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Photonic Josephson effect, phase transitions, and chaos in optomechanical systems
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A photonic analog of the Josephson effect is analyzed for a system formed by a partly transparent mechanical
membrane dividing an optical cavity into two halves. Photons tunneling between the two subcavities constitute the
coherent Jospehson current. The force acting upon the membrane due to the light pressure induces a nonlinearity,
which results in a rich dynamical structure. For example, contrary to standard bosonic Josephson systems, we
encounter chaos. By means of a mean-field approach, we identify the various regimes and corresponding phase
diagram. At the short time scale, chaos is demonstrated to prevent regular self-trapping, while for longer times a
dissipation-induced self-trapping effect is possible.
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Introduction. The Jospehson effect describes macroscopic
tunneling made possible by inherent coherence of the un-
derlying quantum many-body state. The resulting Josephson
oscillations, first discussed for weakly coupled superconduc-
tors [1], have turned out to be relevant for a wide range of
physical systems like Bose-Einstein condensates in double-
well traps [2], spinor condensates [3], liquid helium [4],
graphene and Hall systems [5], and nonlinear optics [6].
Lately, the possibility of observing the Josephson effect for
photons in systems of coupled high-Q optical cavities has
been discussed [7,8]. Together with related schemes containing
arrays of coupled cavities [9] or single cavities filled with a
Kerr medium [10], these proposals pave the way for genuine
quantum many-body models to be studied by means of
photons.

Nonlinearity is a basic ingredient for Josephson oscilla-
tions. In Ref. [7], a three-cavity setup is investigated and
nonlinearity occurs because the photons interact dispersively
with matter in the middle tunneling cavity, while in [8] only
two cavities are coupled and the nonlinearity stems from a gas
of ultracold atoms trapped in each cavity. In this work, we
consider the photonic analog of Josephson oscillations in an
optomechanical cavity system that has been thoroughly ana-
lyzed experimentally in the recent past [11,12]. Nonlinearity
in optomechanical systems is an outcome of the interaction
between photons and the mechanical mirror or membrane and
is therefore different from the above schemes, which utilize
atoms or Kerr mediums in order to induce effective interaction
between photons. Nowadays, the mechanical oscillator can be
cooled down close to its quantum ground state [13], making
these systems promising alternative candidates for observing
many-body quantum effects [14]. In our version of the photonic
Josephson effect, the mechanical oscillator adds an additional
degree of freedom to the dynamics driven by the photon modes
and hence opens up for novel phenomena absent in more
regular Josephson systems. We demonstrate that the system
at hand possesses a plethora of phenomena like self-trapping
(i.e., localization of photons), bistability, and dynamical phase
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transitions between chaotic and regular dynamics. We note that
the back action, here induced by the interaction between the
membrane and the photon modes, that occurs when the extra
degrees of freedom are considered has not been taken into
account in [7,8], and one expects that those analyses would
therefore not predict structures as chaos and attractors.

Model system and effective equations. The cavity setup
is depicted in Fig. 1. A thin membrane separates an optical
resonator into two halves, where photons can tunnel from
one side to the other [11,12]. The optical force acting
on the membrane induces a nonlinearity; the position of
the membrane determines the photon frequencies, which
directly affect the Josephson oscillations. By considering an
optomechanical system with two fixed end mirrors, the finesse
of the cavity can be greatly enhanced in comparison to a
two-mirror cavity with one fixed and one movable end mirror.
In the regime where the photon modes follow adiabatically
the membrane displacement [15], nonzero transmitivity of the
middle mirror brings out constant shifts of the two photon
frequencies as well as optomechanical couplings of higher
order in the membrane displacement than the linear one, which
would be the case of a perfectly reflecting membrane [16]. We
assume small membrane displacements, that is, much smaller
than the photon wavelengths, and that the mirror is positioned
to render a linear coupling in x [12].

