amplitudes, we find

〈b|a〉 = eiκ
∑

k

�k exp
{
i
[
S9j

a (zk) − S
9j

b (zk) − μkπ/2
]
/h̄
}

[
U 0k

b τ b(z0)
]† [

U 0k
a τ a(z0)

]
. (42)

In the above formula, the sum is over the components of the
intersection set Mk between the two Lagrangian manifolds
L9j

a and L9j

b . The point zk is any point in the kth component.
The amplitude �k and the Maslov index μk are the results of
doing the stationary phase approximation of the inner product
without the spinors. Each rotation matrix U 0k

a is determined
by a path γ a(0k) that goes from z0 to zk along L9j

a , and U 0k
b is

similarly defined. Formula (42) is independent of the choice
of zk , because any other choice z′

k will multiply both U
0j
a and

U
0j

b by the same additional rotation matrix which cancels out
in the product (U 0k

b )†U 0k
a .

The above analysis is a straightforward application of the
theoretical result developed in [13]. We present the detail of
this analysis to show that the procedure outlined in [13] does
generalize to higher 3nj symbols, such as the 12j symbol.

VI. LAGRANGIAN MANIFOLDS AND ACTIONS

We now analyze the Lagrangian manifolds L9j
a and L9j

b ,
defined by the Hamilton-Jacobi equations (39) and (41),
respectively. We focus on L9j

a first, since the treatment for L9j

b

is analogous. Let π : �5j → 	5j denote the projection of the
large phase space �5j = (C2)5 onto the angular momentum
space 	5j = (R3)5, through the functions Jri , r = 1,2,3,4,6.
The first six equations, Ir = jr + 1/2, r = 1,2,3,4,6 fix the
lengths of the five vectors |Jr | = Jr , r = 1,2,3,4,6. The three
equations for the total angular momentum,

Jtot = J1 + J2 + J3 + J4 + J6 = 0 , (43)

constrains the five vectors Ji , i = 1, . . . ,6 to form a close
polygon. The remaining two equations

J 2
12 = (j12 + 1/2)2h̄2 , (44)

J 2
34 = (j34 + 1/2)2h̄2 , (45)

put the vectors J1, J2 into a 1-2-12 triangle, and put the
vectors J3, J4 into a 3-4-34 triangle. Thus, the vectors form a
butterfly shape, illustrated in Fig. 3. This shape has two wings
(J1,J2,J12) and (J3,J4,J34) that are free to rotate about the J12

and J34 edges, respectively. Moreover, the Hamilton-Jacobi
equations are also invariant under an overall rotation of
the vectors. Thus the projection of L9j

a onto the angular
momentum space is diffeomorphic to U(1)2 × O(3).

J6

J1

J4
J2

J3

J12

J34

FIG. 3. Configuration of a point on L9j
a , projected onto the

angular momentum space 	5j , and viewed in a single R3.
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The orbit of the group U(1)5 generated by Ir , r = 1,2,3,4,6
is a five-torus. Thus L9j

a is a five-torus bundle over a subman-
ifold described by the butterfly configuration in Fig. 3. Alto-
gether there is a U(1)7 × SU(2) action on L9j

a . If we denote co-
ordinates on U(1)7 × SU(2) by (ψ1,ψ2,ψ3,ψ4,ψ6,θ12,θ34,u),
where u ∈ SU(2) and where the five angles are the 4π -periodic
evolution variables corresponding to (I1,I2,I3,I4,I6,J2

12,J
2
34),

respectively, then the isotropy subgroup is generated by
three elements, say x = (2π,2π,2π,2π,2π,0,0, − 1), y =
(0,0,2π,2π,2π,2π,0,−1), and z = (2π,2π,0,0,2π,0,2π,

− 1). The isotropy subgroup itself is an Abelian group of
eight elements, (Z2)3 = {e,x,y,z,xy,xz,yz,xyz}. Thus the
manifold L9j

a is topologically U(1)7 × SU(2)/(Z2)3. The
analysis for L9j

b is the same.
Now it is easy to find the invariant measure on L9j

a and
L9j

b . It is dψ1 ∧ dψ2 ∧ dψ3 ∧ dψ4 ∧ dψ6 ∧ dθ12 ∧ dθ34 ∧
du, where du is the Haar measure on SU(2). The volumes
VA of L9j

a and VB of L9j

b with respect to this measure are

VA = VB = 1
8 (4π )7 × 16π2 = 215π9 , (46)

where the 1/8 factor compensates for the eight-element
isotropy subgroup.

