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Nonlinear wave dynamics in honeycomb lattices
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We study the nonlinear dynamics of wave packets in honeycomb lattices and show that, in quasi-one-
dimensional configurations, the waves propagating in the lattice can be separated into left-moving and
right-moving waves, and any wave packet composed of only left (or only right) movers does not change its
intensity structure in spite of the nonlinear evolution of its phase. We show that the propagation of a general wave
packet can be described, within a good approximation, as a superposition of left- and right-moving self-similar
(nonlinear) wave packets. Finally, we find that Klein tunneling is not suppressed by nonlinearity.
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The large interest in honeycomb lattices, which started
more than 25 years ago in condensed matter by showing
that electron waves obey the massless Dirac equation [1,2],
has recently spread to numerous other fields. Examples
range from electromagnetic (EM) waves in waveguide arrays
[3–5] and photonic crystals [6–10] to cold atom in optical
lattices [11–14] and more. However, despite having the same
honeycomb-structured potential, there are also some very
important differences between these various systems, mainly
because the interactions between the waves are different in
nature. Namely, in graphene, the electrons have Coulomb
interaction and spin exchange, whereas EM waves can interact
via nonlinearity of different types (Kerr, saturable, etc.), and
cold atoms can be either bosons or fermions and display dipolar
or nonlocal interactions. Naturally, it would be very interesting
to study the effects of the different types of interactions on the
phenomena associated with the linear (noninteracting) regime.
For example, it was found that Klein tunneling in honeycomb
lattices [15] is strongly suppressed by Coulomb interaction
[16]. Would interactions in other nonlinear systems also
suppress Klein tunneling, or would some types of interactions
preserve this extraordinary phenomenon?

Here, we study the dynamics of waves in honeycomb
lattices, in the presence of Kerr nonlinearity, which applies
to photonic crystals, waveguide arrays, and Bose-Einstein
condensates (BECs). We focus on quasi-one-dimensional (1D)
wave packets: wave packets that are very wide in one direction
and quite narrow in the other transverse direction. We find
self-similar closed-form solutions for the nonlinear Dirac
equation, i.e., solutions whose intensity structure remains
unchanged during the propagation, except for a shift of the
center. The spatial form of these solution can be completely
arbitrary, as long as they are either left movers or right movers
only. Moreover, we show that the propagation of a general
wave packet in the honeycomb lattice can be described using
superposition principle, to within a very good approximation,
even in the presence of significant nonlinearity. Finally, we
re-examine Klein tunneling in the presence of nonlinearity and
find that, as opposed to the electronic case, Klein tunneling is
unaffected.
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For concreteness, we analyze here a honeycomb photonic
lattice displaying the Kerr nonlinearity (the most common
optical nonlinearity). The paraxial propagation of a monochro-
matic field envelope � inside a photonic lattice exhibiting the
Kerr nonlinearity is described by

i∂z�̃ = − 1

2km

∇2
⊥�̃ − kmδn(x,y)

n0
�̃ − km

n0
n2|�̃|2�̃, (1)

where δn(x,y) is the modulation in the refractive index
defining the lattice [Fig. 1(a)], km is the wave number in
the medium, n0 is the background refractive index, and n2

is the Kerr coefficient. The sign of n2 determines the type
of nonlinearity, where n2 > 0 corresponds to a focusing
nonlinearity (attractive interactions in the context of BECs).
The term kmδn/n0 is referred to as the optical potential. It is
convenient to transform the above equation to dimensionless
form,

i∂z� = −∇2
⊥� − V(r)� − U |�|2�, (2)

where the coordinates are measured in units of k−1
m .