In the following, we work with dimensionless variables, let-
ting the membrane excitation energy, h̄ωm, set a characteristic
energy scale, that is, giving a length scale l = √

h̄/mωm with m

the membrane mass. We denote by x̂ and p̂ the dimensionless
position and momentum of the membrane and by â and b̂ (â†

and b̂†) annihilation (creation) photon operators of the two
cavity modes, and the Hamiltonian is [12]

Ĥom = p̂2

2
+ x̂2

2
+ ω(n̂a + n̂b)

+ g(â†b̂ + b̂†â) + λx̂(n̂a − n̂b). (1)

Here, we have taken the equilibrium position of the membrane
in the absence of photons 〈x̂〉 = 0 and assumed the effective
frequencies of the two photon modes to be the same and equal
to ω; g is the effective tunneling coefficient of photons between
the left and right regions, λ is the effective optomechanical
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FIG. 1. Model system: a partly reflective membrane divides a
Fabry-Perot cavity into two parts, a and b. With a rate g, photons
can tunnel between the two parts. At the same time, the membrane is
displaced from its equilibrium position (x = 0) due to the radiation
pressure imposed by the photons scattered upon it, and thereby the two
effective photon frequencies ωa and ωb are simultaneously shifted.
Photon losses through the two end mirrors are marked by κ , and
phonon decay of the membrane is indicated by γ .

coupling strength, and n̂a = â†â and n̂b = b̂†b̂ are the photon
number operators of the two modes. The number of photons
N̂ph = n̂a + n̂b is conserved and we go to an interaction picture
rotating with respect to ωN̂ph. In the new basis, the third term
of Ĥom is lacking and we are left with only two effective
parameters g and λ.

In the decoupled case, λ = 0, and assuming that initially
all photons reside in one of the modes, as time progresses the
photons will tunnel through the membrane, showing perfect
Rabi oscillations with a frequency � = g. This is irrespective
of the number of photons, and hence after half a Rabi period
all photons have been swapped to the opposite mode. For
λ �= 0, the dynamics becomes much more complex. The shift
of the membrane is proportional to the imbalance of population
between the two modes, and thereby the dynamics is highly
nonlinear. As the displacement induces an effective detuning
between the two modes, for large displacements the tunneling
of photons will be greatly suppressed, that is, self-trapped.

We analyze the dynamics within a mean-field approach
that has been proved to accurately describe the experimental
Josephson effect in Bose-Einstein condensates [2]. We write
down the Heisenberg equations of motion for the photon inver-
sion ẑ = (n̂a − n̂b) /N0, the phase difference φ̂ = arg

(
â†b̂

)
,

the photon loss fraction q̂ = (n̂a + n̂b)/N0, and p̂ and x̂, and
treat them as c numbers to obtain a closed set of coupled
equations. N0 is the number of photons at time t = 0. This
method allows for losses of both the photon and phonon fields
to be taken into account, and we therefore have introduced the
quantity q̂. The mean-field equations of motion read

ẋ = p − γ

2
x,

ṗ = −x − γ

2
p − λN0z,

ż = 2g
√

q2 − z2 sin φ − κz, (2)

φ̇ = 2λx − 2g
z

√
q2 − z2

cos φ,

q̇ = −κq + 2κ
Nth

N0
,

where κ is the photon decay rate and γ is the phonon decay
rate. The photon reservoir temperatures are determined by the

average number of thermal photons Nth at the frequency of
the two cavity modes, while the phonon reservoir temperature
does not enter since we have truncated the equations of motions
to contain only x and p and not any higher orders.

Self-trapping, bifurcation, and chaos. Several general con-
clusions can be readily drawn from the set of mean-field
equations (2); the first two equations describe a damped
oscillator “driven” by the term proportional to z, and the
third and forth equations represent a pendulum with varying
length and “driven” by 2λx. In the limit when the shift of the
membrane can be approximated as proportional to z, one re-
covers the standard mean-field equations of motion for a Bose-
Einstein condensate in a double well [2]. However, such an
approximation is in general not justified and the set of Eqs. (2)
turns out to possess a dynamical richness not found in regular
Bose-Einstein condensate double wells. The various types of
dynamical behavior can be divided in the following way.

(1) Lossless case, κ = γ = 0. In the lossless case, the
system is conservative in the sense that a volume element
in phase space preserves its volume in time. The solu-
tions evolve on four-dimensional tori, which become more
and more deformed the stronger the nonlinearity gets in
accordance with Kolmogorov-Arnold-Moser (KAM) theory
[17]. At C ≡ g/λ2N0 = 1, there is a pitchfork bifurcation
characterizing a second-order dynamical phase transition [18].
For C > 1, there is one center fixed point, z = x = p = 0
and φ = (2n + 1)π (n an integer), and the system shows
Josephson-like dynamics; that is, far from the fixed point,
the photons oscillate between the two modes. For C < 1,
when nonlinearity becomes important, the above fixed point
becomes unstable and two additional center fixed points
appear, z = ±√