We now examine the intersections of L9j
a and L9j

b in
detail. Because the two lists of Hamilton-Jacobi equations (39)
and (41) share the common equations Ir = jr + 1/2, r =
1,2,3,4,6, the intersection in the large phase space �5j is a
five-torus fiber bundle over the intersection of the projections

in the angular momentum space 	5j . The intersections of the
projections in 	5j require the five vectors Jr , r = 1,2,3,4,6,
to satisfy

|Jr | = Jr ,
∑

r

Jr = 0 , (47)

|J1 + J2| = J12 , |J3 + J4| = J34 ,

|J1 + J3| = J13 , |J2 + J4| = J24 .

A nice way of constructing the vectors satisfying Eq. (47)
follows the procedure given in the appendix of [18],
which was generalized to apply to the symmetric treatment
of the 9j symbol in [16]. For completeness, we summarize the
construction in [16] using the unsymmetrical labeling of the
9j symbol in this paper in the next few paragraphs.

The construction uses the Gram matrix G of dot products
among the four vectors Ji , i = 1,2,3,4. Some of the dot
products are given by the length of the vectors Ji , i =
1,2,3,4,6, and the intermediate couplings Ji , i = 12,34,13,24.
In particular, the diagonal elements are J 2

i , i = 1,2,3,4, and
some of the off-diagonal elements are given by

J1 · J2 = 1
2

(
J 2

12 − J 2
1 − J 2

2

)
, (48)

J3 · J4 = 1
2

(
J 2

34 − J 2
3 − J 2

4

)
, (49)

J1 · J3 = 1
2

(
J 2

13 − J 2
1 − J 2

3

)
, (50)

J2 · J4 = 1
2

(
J 2

24 − J 2
2 − J 2

4

)
. (51)

Let us denote the remaining two unknown dot products by
x = J1 · J4 and y = J2 · J3. We have

G =

⎛
⎜⎜⎜⎝

J 2
1

1
2

(
J 2

12 − J 2
1 − J 2

2

)
1
2

(
J 2

13 − J 2
1 − J 2

3

)
x

1
2

(
J 2

12 − J 2
1 − J 2

2

)
J 2

2 y 1
2

(
J 2

24 − J 2
2 − J 2

4

)
1
2

(
J 2

13 − J 2
1 − J 2

3

)
y J 2

3
1
2

(
J 2

34 − J 2
3 − J 2

4

)
x 1

2

(
J 2

24 − J 2
2 − J 2

4

)
1
2

(
J 2

34 − J 2
3 − J 2

4

)
J 2

4

⎞
⎟⎟⎟⎠ . (52)

The unknown dot products x and y can be solved from a system
of two equations. The first equation follows from Eq. (43).
Moving J6 to the other side, and taking the square, it becomes

J 2
6 = (J1 + J2 + J3 + J4)2

= J 2
1 + J 2

2 + J 2
3 + J 2

4 + 2J1 · J2 + 2J3 · J4

+ 2J1 · J3 + 2J2 · J4 + 2x + 2y , (53)

which gives us a linear relation between x and y,

x+y = 1
2

(
J 2

1 +J 2
2 +J 2

3 +J 2
4 +J 2

6 −J 2
12−J 2

34−J 2
13−J 2

24

)
.(54)

This is the same equation as Eq. (6) in [16], except for the
relabeling of the vectors. The second equation comes from the
fact that the Gram matrix of the dot products between any four
vectors in R3 has a zero determinant. That is,

P (x,y) ≡ |G| = 0 . (55)

This constitutes a second equation for x and y. Substituting
the linear relation Eq. (54) into Eq. (55) leads to a quartic
equation Q(x) = 0, which we can use to solve for x. Then we

can use Eq. (54) to solve for y. In general, we find two sets of
real solutions of (x,y) = (x1,y1) and (x,y) = (x2,y2). See [16]
for more detail.

For each set of solutions of (x,y), we obtain all the
dot products among the first four vectors. Assuming all the
diagonal subdeterminants of order 3 of the Gram matrix in
Eq. (52) are positive definite, we can follow the procedure
outlined in the appendix of [18] to obtain the vectors. Let G3

be the first diagonal 3 × 3 submatrix of G. We use its singular
decomposition to determine the vectors J1, J2, J3. We can then
find J4 from the known dot products between Ji , i = 1,2,3 and
J4. Finally, we obtain J6 from

J6 = −(J1 + J2 + J3 + J4) . (56)

Once we have Ji , i = 1,2,3,4,6, we add them up pairwise
to find the intermediate vectors Ji , i = 12,34,13,24. This
completes the construction of all nine vectors in R3.

