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Optical eigenmode imaging
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We present an indirect imaging method that measures both amplitude and phase information from a transmissive
target. Our method is based on an optical eigenmode decomposition of the light intensity and the first-order cross
correlation between a target field and these eigenmodes. We demonstrate that such optical eigenmode imaging
does not need any a priori knowledge of the imaging system and corresponds to a compressive full-field sampling,
leading to high image extraction efficiencies. Finally, we discuss the implications with respect to second-order
correlation imaging.
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The last two decades have seen the emergence of interest in
schemes for interaction-free imaging [1] and indirect imaging
[2] in both the quantum and classical domain [3]. Such schemes
inherently use light fields to image that have themselves never
scattered from the object. Prominent among these schemes has
been the concept of ghost imaging [4–7]. These methods allow
the image of an unknown object to be nonlocally reconstructed
by the intensity correlation measurements between two light
fields. The light that illuminates the object is typically collected
by a single-pixel detector that itself has no spatial resolution.
The underlying physics of ghost imaging has seen major
debate about its classical and quantum implications, as both
entangled source and thermal light can be used. While a
powerful concept, ghost imaging does not inherently reveal
phase information about an object, as it relies on a second-order
correlation for its implementation [2,8]. Additionally, the
resolution of the recovered images is determined by the size of
the speckle placed on the object plane [4]. Any imperfections
or aberrations within the system may not be readily dealt with
in such a system. A significant step forward would be an
indirect imaging scheme based on correlation measurements
that could retrieve both amplitude and phase and inherently
accommodate issues relating to aberrations or imperfections
within the optical system.

In this Rapid Communication, we realize such a scheme
using the concept of optical eigenmodes [9,10]. We split the
laser light into two different beams. One beam does not interact
with the target, but illuminates a high-resolution CCD camera
(multipixel detector). The other one interrogates, in transmis-
sion, the target (or sample) and then illuminates a photodiode
(single-pixel detector) providing no spatial resolution. The
transmission wave front of this beam is decomposed, using an
optical lock-in amplification technique, onto an orthogonal set
of optical eigenmodes. The lock-in amplification corresponds
to performing a first-order cross correlation and as such is
distinct from present ghost-imaging techniques. In turn, this
leads to the retention of the phase information of the object.
Further, our approach foregoes point-by-point scanning and
allows rapid full-field image extraction [11].

The outline of this Rapid Communication is as follows. First
the concept of the optical eigenmodes is briefly reviewed, and
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then we discuss the problem of combining eigenmodes and
indirect imaging. We introduce the experiment and show an
application of the eigenmode method for indirect imaging of
a target. We demonstrate the advantage of optical eigenmode
imaging in terms of resolution and phase information. Finally,
we show the relationship between optical eigenmodes and the
second-order correlation function.

Method. To define the intensity optical eigenmodes [10], we
decompose a linearly polarized electromagnetic field E into a
superposition of N monochromatic (eiωt ) “test” fields:

E =
N∑

j=1

a∗
j Ej ; E∗ =

N∑
k=1

E∗
k ak. (1)

Here we consider the field intensity m(I) integrated over a
region of interest (ROI), as defined by

m(I )(E) =
∫

ROI
dσE × E∗, (2)

which is valid for linearly polarized light and not tightly
focused beams. The ROI represents the detector active area.
Equation (2) can be written in a general quadratic matrix
form, m(I )(E) = ∑

j,k a∗
j Mjkak = a∗Ma, where the elements

Mjk are constructed by combining the fields Ej and Ek

for j,k = 1, . . . ,N as Mjk = ∫
ROI dσEj × E∗

k . The optical
eigenmodes are defined by

E� = 1√
λ�

N∑
j=1

v∗
�jEj ; E∗

� = 1√
λ�

N∑
j=1

v�jE
∗
j , (3)

with
∑

j Mjkv�j = λ�v�k , where λ� is an eigenvalue and
v�j is the associated eigenvector. The matrix Mjk shows
two important properties. First, it is Hermitian, meaning
that all the eigenvalues (λ�) are real and can be ordered,
where λ�=1 is the largest eigenvalue, λ�=2 is the second
largest eigenvalue, and so on. Second, two eigenvectors
corresponding to different eigenvalues are orthogonal, which
means that