1 − C2, x = −λN0z, p = 0, φ = (2n + 1)π .
In this regime, self-trapping is expected but is here prevented
by chaotic dynamics, as demonstrated in Fig. 2(a), which
displays the time evolution of z and x [19]. The membrane
shows an oscillatory behavior: When it is displaced far from
x = 0 the effective detuning between the two photon modes is
large and z shows detuned Josephson oscillations, and when
the membrane approach x = 0 the detuning vanishes and the
photon inversion reveals sudden jumps. Such jumps inhibit the
system from becoming self-trapped, and moreover, small fluc-
tuations in system parameters or dynamical variables render
completely divergent long time evolutions, as is characteristic
for chaos. As already pointed out, the somewhat surprising
result of chaos is a result of including the membrane’s degrees
of freedom. We should mention that there is also an additional
fixed point for φ = 2nπ and x = p = z = 0.

(2) Membrane losses, γ �= 0, κ = 0. In contrast to the above
case, for losses of the membrane the system is dissipative,
that is, a volume element in phase space decreases with time
[18]. A pitchfork bifurcation similar to that above is found at
C(1 + γ 2/4) = 1, but this time the fixed points are stable. As
demonstrated in Fig. 2(b), far from the fixed points the system
evolution is in general chaotic to start with, but after some time
it approaches attractors that encompass the fixed points for
which the membrane is locked, and z and sin(φ) [we consider
sin(φ) instead of φ since the system is periodic in φ] evolve
on an ellipse-like surface. Physically, the nonzero inversion
implies a displacement of the membrane, while a nonzero
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FIG. 2. (Color online) Time evolution of the mean-field photon
inversion z(t) [red (gray in print) curves] and membrane position
x(t) [blue (black in print) curves]. In (a), the system is closed
or conservative, γ = κ = 0, and the dynamics is chaotic with the
inversion, making sudden jumps as the membrane approaches x = 0.
In (b), damping of the membrane has been included, γ = 0.01,
κ = 0, and the system reaches a self-trapped state (an attractor).
In (c), γ = 0.01, κ = 0.02, and Nth = 0, and as photons leak out
of the cavity, the membrane’s displacement vanishes. Finally, in (d)
the situation is the same as in (c) but with Nth = 200, causing the
chaotic behavior of detuned Josephson oscillations to last throughout
the evolution. In all four plots, the dimensionless parameters are
g = 0.2, λ = 0.1, and N0 = 1000, and the initial conditions are
x0 = p0 = φ0 = 0, z0 = 0.95, and q = 1. Thus, the parameters are
such that the system starts out in the chaotic regime in all examples.
Other initial conditions show similar behaviors provided the system
starts out far from any fixed point or attractor.

loss rate γ tends to restore the membrane to its equilibrium
position x = 0. Since the photon number is conserved, the
membrane attains a state of self-lasing where the light force
and the friction balance one another. In this respect, the system
becomes self-trapped. We note that similar attractors were
found for a single-mode optomechanical system in the linear
regime [20]. As long as we do not drive the cavity modes, the
asymptotic self-trapped state is a priori hard to predict because
of the chaotic behavior preceding the system’s convergence of
the attractor.

(3) Cavity and mirror losses at zero temperature, γ �= 0,
κ �= 0, Nth = 0. When the system is not externally driven and
all boson modes possess losses, the only fixed point is the one
of all modes empty. This stationary solution is reached on a
time scale T > max{γ −1,κ−1}. Nevertheless, for times t � T

the dynamics will be determined by the size of C(1 + γ 2/4) as
shown in Fig. 2(c). The decay rate κ has been taken as κ = 0.1g

in agreement with the experimentally relevant work [12]. Up
until t ∼ 50–100, the dynamics is similar to that displayed
in (a), that is, detuned Josephson oscillations interrupted by
sudden jumps. In this example κ−1 < γ −1, implying that after
a period of chaotic evolution, the larger decay of the photon

modes causes them to decay into vacuum, while the membrane
sustains its oscillations for some longer times.