The construction of the vector configuration above not only
gives explicit solutions for all the vectors at the intersection of
L9j

a and L9j

b , we also find that there are generally two distinct
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J6

J1

J4

J3

J2

J2

J3

J12

J34J13

J24

FIG. 4. Configuration of a point on the intersection I11 set,
projected onto the angular momentum space 	5j , and viewed in a
single R3.

solutions of dot products (x1,y1) and (x2,y2). This implies that
the solution set consists of two sets of vector configurations
that are not related by an O(3) symmetry. Thus the solution
set of Eq. (47) in 	5j consists of four disconnected subsets,
each diffeomorphic to SO(3). These four sets can be grouped
into two pairs according to the values of the dot products
(x1,y1) and (x2,y2).

The intersections in �5j are the lifts of the intersections
in 	5j . Therefore, the intersection of L9j

a consists of four
disconnected subsets, where each subset is a five-torus bundle
over SO(3). Let us denote the two sets corresponding to
(x1,y1) by I11,I12, and denote the two sets corresponding to
(x2,y2) by I21,I22. The vector configuration for a typical point
in I11 is illustrated in Fig. 4. Each intersection set is an orbit of
the group U(1)5 × SU(2), where U(1)5 represents the phases
of the five spinors and SU(2) is the diagonal action generated
by Jtot.

The isotropy subgroup of this group action is Z2, gener-
ated by the element (2π,2π,2π,2π,2π,−1), in coordinates
(ψ1,ψ2,ψ3,ψ4,ψ6,u) for the group U(1) × SU(2), where u ∈
SU(2). The volume of the intersection manifold I11, I12, I21,
or I22, with respect to the measure dψ1 ∧ dψ2 ∧ dψ3 ∧ dψ4 ∧
dψ6 ∧ du, is

VI = 1
2 (4π )5 × 16π2 = 213π7 , (57)

where the 1/2 factor compensates for the two-element isotropy
subgroup.

The amplitude determinant is given in terms of a determi-
nant of Poisson brackets among distinct Hamiltonians between
the two lists of Hamilton-Jacobi equations in Eqs. (39) and
(41). In this case, those are (J12,J34) from Eq. (39) and
(J13,J24) from Eq. (41). Thus the determinant of Poisson
brackets is∣∣∣∣ {J12, J13} {J12, J24}
{J34, J13} {J34, J24}

∣∣∣∣ = 1

J12J23J13J24

∣∣∣∣V123 V214

V341 V432

∣∣∣∣
= 1

J12J23J13J24
|V123V432 − V214V341| ,

(58)

where

Vijk = Ji · (Jj × Jk) . (59)

The amplitude �k in Eq. (42) can be inferred from Eq. (10)
in [16]. In the present case, each �k has the same expression
�. It is

� = (2πi)VI√
VAVB

√
J12J23J13J24√|V123V432 − V214V341|

= (2πi)213π7

215π9

√
J12J23J13J24√|V123V432 − V214V341|

= i
√

J12J23J13J24

2π
√|V123V432 − V214V341|

. (60)

We now outline the calculation of the relative phase between
the exponents Sa(z12) − Sb(z12) and Sa(z11) − Sb(z11), which
can be written as an action integral

S(1) = [Sa(z12) − Sb(z12)] − [Sa(z11) − Sb(z11)] =
∮

p dx

(61)

around a closed loop that goes from z11 to z12 along L9j
a and

then back along L9j

b .
We shall construct the closed loop giving the relative phase

S(1) by following the Hamiltonian flows of various observables.
This loop consists of four paths, and it is illustrated in the
large phase space �5j in Fig. 5. The loop projects onto a loop
in the angular momentum space 	5j , which is illustrated in
Fig. 6. We take the starting point p ∈ I11 of Fig. 5 to lie in
the five-torus fiber above a solution of Eq. (47). Its vector
configuration is illustrated in Fig. 6(a).