∫
ROI dσEj × E∗

k
= δjk . As a matter of fact, each

of these eigenvectors v�j corresponds to a superposition of
the initially considered fields. An unknown field T can be
decomposed onto the eigenmodes using its projection defined
by c∗

� = ∫
ROI dσT × E∗

� , where c� corresponds to the complex
decomposition coefficients of the field T in base E�. If the
E� fields form a complete base, we can perfectly reconstruct
the unknown field T from the projection using T = c∗

�E�. We
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remark that the completeness of the base is dependent on the
initial fields probing all the degrees of freedom available.

Optical eigenmode imaging is based upon a direct mea-
sure of the projection coefficients c∗

� and the experimental
reconstruction of the unknown field T , that is essentially the
transmission function through the target.

Experiment. The basic setup used for the optical eigenmode
imaging is shown in Fig. 1. A He-Ne laser beam (Thorlabs,
λ = 633 nm, Pmax = 10 mW) is expanded to fill the aperture
of a spatial light modulator (SLM) (Hamamatsu LCOS-
SLM X10468, the resolution is 600 × 800 pixels, the pixel
size is 20 × 20 μm2, the refresh rate is 60 Hz), and then
phase modulated in the first-order configuration [12]. This
configuration allows us to achieve both phase and intensity
modulation. The beam is divided into two symmetric parts
by a 50:50 beam splitter. The reflected beam interrogates a
transmissive target placed in the focal plane of the Fourier
lens (L3 = 75 cm). A second Fourier lens (L4 = 10 cm)
integrates the transmitted light on a photodiode providing no
spatial resolution. The transmitted beam is focused directly on
a high-resolution CCD camera (Basler pilot piA 640–210 mg,
resolution is 648 × 488 pixels, pixel size is 7.4 × 7.4 μm2)
without interacting with the target. By projecting the optical
eigenmodes on the target, it is possible to reproduce the target
image on the CCD camera.

The experiment consists of two steps. First, it is necessary
to determine the optical eigenmodes (E�) in the CCD camera
plane by interfering the test fields Ej created in the SLM
plane. Next, we select the n most intense optical eigenmodes
and interfere them with a reference signal (Eref). The reference
signal (Eref) is randomly phase encoded [13] on the same SLM
and thus shares the same optical path as the test field. In this
way, we can reconstruct the relative amplitude and phase of
the linearly polarized fields Fj on the CCD camera:

Fj = 1

R

R−1∑
p=0

ei2πp/R|Eref + e−i2πp/REj |2, (4)

FIG. 1. (Color online) The experimental setup used to perform
indirect imaging with the optical eigenmode formalism. The inset
shows a scheme of the target of three holes used in our experiment.
Abbreviations: L, lens; M, mirror; BS, beam splitter; FP, focal plane;
PD, photodiode.

where R is an integer number greater than 3. This procedure
can be seen as a phase-sensitive lock-in technique where the
reference beam Eref corresponds to a reference signal with
respect to which the phase and amplitude of Ej is measured.
This is performed by measuring R times the intensity on the
CCD camera while changing the relative phase between the
reference and the test field. These intensities are then combined
in Eq. (4) in an inverse Fourier transform, delivering a measure
proportional to the complex test field Ej . This approach
generalizes the method presented in [10]. We remark here
that due to the lock-in technique, using a larger number of
measures R experimentally delivers a better signal-to-noise
ratio. Here, we used R = 4. The intensity operator Mjk is given
by

Mjk =
∫

ROI
dσFj × F∗

k, (5)

where ROI is a region of interest on the CCD camera.
In the second experimental step, we project the optical

eigenmode on the target (T ) using a first-order cross corre-
lation with the reference beam. The projection coefficients
ck are related to the signal sk measured by the single-pixel
detector (PD) as follows:

sk = 1

R

R−1∑
p=0

ei2πp/R

∣∣∣∣
∫

ROI
dσT × (Eref + e−i2πp/REk)