Since the Kerr nonlinearity is local, each pseudospin
(sublattice) component is expected to be affected only by its
own intensity. We can now write the field as a two-component
field, �† ≡ (ψAψB), where ψA,ψB are the amplitudes of the
electric field on the two sublattices. By projecting on the
Wannier states of the two lowest bands, it is possible to describe
excitations close to the Dirac points by [17,18]

i∂z� = H0� − Un̂�, n̂ ≡ diag(|ψA|2,|ψB |2), (3)

where H0 describes the linear dynamics in the system, which
can be elegantly (and rather accurately) expressed using the
tight-binding approximation

H0 = Re{ϕ(k)} ⊗ σx + Im{ϕ(k)} ⊗ σy − Vex(r) ⊗ 1, (4)

where ϕ(k) = ∑3
j=1 tj exp(iδ j · k), tj ’s are the hopping

parameters, δj are the vectors connecting the near-
est neighbors, σi are the Pauli matrices, and Vex(r)
is some additional external potential [5,19,20]. Consid-
ering uniaxial deformations t1 = t2 = t , t3 = γ t , and ex-
panding ϕ around one of the Dirac points (say K+)
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FIG. 1. (Color online) (a) The first Brillouin zone with the high-
symmetry points. (b) A honeycomb lattice depicting the two sites in
a unit cell.

ϕ(k = K+ + p) � vxpx − ivypy , we find that, to leading
order, Eq. (3) reduces to the nonlinear Dirac equation,

i∂z� = −
⎡
⎣i

∑
j=x,y

vj ∂j ⊗ σj + Vex(r) ⊗ 1

⎤
⎦ � − Un̂�, (5)

where vx =
√

1 − (γ /2)2, vy = √
3γ /2, and p is measured in

units of a−1, where a is the lattice constant.
In what follows we consider a quasi-1D scenario, meaning

that we consider wave packets that are very broad in one
direction and narrow in the other. To leading order in the
momentum, the Dirac Hamiltonian is isotropic and all the
directions (with respect to the lattice) are equivalent (except
for a numerical factor vj ). Therefore, we consider a wave
packet moving in the x direction and hence put py = 0. The
resulting propagation equation is

i∂z� = −[ivx∂x ⊗ σx + Vex(x) ⊗ 1]� − Un̂�. (6)

The solutions of the linear equation are eigenstates of σx .
Since the two components of the eigenvectors of σx differ only
in their phases 〈±| = (1, ±1), the nonlinear term is pro-
portional to the identity operator (in the pseudospin space).
Therefore, the spinors solving the linear equation also solve the
nonlinear equation. It is therefore sensible to look for solutions
of the form

	T
trial = [f (x,z), ± f (x,z)]. (7)

Substituting (7) into (6) [setting Vex(x) = 0], we obtain

∂zf (x,z) = ∓vx∂xf (x,z) + iU |f (x,z)|2f (x,z). (8)

This equation has general solutions of the form

f (x,z) = g(x ± vxz) exp[iU |g(x ± vxz)|2z], (9)

where g(ξ ) is some arbitrary function. The “up” state, |+〉,
corresponds to a left-moving solution g(x + vxz), whereas
the “down” state, |−〉, corresponds to a right-moving solution
g(x − vgz). It is useful to think of the solutions, g(x ± vxz), as
linear combinations of plane waves. The right (left-)-moving
solution is a combination of waves that move to the right (left)
and satisfy βz = −vxpx (βz = vxpx).

This form of solutions has profound implications:
(1) The intensity of any wave packet is unchanged through-

out propagation, except for some drift in its absolute position.
(2) The wave packet does not experience any broadening or

narrowing as a consequence of the nonlinearity, as generally
happens in other nonlinear systems.

(3) The sign of the nonlinearity is irrelevant for the intensity
structure. It affects only the phase of the wave packet.

(4) Since g(ξ ) is arbitrary, any additional noise is simply
some other function g̃(ξ ) which is also a self-similar solution.
Hence the phenomenon of modulation instability is impossible
in this system. That is, all wave packets are inherently stable
in this scenario.