First we follow the J2
12 flow and then the J2

34 flow to trace
out a path that takes us along L9j

a from a point p in I11 to a
point q in I12. Let the angles of rotations be 2φ12 and 2φ34,
respectively, where φ12 is the angle between the triangles
1-2-12 and 12-34-6, and φ34 is the angle between the triangles
3-4-34 and 12-34-6. These rotations effectively reflect the
triangles 1-2-12 and 3-4-34 across the triangle 12-34-6, as
illustrated in Figs. 6(a) and 6(b). In addition, the triangle
13-24-6 is also reflected across its own plane. Thus, all five
vectors Jr , r = 1,2,3,4,6, are reflected across the triangle
12-34-6.

Next, we follow the Hamiltonian flow generated by −j6 ·
Jtot along I12, which generates an overall rotation of all the
vectors around −j6. Let the angle of rotation be 2φ6, where
φ6 is the angle between the triangles 12-34-6 and 13-24-6.
This brings the triangle 13-24-6 back to its original position.
However, the triangle 12-34-6 is now rotated to the other side

L9j
b

L9j
a

I11 I12

L9j
b

L9j
a

p q

qp

FIG. 5. The loop from a point p ∈ I11 to q ∈ I12 along L9j
a , and

then to q ′ ∈ I12 along I12, and then to p′ ∈ I11 along L9j

b , and finally
back to p along I11.
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(d)

J6

J12 J24

J13

J34

J1

J3

J2

J4J2

J3

J6

J13

J12 J3

J24

J1

J2

J34

J4

J2

J6

J13

J24

J1

J3

J2

J4

J12
J34

J6

J4

J2

J3

J1 J12

J34J13

J3

J24

(a) (b)

(c)

FIG. 6. The loop from Fig. 5 projected onto a loop in 	5j , as
viewed in a single R3.

of triangle 13-24-6, as illustrated in Fig. 6(c). This corresponds
to the point q ′ in Fig. 5.

To bring the triangle 12-34-6 back to its original position,
we follow the J2

13 flow and J2
24 flow along L9j

b . Let the angle of
rotations be 2φ13 and 2φ24, respectively, where φ13 is the angle
between the triangle 1-3-13 and the triangle 13-24-6, and φ24 is
the angle between the triangle 2-4-24 and the triangle 13-24-6.
These rotations effectively reflect all the vectors across the
triangle 13-24-6. Thus we arrive at a point p′ ∈ I11, where
the points p and p′ have the same projection in the angular
momentum space 	5j . This is illustrated in of Figs. 6(a) and
6(d) . Thus the two points p and p′ differ only by the phases
of the five spinors, which can be restored by following the
Hamiltonian flows of (I1,I2,I3,I4,I6). This constitutes the last
path from p′ to p.

To summarize the rotational history in the angular momen-
tum space, we have applied the rotations

R13(j′13,2φ13)R24(j′24,2φ24)R(−j6,2φ6)
(62)

R34(j34,2φ34)R12(j12,2φ12) ,

where R12 acts only on J1 and J2, R34 acts only on J3 and J4,
R13 acts only on J1 and J3, R24 acts only on J2 and J4, and
R(−j6,2φ6) acts on all five vectors. The corresponding SU(2)
rotations, with the same axes and angles, take us from point
p in Fig. 5 to another point p′ along the sequence p → q →
q ′ → p′.

To compute the final five phases required to close the loop,
we use the Hamilton-Rodrigues formula [19], in the same way
as Eq. (46) in [14]. Let us start with vector J1. The action of
the rotations on this vector can be written

R(j13,2φ13)R(−j6,2φ6)R(j12,2φ12)J1 = J1 . (63)

By inserting an edge J16 = J1 + J6 as in part (c) of Fig. 7,
we split the angle φ6 that appears in the middle rotation in

J6

J24
J13

J1

J3

J6

J3

J1

J34

J16

)b()a(

(c)

φ6a

φ1a

J6

J1

J2

J2

J16
J34

J12

J16

φ6b

φ1b

FIG. 7. Decomposition of the angles φ1 and φ6 into dihedral
angles in two tetrahedra.

Eq. (63) into two internal dihedral angles φ6a and φ6b, of the
tetrahedrons in Figs. 7(a) and 7(b), respectively.