(4) Cavity and mirror losses at nonzero temperature, γ �= 0,
κ �= 0, Nth �= 0. When all modes couple to their respective
reservoirs, an energy source is required in order to prevent
decay into the trivial vacuum steady-state solution. This could
either be nonzero temperature baths or direct pumping [7]. For
Nth �= 0, the equations exhibit a nonvanishing fixed point for
the photon loss fraction q = q0 ≡ 2Nth

N0
. Also, this case includes

a pitchfork bifurcation. When D ≡ κ
2g

> 1, the bifurcation is

subcritical; an unstable fixed point for C̃ ≡ C(1 + γ 2/4)/q0 <

1 splits into two unstable and one stable fixed points at C̃ = 1.
When D < 1, the bifurcation is supercritical and one stable
fixed point for C̃ > 1 splits into two stable and one unstable
fixed points at C̃ = 1. For this situation, we find as well
two saddle-node bifurcations at C̃ = 2D

1+D2 < 1, where the two
stable fixed points in the pitchfork bifurcation meet two outer
unstable fixed points. Using the proper physical parameters κ

and γ of the examples presented in Figs. 2(c) and 2(d), the
parameter D = 1 is exactly at the separation between the two
parameter regimes. The chaotic behavior we study manifests
itself, however, far from the critical points, and the actual value
of D is of minor importance in comparison to C̃ ≶ 1. When
the coupling between the membrane and the cavity modes
is nonzero, the evolution stays chaotic, comprising detuned
Josephson oscillations between sudden jumps in the inversion;
see Fig. 2(d). We have also studied the case of Nth = 0 but with
pumping of the two photon modes. The dynamics turn out very
similar to that encountered for a nonzero temperature bath.

As is well known, a fixed-point analysis does not reveal the
full characteristics of dynamical systems [18]. We find that
especially for Nth �= 0, the long-time solutions of (2) exhibit a
rich structure. As the nonlinearity is increased, the long-time
solutions cover a series of periodic doublings in terms of Hopf
bifurcations [18] to finally enter into a regime of chaos. In
a driven system, this feature should be captured by varying
the pump strength, where each Hopf bifurcation renders a
dynamical second-order phase transition.

Concluding remarks. To summarize, we have proposed the
use of optomechanical systems for the study of a photonic
counterpart of the Josephson effects. The system was shown,
on a mean-field level, to display bifurcations and dynamical
phase transitions, as well as a chaotic behavior. In this regime,
a new phenomenon of reservoir assisted self-trapping was
established. Throughout we used dimensionless parameters.
Considering experimentally relevant parameters for optical
cavities [12,16], one has typically 10−6 < λ < 10−1 and
0.2 < g < 100. In this work, we choose the upper and lower
limiting cases of g and λ respectively to achieve the strongest
possible nonlinearity, giving a characteristic time scale of 1
μs. However, similar results are obtainable with other values
at the cost of longer time scales. In real units and using common
experimental parameters [12,16], one finds that the membrane
displacement is several orders of magnitude smaller than
typical photon wavelengths, implying that the linear coupling
assumption is justified. The cavity decay rate κ = 0.02 was
taken from Ref. [12] and should be of experimental relevance.
Utilizing these parameters, Fig. 2 demonstrated establishment
of both Josephson oscillations as well as the chaotic jumps
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before the role of dissipation becomes too important. It is worth
noting that for typical cavity frequencies, Nth = 200 as in
Fig. 2(d) implies extremely hot photon baths, and it is
thereby more likely that external pumping of the cavities
is experimentally preferable. We especially note that since
the parameter C̃ ∝ N−1

0 , by increasing such cavity pumping
C̃ can, in principle, be made arbitrarily small, implying
strong nonlinearity and chaotic dynamics. Consequently, by
measuring the intensity of the outgoing field, the character-
istics of the evolution (Rabi, Josephson, chaotic) should be
easily achievable with current state-of-the-art optomechanical
experiments [11]. The analysis is purely semiclassical, and
any reservoir-induced fluctuations have been neglected [21]. In
the large excitation limit, this cannot be a shorting as verified
by the current phonon lasing experiment [22] (see also [23]). In
the more purely quantum regime, however, decoherence out-
ings may become more significant for the coherent tunneling

process. In [7], a full quantum analysis for a similar system
was presented, and it was found that for external pumping the
Josephson effects survives despite coupling to surrounding
reservoirs. Moreover, most recently a photonic analog of the
intrinsic Josephson effect was studied and it was found that
even deep in the quantum regime, the Josephson effect survives
around 10 full oscillations [24]. The same is supposedly
true in the present system, and we have verified numerically
that the same type of mean-field dynamical structures are
encountered for coherently driven cavities. Beyond the results
of the present work, purely quantum effects like squeezing and
antibunching are most certainly interesting and will be studied
in a forthcoming publication.
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