However, the most general wave packet is not composed of
right (left) movers only. Rather, it is made of a superposition
of the two,

�(x,0) =
(

fA(x)
fB(x)

)
= h+(x,0)|+〉 + h−(x,0)|−〉, (10)

where h±(x,0) ≡ (fA(x,0) ± fB(x,0))/2. It would be very
unusual if the dynamics of a general wave packet propagating
in the nonlinear honeycomb lattice were the sum of the right-
and left-moving self-similar solutions,

�sup(x,z) = h+(x,z)|+〉 + h−(x,z)|−〉, (11)

where h±(x,z) are of the form (9). And indeed, even though
the equation is nonlinear—where, in general, the sum of two
solutions is not a solution—in this case such a superposition
turns out to be an excellent approximation. The reason is
that the terms that “spoil” the superposition are products of
h+ and h− (and their c.c.). Since any physical wave packet
has a finite width, δx, after a large enough propagation
distance, the overlap between h+(x − vxz) and h−(x + vxz) is
negligible (since they move in opposite directions). Therefore,
for z � δx a general wave packet evolves to a superposition
of the left- and right-moving nonlinear solutions given in (9).
We demonstrate the validity of this superposition principle
for the nonlinear dynamics in honeycomb lattices by solving
Eq. (6) numerically with the initial condition f (x,0) =
Nf exp(−x2/σ 2), g(x,0) = Ngx

2 exp(−x2/σ 2), where Nf ,
Ng are normalization constants, set U = 0.5 and vx = √

3/2,
and compare to the superposition of the analytic solutions. We
find that the agreement is excellent at a large propagation
distance (z � δx) where the two solutions are spatially
separated [Fig. 2(b)], while even at short distances there is only
a very small discrepancy between the two (z � σ ) [Fig. 2(c)].

Next, we examine this unique wave dynamics when taking
into account the fact that βz is not really linear in px . We do that
by including higher order terms in the expansion of ϕ(k). We
emphasize that ϕ(k) is not isotropic (even for a non deformed
lattice, i.e., γ = 1) beyond the leading terms, and therefore
one has to specify the direction with respect to the lattice.
This anisotropy can be used to distinguish between excitations
residing in the different Dirac cones, which suggests applica-
tions in controlling an electronic devices [21–23]. We proceed
to study quasi-1D dynamics in the x direction by including the
next-order kinetic term, which yields

ϕ( p) = vxpx + γ

8
p2

x, (12)

021802-2



RAPID COMMUNICATIONS

NONLINEAR WAVE DYNAMICS IN HONEYCOMB LATTICES PHYSICAL REVIEW A 84, 021802(R) (2011)

X

z

−200 −100 0 100 200
0

20

40

60

80

100

120

140
(a)

−100 0 100 200 300 400
0

0.002

0.004

0.006

0.008

0.01

0.012

X

 

 

analytic

numeric 

 

 

z =35(c)

−300 −200 −100 0 100 200 300
0

0.002

0.004

0.006

0.008

0.01

X

 

 

analytic

numeric 

(b)  z=140

FIG. 2. (Color online) (a) Simulated propagation of a general
wave packet. x, z, and px are dimensionless. Comparison between
the simulation and the superposition of the right- and left-moving
solutions (b) at z = 140 and (c) at z = 35 (c). Inset: The greatest
discrepancy between the numeric and the analytic solutions.

where the significance of the quadratic term can be tuned
by controlling the deformation of the lattice. We emphasize
that, as we approach γ → 2, a qualitative difference arises
between the different directions: vx → 0, whereas vy is finite
and nonzero, as demonstrated for Klein tunneling [5]. We find
that, when the quadratic term is significant enough that in the
absence of nonlinearity (U = 0) the wave packet experiences
noticeable diffraction, the nonlinearity has its usual effects,
that is, U > 0 causes focusing of the beam, whereas U < 0
enhances the beam broadening. However, we emphasize that
in honeycomb lattices there is a significant range of parameters
where the quadratic terms are negligible and exotic wave
dynamics can be observed in experiments.