Then the rotations in Eq. (63) become

R(j13,2φ13)R(−j6,2φ6)R(j12,2φ12)

= [R(j13,2φ13)R(−j6,2φ6a)][R(−j6,2φ6b)R(j12,2φ12)]

= R(j1,2φ1a)R(j1,2φ1b)

= R(j1,2φ1) , (64)

where we have used the Hamilton-Rodrigues formula twice
in the second equality. In the third equality, we used the
fact that φ1 = φ1a + φ1b, where the angles φ1a and φ1b are
internal dihedral angles for the tetrahedra in Figs. 7(a) and
7(b), respectively. Thus, we find that the product of the three
rotations in Eq. (63) is R(j1,2φ1), where φ1 is the angle
between the triangle 1-2-12 and the triangle 1-3-13. We can
lift the rotation Eq. (64) up to SU(2) with the same axis and
angle. Its action on the spinor at p is a pure phase. To undo
this pure phase, we follow the Hamiltonian flow of I1 by an
angle −2φ1, modulo 2π .

Similarly, we can find the rotations acting on J2, J3, J4,
and J6, and proceed to calculate the action integral as in [14].
Instead of completing the derivation of the action integral using
our unsymmetrical labeling of the 9j symbol, we will quote
the result from Eq. (12) in [16]. It is given by

S(1) = 2
∑

r

Jrψ
(1)
r , (65)

where ψ (1)
r = π − φr is the external dihedral angle between

the normals of the two triangles adjacent to Jr . The orientations
of the triangles are defined in Fig. 8. The sum is over
r = 1,2,3,4,6,12,34,13,24. The relative action integral that
corresponds to the other solution (x2,y2) of Eq. (47) is

S(2) = 2
∑

r

Jrψ
(2)
r , (66)

which has the same expression as Eq. (65), but we should
note that the angles ψ (2)

r are different from ψ (1)
r , because the
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13

12

12

-12

-34 -6

3

4

34 246

13

-13

-1 -3
12

12

-2

-4

-24
3 34

4

246

FIG. 8. The angles φr is the angle between the normals of the
adjacent triangles sharing the edge Jr , where the normals are defined
by the orientation of the triangles shown. This is essentially Fig. 2
in [16], with an unsymmetrical labeling of the 9j .

vector configuration has a different set of dot products. As
in [16], we pick S(1) to correspond to the root in which −π �

ψr � π , and pick S(2) to correspond to the root in which 0 �
ψr � π .

Altogether, the asymptotic formula for the 9j symbol when
all j ’s are large is given by Eq. (1) in [16], which we reproduce
here:

⎧⎨
⎩

j1 j2 j12

j3 j4 j34

j13 j24 j5

⎫⎬
⎭ = 1

4π

√∣∣V (1)
123V

(1)
432 − V

(1)
214V

(1)
341

∣∣ cos(S(1))

+ 1

4π

√∣∣V (2)
123V

(2)
432 − V

(2)
214V

(2)
341

∣∣ sin(S(2)) .

(67)

It is found from Eqs. (17) and (18) in [16] that, when
the configuration goes to its time-reversed image, that is,
when all the vectors reverse their directions, the actions
transform according to S(1) → −S(1) and S(2) → −S(2) +
2π (

∑9
r=1 jr ) + 9π . As a result, the two terms cos(S(1)) and

sin(S(2)) in the 9j formula (67) are invariant under time-
reversal symmetry. In the asymptotic formula (80) for the 12j

symbol that we will derive below, the additional phases gen-
erated from the spinor products will break this time-reversal
symmetry.

Putting the amplitudes � from Eq. (60) and the relative
actions S(1) and S(2) into Eq. (42), we find

〈b|a〉 = eiκ1

√
J12J34J13J24

2π

√∣∣V (1)
123V

(1)
432 − V

(1)
214V

(1)
341

∣∣
{
[τ b(z11)]†[τ a(z11)] + ei(S(1)−μ1π/2)/h̄[U (1)

b τ b(z11)
]† [

U (1)
a τ a(z11)

] }

+ eiκ2

√
J12J23J13J24

2π

√∣∣V (2)
123V

(2)
432 − V

(2)
214V

(2)
341

∣∣
{
[τ b(z21)]†[τ a(z21)] + ei(S(2)−μ2π/2)/h̄[U (2)

b τ b(z21)
]† [

U (2)
a τ a(z21)

] }
, (68)

where the superscripts (1) and (2) are labels used to distinguish
the first and second solutions to Eq. (47). Here we have factored
out two arbitrary phases eiκ1 and eiκ2 for the two pairs of
stationary phase contributions. The rotation matrices U (i)

a , i =
1,2, are determined by the paths from zi1 to zi2 along L9j

a .
Similarly the rotation matrices U

(i)
b , i = 1,2, are determined

by the paths from zi1 to zi2 along L9j

b . See Eq. (76) in [13] for a
similar, but simpler, expression for the case of the 9j symbol.