∣∣∣∣
2

=
∫

ROI
dσT × E∗

ref ×
∫

ROI
dσT ∗ × Ek

= ck

∫
ROI

dσT × E∗
ref, (6)

where
∫

ROI dσT × E∗
ref gives the coupling coefficient to the

target and is essentially a constant value. Therefore, from the
signal acquired on the PD, we can measure the coefficients
ck , which makes it possible to reconstruct the complex target
field. Finally, using a Dirac distribution target field, we can

FIG. 2. (Color online) Examples of the principal experimental
intensity optical eigenmodes. The resolution of each image is 120 ×
120 pixels.
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FIG. 3. (Color online) Experimental optical eigenmode imaging
of a Laguerre-Gauss (LG) beam. (a) Point-spread function (PSF)
obtained by combining 147 intensity optical eigenmodes. (b) Theoret-
ical intensity and (c) phase of a decomposed LG beam [intensity scale
bar is from 0 (black) to 2π (white)]. (d) Experimental reconstruction
of the LG beam using the 147 optical eigenmodes.

deduce the point-spread function EPSF, which determines the
resolution of the optical eigenmode imaging method,

EPSF =
N∑

j=1

Ej

∫
ROI

δ(r − r0)E∗
j dσ. (7)

Results and discussion. In our experiment, we used N =
1353 masks consisting of 33 horizontal and 41 vertical inde-
pendent deflection angles to determine the intensity optical
eigenmodes (E�) in the CCD camera plane. After the Fourier
lens (L3), these deflections correspond to a regular grid scan
over an area of 1.2 by 1.3 mm. The reference field (Eref) was
chosen to be the median beam out of the 1353 beams used. The
first 20 experimental intensity optical eigenmodes are shown
in Fig. 2, displaying visually an orthogonal behavior similar
to TEM modes.

From the experimental intensity optical eigenmodes, we
select the ones with an efficiency above 0.1% with respect to
the maximum possible, giving us typically around 140 eigen-
modes. This corresponds to a tenfold image data reduction
when compared to the initial number of test fields (N = 1353).
Further, we noticed no clear increase in the number of suitable
eigenmodes when increasing N . The quality of this optical
compression technique can be assessed experimentally by
determining the point-spread function (PSF) (7), showing
the loss of image information when reconstructing a Dirac
distribution field. Figure 3(a) shows the experimental PSF
obtained by combining N = 147 intensity optical eigenmodes
representing the resolution limit of the system. Further, we
numerically project the experimental eigenmode fields onto
a simulated Laguerre-Gaussian target with a unit vortex
charge. The theoretical reconstructed field is displayed in
Figs. 3(b) and 3(c) as field intensity and phase, respec-
tively. Figure 3(d) shows the intensity on the CCD camera
when the SLM displays the optical eigenmode superposition
corresponding to T = ∑

� c∗
�E�. These figures show that

optical eigenmode imaging provides both phase and intensity
information.

For the indirect imaging, we used a target consisting of
three holes each with a diameter of ∼150 μm (see Fig. 1 for
more details). Figure 4(a) shows the conventional transmission
image of the target obtained by scanning the laser spot, using
the initial 1353 deflection masks, through the holes. In this
figure, we plot the signal intensity detected by the single-
pixel detector (PD) for each angle of the light scanning. By
contrast, Figs. 4(b) and 4(c) show the indirect image obtained,
respectively, through numerical and experimental optical
eigenmode superpositions, on the CCD camera. A direct
comparison of the theoretical superposition [Fig. 4(b)] and the
experimental one [Fig. 4(c)] clearly reveals a good agreement.
These results suggest that the numerical and the experimental
distributions verify sk ∝ ck , demonstrating the linearity of our
optical system. Further, by comparing Figs. 4(a) and 4(c),
we can clearly observe an enhancement in the resolution
of the optical eigenmode image with respect to the conven-
tional transmission image using the initial scanning “test”
fields.