Finally, we examine the effects of nonlinearity on one of
the most remarkable phenomena associated with honeycomb
lattices: Klein tunneling, where a wave packet tunnels into a
potential step with probability 1 at normal incidence. It was
found that in graphene, the Coulomb interactions “strongly
suppress Klein tunneling” [16]. Hence, it is interesting to
study whether or not other types of interactions have such
suppression effects. In this context, our type of nonlinearity
represents not only EM waves in photonic lattices, but also
interacting BECs. We solve Eq. (6) numerically in the presence
of an additional smooth step-like potential. The initial wave
packet is composed of modes associated with the second
band, and it is initially located in the region of the higher
refractive index. In spite of the presence of nonlinearity, we
find that the wave packet is entirely transmitted, i.e., it tunnels
into the region of lower refractive index with probability 1,
meaning that Klein tunneling is not suppressed at all. This is in
contrast to quasiparticles in graphene, where Klein tunneling
is strongly suppressed [16]. Moreover, even when we relax
the Dirac approximation, meaning taking into account O(p2)
terms [Fig. 3(a)], the tunneling probability remains exactly
1 [Figs. 3(b) and 3(c)]. We verify this result by calculating
the projection of the left- and right-moving plane waves
P± ≡ |〈p,±|ψ(z)〉|2. The calculation reveals that right and left
movers do not exchange population [Fig. 3(d)]. The fact that
Klein tunneling at normal incidence is not effected by O(p2)
terms was reported in [22], but that was for non-interacting
waves only, whereas here we expand this finding to the
nonlinear domain. However, since the “free” wave dynamics
is strongly affected by the quadratic corrections, is it still
surprising that Klein tunneling remains unaffected by it, and
it is desirable to understand it.

These findings can be explained in a fairly simple
manner. The reflection amplitude is proportional to r ∝
〈βz, − p|W |βz,p〉, where W includes the external potential
step and the nonlinear term. At normal incidence, the states
|βz,p〉 and |βz, − p〉 are |−〉 and |+〉, respectively. Since the
potential step is the same for both pseudospin components
(there is no difference between the two sublattices), it is
proportional to the identity operator. Moreover, since the
incident wave packet is right (or left) moving, its two
components are equal in magnitude, hence, the nonlinear term
is proportional to the identity operator as well. Therefore, the
reflection amplitude is proportional to the overlap of the states,
r ∝ 〈−|+〉, which completely vanishes. Similar argument and
numerical calculations show that the total reflection at normal
incidence obtained beyond the critical deformation (γ > 2) [5]
is also unaffected by nonlinearity.

In conclusion, we have studied quasi-1D wave dynamics in
honeycomb lattices in the presence of Kerr nonlinearity. We
have focused on Bloch waves in the vicinity of the Dirac
points and found that the quasi-1D wave-packet dynamics
is very different from the 2D wave dynamics studied previ-
ously [24,25]. In fact, we have found an infinite number of
non-diffracting self-similar solutions that are insensitive to
noise and are, therefore, immune to modulation instability.
Moreover, we have shown that the most general wave packet
is a superposition of left-moving and right-moving self-similar
solutions, to a very good approximation. Finally, we have
re-examined Klein tunneling at normal incidence in the
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FIG. 3. (Color online) Nonlinear Klein tun-
neling for γ = 1.85. x, z, and px are dimension-
less. (a) Propagation constant and an illustration
of the initial momentum distribution (dashed
line). (b) Intensity of the wave packet in the (x,z)
plane. The dashed vertical line represents the po-
sition of the potential step. (c) Illustration of the
potential step (solid line) and the initial (dashed
line) and final (dot-dashed line) intensities. (d)
The population of eigenstates of the initial (solid
line) and final (dashed line) wave packets.

presence of nonlinearity and found that, in contradistinction
to other systems exhibiting Columb interactions, the tunneling
probability is unaffected by Kerr-type nonlinearity.
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