VII. SPINOR PRODUCTS

We choose the vector configurations associated with z11 to
correspond to a particular orientation of the vectors. We put J12

along the z axis, and put J6 inside the xz plane, as illustrated
in Fig. 9. Let the inclination and azimuth angles (θ,φ) denote
the direction of the vector J13. From Fig. 9, we see that φ is
the angle between the (J12, J6) plane and the (J12, J13) plane.
We denote this angle by φ = φ12. The inclination angle θ is
the angle between the vectors J12 and J13.

The gauge choices for the spinors at the reference point
z11 are arbitrary, and they only contribute a phase that can be

absorbed into eiκ1 . To be concrete, since J12 points in the z

direction, we choose the spinor τ a(z11) to be the μth standard
eigenvector for Sz, that is,

τ a
α (z11) = δαμ . (69)

For the spinor τ b(z11), we choose it to be an eigenvector of
J13 · S in the north standard gauge, that is,

τ b
α (z11) = ei(α−ν)φ12 ds

να(θ ) , (70)

where (φ12,θ ) are the spherical angles of J13 in a reference
frame where J12 is in the z direction, and J6 is in the xz plane;
see Fig. 9. We denote the azimuthal angle by φ12, because it
is also the angle at J12 between the (J12, J13) plane and the
(J12, J6) plane.

Taking the spinor inner product, we obtain

[τ b(z11)]†[τ a(z11)] = e−i(μ−ν)φ12 ds
νμ(θ ) . (71)

To evaluate the other spinor product at z12, we need to find
the rotation matrices U (1)

a and U
(1)
b , which are generated

from paths γa and γb from z11 to z12 along L9j
a and L9j

b ,
respectively.
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x

y

z

J12

J6

J34

J13
J24

FIG. 9. The vector configuration at the point z11 in I11.

We choose the path γa to be the path from p to q generated
by the J2

12 flow and the J2
34 flow, which are illustrated in Fig. 5

in the large phase space, in Fig. 6(a) in the angular momentum
space. This path contains no flow generated by the total angular
momentum, so

U (1)
a = 1. (72)

We choose the path γb to be the inverse of the path from q

back to p along L9j

b in Fig. 5, which contains only one overall
rotation around −j6. Thus

U
(1)
b = U (ĵ6,2φ6). (73)

The rotation associated with U
(1)
b is illustrated in Fig. 6(b).

It effectively moves J13 to its mirror image J′
13 across the

12-34-6 triangle in the xz plane, which has the direction given
by (−φ12,θ ). Thus Ub τb(z11) is an eigenvector of J′

13 · S, and
is up to a phase equal to the eigenvector of J′

13 · S in the north
standard gauge. Thus, we have

[
U

(1)
b τ b(z11)

]
α

= eiνH13 e−i(α−ν)φ12 ds
να(θ ), (74)

where H13 is a holonomy phase factor equal to the area of a
spherical triangle on a unit sphere; see Fig. 10. Therefore, the
spinor product at the intersection I12 is

[
U

(1)
b τ b(z11)

]†
[Uaτ

a(z11)] = eiνH13 ei(μ−ν)φ12 ds
νμ(θ ). (75)

Let us denote the first term in Eq. (68) by T1. Substituting
the spinor inner products of Eqs. (71) and (75) into Eq. (68),

z

J13 J13

R(U (1)
b )

FIG. 10. The phase difference between two gauge choices can be
expressed as an area around a closed loop on the unit sphere.

we find that T1 is given by

T1 = eiκ1
√

J12J34J13J24

π

√∣∣V123V432 − V214V341

∣∣ ds
νμ(θ )

× cos

[
S(1)− μ1π

4
+μφ12+ν

(
H13

2
−φ12

)]
. (76)

Using a different choice of the reference point and paths,
we can derive an alternative expression for the inner product
and eliminate the term H13. Let us choose a new reference
point z11 to correspond to an orientation in which J13 is along
the z axis, and J6 lies in the xz plane. We choose the path γa

to go from p to q ′ along the first two paths in Fig. 5, and we
choose γ b to be the inverse of the last two paths that goes from
q ′ back to p in Fig. 5. Through essentially the same arguments,
we find