Remarkably, the optical eigenmodes described above
simplify the first-order correlation functions. Indeed, we

FIG. 4. (Color online) Indirect imaging of a target consisting of three holes. (a) Conventional transmission image of the target reconstructed
from the intensity signal collected by the PD as a function of the beam displacement in the target plane. (b) Corresponding numerical indirect
intensity image of the target. (c) Experimental indirect optical eigenmode image.
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have

G(1)(τ ) =
∫

ROI
〈E(t)E∗(t + τ )〉dσ

= e−iωτ

〈∑
j,k

a∗
j Mjkak

〉
=

∑
j,k

G
(1)
jk (τ ), (8)

with G
(1)
jk (τ ) = ∫

ROI〈Ej (t)E∗
k(t + τ )〉dσ = e−iωτ δjk , where

the symbol · · · indicates the ensemble averaging. This relation-
ship shows that the optical eigenmodes are independent with
respect to the first-order correlation function, i.e., amplitude
and phase fluctuations of two different eigenmodes are not
correlated. This implies that any random thermal fluctuations
of the illumination source can be decomposed into independent
fluctuations, with each corresponding to an eigenmode. We
also remark that the phase information is maintained in the
first-order correlation process. It is these two properties that
make optical eigenmode indirect imaging possible. Addition-
ally, illuminating the target directly with the eigenmodes does
not rely on random thermal fluctuations to explore their Hilbert
space, but instead each independent optical degree of freedom
of the illumination is used successively to build up the final
image in an efficient way.

Another interesting aspect of the optical eigenmode de-
composition of the illuminating light field is the behavior
of the second-order correlation function between two dif-
ferent detectors (D1 and D2). This can be represented as
g(2) = 〈(a∗M(1)a)(a∗M(2)a)〉, where the measures a∗M(1)a and
a∗M(2)a correspond to the intensity for each detector described
using each one’s matrix intensity operators M(1) and M(2).
For each of these operators, we can define the null space
as the superposition of eigenmodes having zero eigenvalue.
Considering these null spaces, we can define four physically
distinguishable cases: (1) the intersection subspace of the two
null spaces corresponds to modes of light that do not interact
with either of the two detectors, (2) the relative complement of
M(1) null space in M(2) null space corresponds to optical fields
that are detected by D1 while not influencing the measure on
detector D2, (3) the same as the second case, with indices
1 and 2 exchanged, and (4) the complement to all previous

cases defines a field subspace where the measure on one
detector influences the measure on the other. In short, using
this decomposition, it is possible to describe four distinct
possible interactions: no field on either detector, field only
on detector D1, field only on detector D2, and field on both
detectors. Finally, the second-order correlation function g(2)

is zero for any single superposition of optical eigenmodes
taken from any single one of the first three cases, and
nonzero for the fourth case. This means that the second-order
correlation function of independent detectors (cases 2 and
3) is zero for a single (not ensemble averaged) intensity
measurement.

In conclusion, we show that optical eigenmode imaging
allows the indirect complex reconstruction of a transmissive
target. This method is based on the decomposition of the
field into intensity optical eigenmodes. The decomposition
coefficients are directly measured by the first-order cross
correlation between the unknown target field T and the
optical eigenmodes. Superimposing the optical eigenmodes
with the decomposition coefficients yields the reconstructed
target field T . Importantly, the complex decomposition coef-
ficients provide phase information, potentially allowing the
reconstruction of optical-path length information of the target
akin to transmission optical tomography. Further, we show that
the optical eigenmode imaging corresponds to a compressive
full-field sampling, improving the imaging speed without loss
of details and enabling fast spectroscopic applications such
as wide-field Raman imaging. Finally, we related the optical
eigenmodes approach to the first-order and second-order
correlation functions. In future work, we aim to explore the
implications of optical eigenmodes in the field of quantum
optics.
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