T1 = eiκ1
√

J12J34J13J24

π
√|V123V432 − V214V341|

ds
νμ(θ )

× cos

[
S(1)− μ1π

4
+μ

(
H12

2
−φ13

)
+νφ13

]
. (77)

Here H12 is another holonomy for the J12 vector, and the
angle φ13 is the angle between the (J13, J12) plane and (J13,
J6) plane. Because the quantities ψi,φ12,φ13,H12,H13 depend
only on the geometry of the vector configuration, and are
independent of μ and ν, we conclude that the argument in the
cosine must be linear in μ and ν. Equating the two arguments

J13

J6

J2 3

J34 J24

J12

FIG. 11. The angles φ12 and φ13 are internal dihedral angles in
the tetrahedron with the six lengths J6, J12, J34, J13, J24, J2′3, where
J2′3 = J3 − J2. The angle θ is the angle between J12 and J13.
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of the cosine in Eqs. (76) and (77), we find that this linear term
is (μφ12 + νφ13). Using the Maslov index μ1 = 0 from [16],
we find

T1 = eiκ1
√

J12J34J13J24

π

√∣∣V (1)
123V

(1)
432 − V

(1)
214V

(1)
341

∣∣ ds
νμ(θ (1))

× cos
(
S(1) + μφ

(1)
12 + νφ

(1)
13

)
, (78)

where we have put back the superscript (1). Through an
analogous calculation, we find

T2 = eiκ2
√

J12J34J13J24

π

√∣∣V (2)
123V

(2)
432 − V

(2)
214V

(2)
341

∣∣ ds
νμ(θ (2))

× sin
(
S(2) + μφ

(2)
12 + νφ

(2)
13

)
. (79)

VIII. ASYMPTOTIC FORMULA FOR THE 12 j SYMBOL

From the definition in Eq. (2), we see that the factor
([j12][j34][j13][j24])1/2 in the denominator of Eq. (2) partially
cancels out the factor (J12J34J13J24)1/2 from T1 and T2 in
Eqs. (78) and (79), respectively, leaving a constant factor of
1/4. Because the 12j symbol is a real number, the relative
phase between eiκ1 and eiκ2 must be ±1. Through numerical
experimentation, we found it to be +1. We use the limiting
case of j5 = s = 0 from Eq. (A9) in [8] to determine the
overall phase convention. This determines most of the overall
phase. The rest can be fixed through numerical experimen-
tation. Putting the pieces together, we obtain a new asymp-
totic formula for the 12j symbol with one small quantum
number:

⎧⎨
⎩

j1 j2 j12 j125

j3 j4 j34 j135

j13 j24 s j6

⎫⎬
⎭ = (−1)μ

4π
√

(2j125 + 1)(2j135 + 1)

⎡
⎣ ds

ν μ(θ (1))√∣∣V (1)
123V

(1)
432 − V

(1)
214V

(1)
341

∣∣ cos
(
S(1) + μφ

(1)
12 + νφ

(1)
13

)

+ ds
ν μ(θ (2))√∣∣V (2)

123V
(2)

432 − V
(2)

214V
(2)

341

∣∣ sin
(
S(2) + μφ

(2)
12 + νφ

(2)
13

)
⎤
⎦ . (80)

As mentioned above, the additional terms from the spinor
product break the time-reversal symmetry. Thus, it is essential
that S(1) and S(2) are evaluated at the configurations in which
V = J6 · (J12 × J13) < 0, and not at their mirror images.

Here, the indices on the d matrix are given by μ = j125 −
j12 and ν = j135 − j13. They are of the same order as the small
parameter s. The phases S(1) and S(2) are defined in Eq. (65),
and the V ’s are defined by

Vijk = Ji · (Jj × Jk) . (81)

The angles φ12 and φ13 are internal dihedral angles at the
edge J12 and J13, respectively, of a tetrahedron formed by
the six vectors J12, J13, J24, J34, J6, and J2′3, where J2′3 =
J3 − J2. This tetrahedron is illustrated in Fig. 11. The angle

10 15 20 25 30
-3

-2

-1

0

1

2

12
j-

Sy
m

bo
l

10−7

j6

FIG. 12. Comparison of the exact 12j symbol (vertical sticks and
dots) and the asymptotic formula (80) in the classically allowed region
away from the caustics, for the values of the j ’s shown in Eq. (85).

θ is the angle between the vectors J12 and J13. The explicit
expression for the angles φ12, φ13, and θ are given by the
following equations:

φ12 = π − cos−1

(
(J12 × J13) · (J12 × J6)

|J12 × J13| |J12 × J6|
)

, (82)

φ13 = π − cos−1

(
(J13 × J12) · (J13 × J6)

|J13 × J12| |J13 × J6|
)

, (83)

θ = cos−1

(
J12 · J13

J12J13

)
. (84)

65 70 75 80
-10

-5

0

5

12
j-

Sy
m

bo
l

10−10

j6

FIG. 13. Comparison of the exact 12j symbol (vertical sticks and
dots) and the asymptotic formula (80) in the classically allowed region
away from the caustics, for the values of the j ’s shown in Eq. (86).
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10 20 30 40 50 100 150

10−11

10−10

10−9

10−8

10−13

10−12

10−11

10−10

10−9

j6 j6

|Err||Err|
)b()a(

FIG. 14. Absolute value of the error of the asymptotic for-
mula (80) for (a) the case shown in Eq. (85), and (b) the case
shown in Eq. (86). The error is defined as the difference between
the approximate value and the exact value.

IX. PLOTS

We illustrate the accuracy of the approximation Eq. (80)
by plotting it against the exact 12j symbol in the classically
allowed region for the following values of the j ’s:⎧⎪⎨
⎪⎩

j1 j2 j12 j125

j3 j4 j34 j135

j13 j24 s5 j6

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

51/2 59/2 21 22

55/2 53/2 27 26

27 25 1 j6

⎫⎪⎬
⎪⎭ . (85)

The result is shown in Fig. 12. From the error plot in Fig. 14(a),
we see that the agreement is excellent, even for these relatively
small values of the j ’s.

Since the asymptotic formula (80) should become more
accurate as the values of the j ’s get larger, we plot the formula
against the exact 12j symbol for another example,⎧⎪⎨
⎪⎩

j1 j2 j12 j125

j3 j4 j34 j135

j13 j24 s5 j6

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

211/2 219/2 91 92

205/2 223/2 107 108

99 93 2 j6

⎫⎪⎬
⎪⎭ , (86)

in the classically allowed region away from the caustic in
Fig. 13. These values of the j ’s are roughly four times those in
Eq. (85). The errors for this case are displayed in Fig. 14(b).

By comparing Figs. 14(a) and 14(b), we can conclude that the
error scales with the j ’s.

X. CONCLUSIONS

In this paper, we have derived an asymptotic formula of the
12j symbol with one small angular momentum, generalizing
the special formula of the 12j symbol, Eq. (A9) in [8]. By
looking at the other special formula for the 12j symbol,
Eq. (A8) in [8], we can guess that the other asymptotic limit
of the 12j symbol will involve the semiclassical analysis of
the trivial 9j symbol, which reduces to a product of two 6j

symbols. We will present that result in a future paper.
The analysis of the 12j symbol in this paper is a natural

extension of the analysis of the 9j symbol in [13]. Based
on the calculations in these two papers, we can summarize
our steps in finding asymptotic formulas for the 3nj symbols
with small and large quantum numbers. First, we ignore the
small quantum numbers and any of the large quantum numbers
that involve the indices of the small ones. For instance, in
this paper, j5 = s5 is small, so we ignore j5, j125, and j135.
The remaining relevant large quantum numbers determine the
Lagrangian manifolds. Once we fix the Lagrangian manifolds,
the scalar WKB parts of the wave functions can be derived
from a semiclassical analysis of these Lagrangian manifolds,
following the procedure in [14,17]. The spinor parts of the
wave functions at the intersection points of the Lagrangian
manifolds are determined by the path used to calculate
the action integral in the semiclassical analysis. Finally,
taking the inner product of both the scalar part and the spinor
part of the wave functions, we can derive an asymptotic
formula for the 3nj symbol with small and large angular
momenta.

In general, we note that the asymptotic limits of a 3nj

symbol with one small angular momentum is expressed
in terms of the geometry associated with the asymptotic
limits of a 3mj symbol, where m = n − 1. Since the Wigner
15j symbol is used extensively in loop quantum gravity
and topological quantum field theory, we suspect that there
are deeper, and more geometrical interpretations of these
approximate relations of the 3nj symbol in their various
semiclassical limits.
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